This Question Paper contains 4 Printed Pages.J

15E(A)

MATHEMATICS, Paper - I

(English version) Parts A and B

Time : 21/2 Hours

[Maximum Marks : 50

Instructions :

1. Answer the questions under Part-A on a separate answer book.

2. Write the answers to the questions under **Part-B** on the Question paper itself and attach it to the answer book of **Part-A**.

Time : 2 Hours

Marks: 35

SECTION - I

Part -

(Marks: 5×2=10)

Note :

1. Answer ANY FIVE questions, choosing atleast TWO from each of the following Groups, i.e., A and B.

2. Each question carries 2 marks.

GROUP - A

(Real numbers, Sets, Polynomials, Quadratic Equations)

1. Expand $\log \frac{343}{125}$.

2. Draw the Venn diagrams of the sets (A - B), (B - A).

3. Find a quadratic polynomial, if the zeroes of it are 2 and -1 respectively.

4. Find the roots of the equation $2x^2 + x - 6 = 0$ by factorisation.

GROUP - B

(Pair of Linear equations in two variables, Progressions, Co-ordinate Geometry)

- 5. 10 students of class X took part in a mathematics quiz. If the number of girls is four more than the number of boys; then find the number of boys and the number of girls, who took part in the quiz.
- Find the number of terms in the following AP
 7, 13, 19,, 205
- 7. Find the coordinates of the point, which divides the join of (-1, 7) and (4, -3) in the ratio 2:3.
 - 8. Find the area of the triangle, whose vertices are (2, 0), (1, 2), (-1, 6). What do you observe?

SECTION - II

(Marks: $4 \times 1 = 4$)

Note :

1. Answer ANY FOUR of the following SIX questions.

- 2. Each question carries 1 mark.
- 9. Find the value of $\log_{81} 3$.

10. List all the subsets of the following set $B = \{p, q\}$.

11. Write the following set $\{x : x = 2n + 1 \text{ and } n \in \mathbb{N}\}$ in roster form.

12. If $p(x) = x^2 - 5x - 6$; find the value of p(3).

13. Find the common ratio of GP

 $2, 2\sqrt{2}, 4, \dots$

14. Find the mid point of the line segment joining the points (2, 7) and (12, -7).

SECTION - III

(Marks: 4×4=16)

Note:

1. Answer ANY FOUR questions, choosing atleast TWO from each of the following Groups, i.e., A and B.

2. Each question carries 4 marks.

GROUP - A

(Real Numbers, Sets, Polynomials, Quadratic Equations)

- **15.** Show that $5 \sqrt{3}$ is irrational.
- **16.** If $A = \{1, 2, 3, 4\}$, $B = \{1, 2, 3, 5, 6\}$, then find (i) $A \cap B$, (ii) $B \cap A$, (iii) A B, (iv) B A, and what do you observe?
- 17. Find the zeroes of the polynomial $p(x) = x^2 4x + 3$ and verify the relationship between zeroes and coefficients.
- 18. Solve the quadratic equation $2x^2 + x 4 = 0$ by completing the square.

GROUP - B

(Pair of Linear equations in two variables, Progressions, Co-ordinate Geometry)

19. Solve the equations.

 $\frac{10}{x+y} + \frac{2}{x-y} = 4 , \frac{15}{x+y} - \frac{5}{x-y} = -2$

- 20. Solve the pair of equations by Elimination method. 2x + y - 5 = 0, 3x - 2y - 4 = 0
- 21. If the sum of the first 7 terms of an AP is 49 and that of 17 terms is 289; find the sum of the first *n* terms.
- **22.** Find the area of the triangle formed by joining the mid points of the sides of the triangle, whose vertices are (0, -1); (2, 1) and (0, 3). Find the ratio of this area to the area of the given triangle.

