UNIT 13

PLAYING WITH NUMBERS

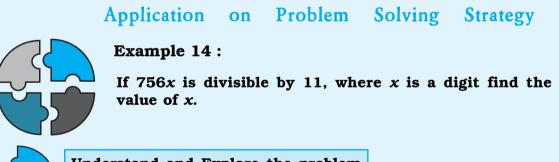
(A) Main Concepts and Results

- Numbers can be written in general form. For example, a two digit number *ab* is written as *ab* = 10*a* + *b*; a three digit number *abc* is written as *abc* = 100*a* + 10*b* + *c*.
- The general form of numbers are helpful in solving various problems related to numbers.
- Rationale for the divisibility of numbers by 11, 10, 5, 2, 9 or 3 can be explained by writing the numbers in general form.
- Many number puzzles involving different letters for different digits are solved using rules of number operations.

(B) Solved Examples

In examples 1 to 4, out of four options only one is correct. Write the correct answer.

Example 1	: Generalised form of a three-digit number <i>xyz</i> is							
	(a) $x + y + z$ (b) $100x + 10y + z$ (c) $100z + 10y + x$ (d) $100y + 10x + z$							
Solution	: The correct answer is (b).							
Example 2	: The usual form of $100a + b + 10c$ is							
	(a) abc (b) cab (c) bac (d) acb							
Solution	: The correct answer is (d).							
Example 3	: If $5 \times A = CA$ then the values of A and C are							

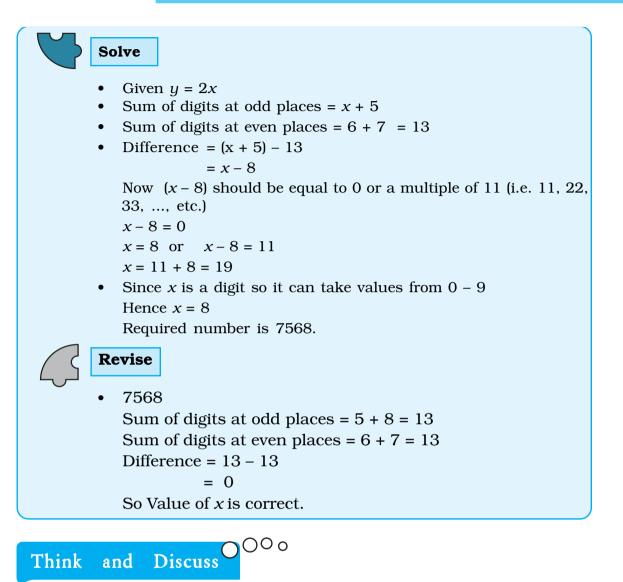

	(a) $A = 5, C = 1$ (b) $A = 4, C = 2$
	(c) $A = 5, C = 2$ (d) $A = 2, C = 5$
Solution	: The correct answer is (<i>c</i>).
Example 4	: If 5 A + 25 is equal to B 2, then the value of A + B is
	(a) 15 (b) 10 (c) 8 (d) 7
Solution	: The correct answer is (<i>a</i>).
In examples 5 t	to 7, fill in the blanks to make the statements true.
Example 5	: The number $ab - ba$ where a and b are digits and $a > b$
	is divisible by
Solution	: 9.
Example 6	: When written in usual form $100a + 10c + 9$ is equal to
	·
Solution	: ac 9
Example 7	: If AB × B = 9B, then A =, B =
Solution	: 9, 1
In examples 8 to	o 10, state whether the statements are true (T) or false (F).
Example 8	: If <i>abc</i> , <i>cab</i> , <i>bca</i> are three digit numbers formed by the
	digits <i>a</i> , <i>b</i> , and c then the sum of these numbers is
	always divisible by 37.
Solution	
Example 9	: Let <i>ab</i> be a two-digit number, then <i>ab</i> + <i>ba</i> is divisible by 9.
Solution	: False.
Example 10	: If a number is divisible by 2 and 4, then it will be divisible
	by 8.
Solution	: False.
Example 11	: A three-digit number $42x$ is divisible by 9. Find the value of <i>x</i> .
Solution	: Since $42x$ is divisible by 9, the sum of its digits, i.e.
Solution	4 + 2 + x must be divisible by 9.

UNIT-13

i.e. 6 + x is divisible by 9 i.e. 6 + x = 9 or 18, _____. Since *x* is a digit, therefore 6 + x = 9 or, x = 3. **Example 12 :** Find the value of A and B if 41 A + B 4

- $\frac{B}{512}$
- Solution : From ones column A + 4 gives a number whose ones digit is 2. So, A = 8. The value of B can be obtained by solving 2 + B is a number whose ones digit is 1. So, B = 9.