SECTION - IV

(Marks: 1×5=5)

(Polynomials, Pair of Linear equations in two variables)

Note:

1. Answer ANY ONE question from the following.

2. This question carries 5 marks.

23. Draw the graph of $p(x) = x^2 + 3x - 4$ and find zeroes.

Verify the zeroes of the polynomials.

24. Solve the following equations graphically. 3x - y = 7, 2x + 3y = 1

15E(B)

MATHEMATICS, Paper – I

(English version) Parts A and B

Time : 21/2 Hours]

[Maximum Marks : 50

Instructions :

Write the answers to the questions under **Part-B** on the Question paper itself and attach it to the answer book of **Part-A**.

Part - B

Time : 30 minutes

Marks : 15

Note:

1. Each question carries 1/2 mark.

2. Answers are to be written in the Question paper only.

3. Answer all the questions.

4. Marks will **not** be awarded in case of any over-written, re-written or erased answers.

1.	Writ	e the CAPITAL LETTE	R showing	, the correct answer	for the	10 ×	$\frac{1}{6} = 5$	
	follo	wing questions in the br	acreis pro	viaea againsi inem	be	10 ~	/2 - 0	×-
1.	If p	is prime, then \sqrt{p} is .				1]	
	·(A)	Composite number	(B)	Rational number			1982	
	(C)	Positive integer	(D)	Irrational number	r .	1		
			in e e e e e e e e e e e e e e e e e e e		2	r	7	
2.	Exp	onential form of log ₄ 8 =	= x is			L	1 1	
	(A)	$x^8 = 4$	(B)	$x^4 = 8$	- <u>8</u>			
	(C)	$4^{x} = 8$	(D)	$8^x = 4$				
	(C)	3	(D)	2		зЙ.	н	
	(C)	3	(D)	2				
4	(C) $\frac{p}{q}$	3 form of 0.0875 is	(D)	2		Ę]	
4	(C) • <u>p</u> q (A	3 form of 0.0875 is 1) $\frac{7}{2^4 \times 5}$	(D) (B)	$\frac{7}{2 \times 5^4}$		t	I	
4	(C) • <u>p</u> q (A	3 form of 0.0875 is a) $\frac{7}{2^4 \times 5}$ b) $\frac{7}{2^4 \times 5^4}$	(D) (B) (D)	$\frac{7}{2 \times 5^4}$ $\frac{5^3 \times 7}{2^3 \times 5^4}$		t	I	
4	(C) • <u>p</u> q (A	3 form of 0.0875 is (a) $\frac{7}{2^4 \times 5}$ (b) $\frac{7}{2^4 \times 5^4}$	(D) (B) (D)	2 $\frac{7}{2 \times 5^4}$ $\frac{5^3 \times 7}{2^3 \times 5^4}$		t	l	
4	(C) • <u>p</u> (A (C) • (C)	3 form of 0.0875 is a) $\frac{7}{2^4 \times 5}$ b) $\frac{7}{2^4 \times 5^4}$ A \subset B, $n(A) = 5$ and $n(B)$	(D) (B) (D) 3) = 7, ther	2 $\frac{7}{2 \times 5^4}$ $\frac{5^3 \times 7}{2^3 \times 5^4}$ $n n(A \cup B) = \dots$		E]	
4	(C) • <u>p</u> (A (C) • (C) • (f (A	3 form of 0.0875 is a) $\frac{7}{2^4 \times 5}$ b) $\frac{7}{2^4 \times 5^4}$ A \subset B, $n(A) = 5$ and $n(B)$ b) 5	(D) (B) (D) 3) = 7, then (B)	2 $\frac{7}{2 \times 5^4}$ $\frac{5^3 \times 7}{2^3 \times 5^4}$ $n \ n(A \cup B) = \dots$ 7		E E]	

6. If 2 and 3 are two zeroes of x³ - 5x² + 6x, then find the third zero
(A) 1 (B) 4

(C) 5 (D) 0

7. Which is not a linear equation of the following?

- (A) 5 + 4x = y + 3.
- (B) x + 2y = y x
- (C) $3-x = y^2 + 4$
- (D) x + y = 0

8. Two angles are complementary. If the larger angle

is twice the measure of a smaller angle, then smaller is

I

I

]

]

1

]

I

- (A) 30° (B) 45°
- (C) 60° (D) 15°

9. The common difference of AP 1, -1, -3, is [

- (A) -1 (B) +2
- (C) -2 (D) +1

- 10. Distance between (0, 7) and (-7, 0) is (A) $2\sqrt{7}$ (B) $7\sqrt{2}$ (C) $\sqrt{14}$ (D) +1
- II. Fill in the blanks with suitable answers.

 $10 \times \frac{1}{2} = 5$

1

- 11. Decimal form of $\frac{36}{2^3 \times 5^3}$ value is
- 12. If L.C.M. and H.C.F. of two numbers are 108 and 9 respectively and one of them is 54; then other number is ______

13. If $\log_2 x = 3$, then $x = \dots$

14. If $\frac{52}{160} = \frac{13}{2^n \times 5^m}$, then $m + n = \dots$

15. If the polynomial $p(x) = x^2 - 8x + k$ is divided by (x - 1), the remainder comes out to be '6', then k is

- 16. The discriminant of the Quadratic equation $px^2 + qx + r = 0$ is

		Sector Constant Street A
13	9. $(-2, 8)$ point lies on	quadrant.
		Barrier
20	0. Slope of Y-axis is	
TTT.	TR- 7.0	
	find the correct answer for the questions given from Group-B and write the indicating letter i	under Group-A selecting them
	each question.	$10 \times \frac{1}{2} = 5$
G	Group A	6 - D
10/	Croup - X	Group - B
21.	The zero of linear polynomial []	(A) 0
	$ax - b = \dots$	(B) -2
22.	If the product of zeroes is '0' of	n di si
	the polynomial $ax^2 + bx + c$,	(C) $\frac{b}{a}$
	then the value of c is	
23.	Product of the zeroes of the	(D) $\frac{a}{z}$
	nolynomial $2r^2 - 3r + 6$ is	, , , , , , , , , , , , , , , , , , ,
		(E) 2 · · ·
24.	Sum of the zeroes of the []	a
18	polynomial $bx^2 + ax + c = \dots$	$(\mathbf{F}) = -\frac{1}{L}$

25. α , β , γ are the zeroes of the [] polynomial $x^3 + 3x^2 - x + 2$, then $\alpha \beta \gamma$ is (H) (H) 3

- talled given (ii) Group - A Group - B (I) $\sqrt{5}$ 26. Distance between X-axis and (-4,3) is (J) (1, 1) Distance between origin and 27. (K) 3 (2, 3) is (L) 2Distance between Y-axis and 28. (4, 0) is (M)
- **29.** Mid point of line joining the points (2, 3) and $(-2, 3) = \dots$ []

 30. Centroid of a triangle, whose vertices are (0, 3); (3, 0); (0, 0) is
 []
 (O) (0, 0)

 (N) $\sqrt{13}$ []
 (O) (0, 0)

 (0, 3); (3, 0); (0, 0) is
 []
 (P) (0, 3)

Andhra Pradesh SSC Class 10th Maths Question Paper 1 With Solution 2016

QUESTION PAPER CODE 15E(A)

SECTION - I GROUP - A

(5 * 2 = 10)

Answer ANY 5 Questions choosing two from each of the following groups. Question 1: Expand log 343 / 125

Solution:

Logarithmic rules: i) $\log (x / y) = \log x - \log y$ ii) $\log a^n = n \log a$ $\log (343 / 125)$ $= \log (7^3/5^3)$ $= \log (7 / 5)^3$ $= 3 \log (7 / 5)$ $= 3 [\log 7 - \log 5]$ $= 3 \log 7 - 3 \log 5$ $= 3 \log 7 / 3 \log 5$ $= \log 7 / \log 5$

Question 2: Draw the Venn diagrams of the sets (A – B), (B – A).