- **Example 13 :** Suppose that the division $x \div 5$ leaves a remainder 4 and the division $x \div 2$ leaves a remainder 1. Find the ones digit of *x*.
- **Solution** : Since $x \div 5$ leaves a remainder 4, so ones digit of x can be 4 or 9. Also, since $x \div 2$ leaves a remainder 1, so ones digit must be 9 only.



Understand and Explore the problem

- What is given in the question? A four digit number 756*x* is divisible by 11.
- Which property is required to solve the problem? Divisibility of a number by 11.

Plan a Strategy

- Find the sum of the digits of given number 756*x* at odd places.
- Find the sum of the digits of 756x at even places.
- Find the difference of step 1 and step 2.

1. What would be the value of y, if 277y is divisible by 11?

(C) Exercise

In each of the questions 1 to 17, out of the four options, only one is correct. Write the correct answer.

- 1. Generalised form of a four-digit number *abdc* is
 - (a) 1000 a + 100 b + 10 c + d
 - (b) 1000 a + 100 c + 10 b + d
 - (c) 1000 a + 100 b + 10 d + c
 - (d) $a \times b \times c \times d$

UNIT-13

2.	Generalised form	of a two-digit r	number <i>xy</i> is	
	(a) <i>x</i> + <i>y</i>	(b) 10 <i>x</i> + <i>y</i>	(c) 10 <i>x</i> – <i>y</i>	(d) 10 <i>y</i> + <i>x</i>
3.	The usual form o	of $1000a + 10b$ -	+ c is	
	(a) <i>abc</i>	(b) abco	(c) aobc	(d) aboc
4.	Let <i>abc</i> be a thre	e-digit number.	Then <i>abc</i> – <i>cba</i> i	is not divisible by
	(a) 9	(b) 11	(c) 18	(d) 33
5.	The sum of all th number <i>xyz</i> is di		med by the digits	s x, y and z of the
	(a) 11	(b) 33	(c) 37	(d) 74
6.	A four-digit num of <i>b</i> is/are	ber <i>aabb</i> is divi	isible by 55. The	n possible value(s)
	(a) 0 and 2	(b) 2 and 5	(c) 0 and 5	(d) 7
7.	Let <i>abc</i> be a three by	e digit number. 7	Fhen abc + bca +	<i>cab</i> is not divisible
	(a) $a + b + c$	(b) 3	(c) 37	(d) 9
8.	A four-digit num <i>b</i> – <i>a</i> is	nber 4 <i>ab</i> 5 is d	ivisible by 55. 7	Then the value of
	(a) 0	(b) 1	(c) 4	(d) 5
9.	If abc is a three divisible by	digit number, t	hen the number	<i>abc</i> – <i>a</i> – <i>b</i> – <i>c</i> is
	(a) 9	(b) 90	(c) 10	(d) 11
10.	0	e	• 0	-digit number. For is form is divisible
	(a) 7 only	(b) 11 only	(c) 13 only	(d) 1001
11.	If the sum of digit is always divisible		divisible by three	e, then the number
	(a) 2	(b) 3	(c) 6	(d) 9
12.	If $x + y + z = 6$ and	l <i>z</i> is an odd digi	it, then the three-o	digit number <i>xyz</i> is
	(a) an odd multip	ole of 3	(b) odd multiple	e of 6
	(c) even multiple	of 3	(d) even multipl	e of 9

PLAYING WITH NUMBERS 409

13.	If $5 \text{ A} + B 3 = 65$, then the value of A and B is
	(a) $A = 2, B = 3$ (b) $A = 3, B = 2$
	(c) $A = 2, B = 1$ (d) $A = 1, B = 2$
14.	If $A 3 + 8 B = 150$, then the value of $A + B$ is
	(a) 13 (b) 12 (c) 17 (d) 15
15.	If 5 A \times A = 399, then the value of A is
	(a) 3 (b) 6 (c) 7 (d) 9
16.	If $6 A \times B = A 8 B$, then the value of $A - B$ is
	(a) -2 (b) 2 (c) -3 (d) 3
17.	Which of the following numbers is divisible by 99
	(a) 913462 (b) 114345 (c) 135792 (d) 3572406
In au	estions 18 to 33, fill in the blanks to make the statements true.
-	3134673 is divisible by 3 and
	20 <i>x</i> 3 is a multiple of 3 if the digit <i>x</i> is or or
	3 <i>x</i> 5 is divisible by 9 if the digit <i>x</i> is
	The sum of a two–digit number and the number obtained by reversing
21.	the digits is always divisible by
22.	The difference of a two-digit number and the number obtained by
	reversing its digits is always divisible by
23.	The difference of three-digit number and the number obtained by
	putting the digits in reverse order is always divisible by 9 and
	·
	2 B
24 .	If $+\underline{A}$ \underline{B} then $A = \underline{\qquad}$ and $B = \underline{\qquad}$.
	8 A
	A B
25.	If $\underline{\times B}$ then $A = \underline{\qquad}$ and $B = \underline{\qquad}$.
	9 6
	B 1
26.	If $\mathbf{x} \mathbf{B}$ then $\mathbf{B} = \underline{\qquad}$.
	4 9B