Solution:

Question 3: Find a quadratic polynomial, if the zeroes of it are 2 and -1 respectively.

Solution:

Quadratic = x^2 - (sum)x + product = 0 Sum = 2 + (-1) = 1 Product = 2 * - 1 = -2 x^2 - x - 2 = 0 is the quadratic polynomial.

Question 4: Find the roots of equation $2x^2 + x - 6 = 0$ by factorisation.

Solution:

Given the quadratic equation: $2x^2 + x - 6 = 0$ Splitting the middle term, $2x^2 + 4x - 3x - 6 = 0$ => 2x(x + 2) - 3(x + 2) = 0=> (x + 2)(2x - 3) = 0Therefore, x + 2 = 0 or 2x - 3 = 0x = -2 or x = 3/2

GROUP - B

Question 5: 10 students of class X took part in a mathematics quiz. If the number of girls is four more than the number of boys; then find the number of boys and the number of girls, who took part in the quiz.

Solution:

Let the number of boys be x. The number of girls is 10 - x. The number of girls = 4 + number of boys 10 - x = 4 + x 6 = 2x x = 3Number of boys = 3 Number of girls = 7

Question 6: Find the number of terms in the following AP. 7, 13, 19,, 205

Solution:

A.P. 7, 13, 19,, 205 a = 7 d = 13 - 7 = 6 $A_n = 205$ $A_n = a + (n - 1) d$ 205 = 7 + (n - 1) 6 => 205 - 7 = (n - 1) 6 => 198 = (n - 1) 6 => n - 1 = 198 / 6 => n - 1 = 33 => n = 33 + 1 => n = 34Thus, the total number of terms is 34.

Question 7: Find the coordinates of the point, which divides the join of (-1, 7) and (4, -3) in the ratio 2 : 3.

Solution:

m : n = 2 : 3(x, y) = (mx₂ + nx₁) / (m + n), (my₂ + ny₁) / (m + n) = (2 * 4 + 3 * [-1]) / [2 + 3], (2 * [-3] + 7 * 3) / [2 + 3] = (5 / 5), (-6 + 21 / 5)= 1, 3

Question 8: Find the area of the triangle, whose vertices are (2, 0), (1, 2), (-1, 6). What do you observe?

Solution: Area of the triangle = |2(2 - 6) - 0(1 + 1) + 1(6 + 2)|= |(-8) + 0 + 8|= 0 If the area of triangle = 0, then the three points are collinear.

SECTION - II

(4 * 1 = 4)

Answer ANY 4 questions of the following six questions.

Question 9: Find the value of log₈₁ 3.

Solution:

 $log_{81} 3 = x$ Rewrite as an exponential. In this case, x is the exponent, and 81 is the base. $81^x = 3$ Find a common base for both sides, which is 3. $81 = 3^4$ $(3^4) x = 3$ Use the exponent rule $(x^a)^b = x^{ab}$ $3^{4x} = 3^1$ 4x = 1x = 1/4

Question 10: List all the subsets of the following set $B = \{p, q\}$.

Solution:

All subsets of B are $\{\}, \{p\}, \{q\}, \{p, q\}.$

Question 11: Write the following set $\{x : x = 2n + 1 \text{ and } n \in N\}$ in roster form.

Solution:

{3, 5, 7, 9, 11, 13,}

Question 12: If $p(x) = x^2 - 5x - 6$, then find the value of p(3).

Solution:

 $p(x) = x^{2} - 5x - 6$ $p(3) = 3^{2} 3 * 5 - 6$ = 9 - 15 - 6= -12

Question 13: Find the common ratio of GP 2, $2\sqrt{2}$, 4,

Solution:

r = $2\sqrt{2} / 2$ = $\sqrt{2}$ So, the common ratio is $\sqrt{2}$.

Question 14: Find the midpoint of the line segment joining the points (2, 7) and (12, - 7).

Solution:

Given points are $(2, 7) = (x_1, y_1)$ $(12, -7) = (x_2, y_2)$ mid point = $(x_1 + x_2/2, y_1 + y_2/2)$ =» (2 + 12/2, 7 + (-7)/2)=» (14/2, 0/2)=» (7, 0) is the midpoint.

SECTION - III

(4 * 4 = 16)

Answer ANY 4 questions, choosing at least TWO from each of the following groups.

GROUP - A

Question 15: Show that 5 - $\sqrt{3}$ is irrational.

Solution:

Assume that $5 - \sqrt{3}$ is a rational number such that a, b exists, where a and b are two co-prime numbers. = $5 - \sqrt{3} = a / b$ = $\sqrt{3} = 5 - a / b$ => a and b are integers. So, (5 - a / b) is rational. There arises a contradiction with our assumption that $5 - \sqrt{3}$ is a rational number. Hence, $5 - \sqrt{3}$ is an irrational number.

Question 16: If $A = \{ 1, 2, 3, 4 \}, B = \{ 1, 2, 3, 5, 6 \}$, then find (i) $A \cap B$, (ii) $B \cap A$ (iii) A - B, (iv) B - A, and what do you observe?

Solution:

(i) $A \cap B \to \{1, 2, 3\}$ (ii) $B \cap A \to \{1, 2, 3\}$ (iii) $A - B \to \{4\}$ (iv) $B - A \to \{5, 6\}$

Question 17: Find the zeroes of the polynomial $p(x) = x^2 - 4x + 3$ and verify the relationship between zeroes and coefficients.

Solution:

 $x^{2} - 4x + 3 = 0$ $x^{2} - 3x - x + 3 = 0$ x (x - 3) - 1 (x - 3) = 0 (x - 3) (x - 1) = 0 x = 3, 1Sum of the roots = (alpha + beta) = 3 + 1 = 4 = -(-4) / 1 = -4 = (-b / a)Product of the roots = (alpha * beta) = 3 * 1 = 3 = (3 / 1) = (c / a)

Question 18: Solve the quadratic equation $2x^2 + x - 4 = 0$ by completing the square.

Solution:

 $(a + b)^2 = a^2 + 2ab + b^2$

To find the value of x, use the above formula,

To bring the given equation to that form $a^2 + 2ab + b^2$ for some value a & b.,.

 $=> 2x^2 + x - 4 = 0$

 $= x^{2} + (x / 2) - 2 = 0$ [Dividing both the sides by 1 / 2]

 $= x^{2} + 2 * (1 / 4) x - 2 = 0$

Multiplying & dividing the middle term by 2 to get the term 2ab (here a = x, b = 1 / 2)

 $a^2 + 2ab + c$ (for some value c, here it is - 4), we need b^2 to bring this equation to that form,

By adding $(1 / 4)^2$ both the sides, => $x^2 + 2 * (1 / 4) x + (1 / 4)^2 - 2 = (1 / 4)^2$ It can be, reduced to the form $(a + b)^2$ => $(x + [1 / 4])^2 - 2 = 1 / 16$ => $x + (1 / 4)^2 = [1 / 16] + 2$ => $(x + [1 / 4])^2 = 33 / 16$ By moving the square from LHS to RHS, we get, => $x + [1 / 4] = \sqrt{33} / 16$ => $x = [\sqrt{33} - 1 / 4]$ or $[\sqrt{-33} - 1 / 4]$

GROUP - B

Question 19: Solve the equations: 10 / [x + y] + 2 / [x - y] = 4, 15 / [x + y] - 5 / [x - y] = -2.

Solution:

Let 1 / [x + y] = k1 / [x - y] = m10k + 2m = 4 * 515k - 5m = -2 * 250k + 10m = 2030k - 10m = -480k = 16k = 16 / 80 = 1 / 51 / [x + y] = 1 / 5x + y = 5 - (1)m = [4 - 10k] / 2 = [4 - 2] / 2 = 11 / [x + y] = 1x - y = 1 x + y = 52x = 6x = 3y = 5 - xy = 2

Question 20: Solve the pair of equations by elimination method: 2x + y - 5 = 0, 3x - 2y - 4 = 0.

Solution:

2x + y = 5 * 2 3x - 2y = 4 4x + 2y = 103x - 2y = 4 (on adding) 7x = 14 x = 14 / 7 = 2 y = 5 - 2x = 5 - 2 * 2= 1

Question 21: If the sum of the first 7 terms of an AP is 49 and that of 17 terms is 289; find the sum of the first n terms.

Solution:

Sum = $[n / 2] * [2a_0 + [n - 1] d]$ $49 = (7 / 2) [2a_0 + 6d]$ $14 = 2a_0 + 6d$ $7 = a_0 + 3d - (1)$ $289 = 17 / 2 * [2a_0 + 16d]$ $34 = 2a_0 + 16d$ $17 = a_0 + 8d - (2)$ $7 = a_0 + 3d$ $17 = a_0 + 8d$ 10 = 5dd = 10 / 5 = 2 $a_0 = 7 - 3d = 7 - 3 * 2 = 1$ Sum of first n terms = $[n / 2] * [2a_0 + [n - 1] d]$ = (n / 2) (2 + 2n - 2)= (n / 2) * (2n) $= n^{2}$

Question 22: Find the area of the triangle formed by joining the midpoints of the sides of the triangle, whose vertices are (0, -1); (2, 1) and (0, 3). Find the ratio of this area to the area of the given triangle.

Solution: D = [0 + 2] / [2], [-1 + 1] / [2] = (1, 0) E = [2 + 0] / [2], [1 + 3] / [2]= (1, 2) F = [0 + 0] / [2], [3 - 1] / [2]= (0, 1) Area of triangle = (1 / 2) (0 [1 - 3] + 2 [3 + 1] + 0 [-1 -1]) = (1 / 2) * 8 = 4 Area of midpoint triangle = (1 / 2) (1 [2 - 1] + 1 [1 - 0] + 0 [0 - 2]) = (1 / 2)

SECTION - IV

(1 * 5 = 5)

Answer any ONE question.

Question 23: Draw the graph of $p(x) = x^2 + 3x - 4$ and find zeroes. Verify the zeroes of the polynomials.

Solution:

The graph is an upward parabola as it is a quadratic equation.

The curve passes through (-4,0) and (1,0).

The zero of the polynomial is where the curve cut the x-axis. i.e. the zero of the polynomial is -4 and 1.

Question 24: Solve the following equations graphically. 3x - y = 7, 2x + 3y = 1.

PART - B

(10 * 0.5 = 5)

Question 1: If p is prime, then \sqrt{p} is

- (A) Composite number
- (B) Rational number
- (C) Positive integer
- **(D)** Irrational number

Answer: D

 Question 2: Exponential form of log₄ 8 is

 (A) $x^8 = 4$ (B) $x^4 = 8$ (C) $4^x = 8$ (D) $8^x = 4$

Answer: C

Question 3: If $\log 625 = k \log 5$, then the value of k is

(A) 5	(B) 4	(C) 3	(D) 2
() -	(-).		(-)-

Answer: B

Question 4: p / q form of 0.0875 is(A) 7 / $2^4 * 5$ (B) 7 / $2 * 5^4$ (C) 7 / $2^4 * 5^4$ (D) 5^3 * 7 / $2^3 * 5^4$

Answer: A

Question 5: If $A \subseteq B$, n(A) = 5 and n(B) = 7, then $n(A \cup B) =$ (A) 5 (B) 7 (C) 2 (D) 12

Answer: D

Question 6: If 2 and 3 are two zeroes $x^3 - 5x^2 + 6x$, then find the third zero.(A) 1(B) 4(C) 5(D) 0

Answer: D

Question 7: Which is not a linear equation of the following (A) 5 + 4x = y + 3(B) x + 2y = y - x(C) $3 - x = y^2 + 4$ (D) x + y = 0

Answer: C

Question 8: Two angles are complementary. If the larger angle is twice the
measure of the smaller angle, then smaller is(A) 30(B) 45(C) 60(D)

15

Answer: A

 Question 9: The common difference of AP 1, -1, -3, is

 (A) -1
 (B) 2
 (C) -2
 (D) 1

 Answer: C

 Question 10 Difference (0, 7) = 1 (7, 0);

Question 10: Distance between (0, 7) and (-7, 0) is(A) $2\sqrt{7}$ (B) $7\sqrt{2}$ (C) $\sqrt{14}$ (D) 1

Answer: B

Fill in the blanks.

Question 11: The decimal form of $36 / 2^3 * 5^3$ is _____ (0.036)

Question 12: If LCM and HCF of two numbers are 108 and 9 respectively and one of them is 54, then the other number is _____ (18)

Question 13: If $\log_2 x = 3$, then x =____(8)

Question 14: If $52 / 160 = 13 / 2^n * 5^m$, then m + n is _____ (4)

Question 15: If the polynomial $p(x) = x^2 - 8x + k$ is divided by (x - 1), the remainder comes out to be '6', then k is _____ (13)

Question 16: The discriminant of the quadratic equation $px^2 + qx + r = 0$ is _____ (D = $\sqrt{q^2} - 4pr$

Question 17: The first negative number of AP 14, 11, 8, is _____ term (6th)

Question 18: The intersecting point of x + y = 6, x - y = 4 is _____. (5, 1)

Question 19: (-2, 8) lies in _____ quadrant (second)

Question: [i] Find the correct answer for the given question sunder group - A (10 * selecting from group - B.

0	.5	=	5)	

<i>(i)</i>	Group - A	Group - B
21.	The zero of linear polynomial [] $ax - b = \dots$	(A) 0 (B) -2
22.	If the product of zeroes is '0' of $[]$ the polynomial $ax^2 + bx + c$, then the value of c is	(C) $\frac{b}{a}$
23.	Product of the zeroes of the [] polynomial $2x^2 - 3x + 6$ is	(D) $\frac{a}{b}$ (E) 2
24.	Sum of the zeroes of the [] polynomial $bx^2 + ax + c = \dots$	(F) $-\frac{a}{b}$

25.	α , β , γ are the zeroes of the		his
5 g	polynomial $x^3 + 3x^2 - x + 2$,	and the second	(G) $-\frac{a}{a}$
	then $\alpha \beta \gamma$ is		(H) 3

Answer:

- 21 (C)
- 22 (A)
- 23 (H)
- 24 (F)
- 25 (B)

	and the second se	· 你们也不能是我们的。"我们也不能说了。
(ii)	Group - A	Group - B
-		
26.	Distance between X-axis and []	(1) √5
	(-4,3) is	(J) (1, 1)
	and the second	
27.	Distance between origin and	(12) 9
1.4	(2,3) is	(11) 0
	and the second	
28.	Distance between Y-axis and []	···· (L) · 2
1.	(4, 0) is	
1.1	Page 1	(M) 4
29.	Mid point of line joining the	and the second second second
*	points (2, 3) and $(-2, 3) =$	(10)
		(N) V13
	and the second	
30.	Centroid of a triangle, []	(0) $(0, 0)$
	whose vertices are	
	(0, 3); (3, 0); (0, 0) is	(P) (0, 3)
26 - (H	\mathbf{x}	

- 27 (N)
- 28 (M)
- 29 (P)
- **30 (J**)