- **27.** 1 *x* 35 is divisible by 9 if *x* = _____.
- **28.** A four-digit number *abcd* is divisible by 11, if $d + b = _$ or
- **29.** A number is divisible by 11 if the differences between the sum of digits at its odd places and that of digits at the even places is either 0 or divisible by _____.
- **30.** If *a* 3-digit number *abc* is divisible by 11, then _____ is either 0 or multiple of 11.
- **31.** If $A \times 3 = 1A$, then A =_____.
- **32.** If B × B = AB, then either A = 2, B = 5 or A = ____, B = ____.
- **33.** If the digit 1 is placed after a 2-digit number whose tens is *t* and ones digit is *u*, the new number is _____.

State whether the statements given in questions 34 to 44 are true (T) or false (F):

- **34.** A two-digit number *ab* is always divisible by 2 if *b* is an even number.
- **35.** A three-digit number *abc* is divisible by 5 if *c* is an even number.
- **36.** A four-digit number *abcd* is divisible by 4 if *ab* is divisible by 4.
- **37.** A three-digit number *abc* is divisible by 6 if *c* is an even number and a + b + c is a multiple of 3.
- **38.** Number of the form 3N + 2 will leave remainder 2 when divided by 3.
- **39.** Number 7N + 1 will leave remainder 1 when divided by 7.
- **40.** If a number *a* is divisible by *b*, then it must be divisible by each factor of *b*.
- **41.** If $AB \times 4 = 192$, then A + B = 7.
- **42.** If AB + 7C = 102, where $B \neq 0$, $C \neq 0$, then A + B + C = 14.
- **43.** If 213x 27 is divisible by 9, then the value of *x* is 0.
- **44.** If N \div 5 leaves remainder 3 and N \div 2 leaves remainder 0, then N \div 10 leaves remainder 4.

Solve the following :

45. Find the least value that must be given to number *a* so that the number 91876a2 is divisible by 8.

1 P

- **46.** If $\frac{x}{Q} = \frac{P}{6}$ where Q P = 3, then find the values of P and Q.
- **47.** If 1AB + CCA = 697 and there is no carry–over in addition, find the value of A + B + C.
- **48.** A five-digit number AABAA is divisible by 33. Write all the numbers of this form.
- **49.** Find the value of the letters in each of the following questions.

A A				
+A A				
XA Z				
8 5	51.			1 B A
				+ A BA
<u> </u>				8 A 2
СВА	54.	ΒΑΑ	55.	A 0 1 B
+ C B A	-	B A A		+1 0 A B
1 A 30		3 A 8		B 1 0 8
AB	57.	AB	58 .	AA
<u>× 6</u>		× AB		<u>× A</u>
<u>C 6 8</u>		<u>6 A B</u>		CAB
and $B - A = 1$	59 .	AB	60.	8 A B C
If $2A7 \div A = 33$,		– B 7		-ABC5
then find the		4 5		D488
	$\frac{+A A}{XA Z}$ $8 5$ $\frac{+4 A}{B C 3}$ $C B A$ $\frac{+C B A}{1 A 3 0}$ $A B$ $\frac{\times 6}{C 6 8}$ and $B - A = 1$ If $2A7 \div A = 33$,	$ \frac{+A A}{XA Z} $ 85 51. $ \frac{+4 A}{B C 3} $ 51. $ \frac{+4 A}{B C 3} $ C B A 54. $ \frac{+C B A}{1 A 3 0} $ A B 57. $ \frac{\times 6}{C 6 8} $ and B - A = 1 If 2A7 ÷ A = 33, 59.	$\frac{+A}{XA} \frac{A}{Z}$ 85 $\frac{+4}{B} \frac{A}{B} \frac{+8}{C} \frac{A}{C} \frac{+8}{A} \frac{A}{C} \frac{+8}{A} \frac{A}{C} \frac{+8}{A} \frac{A}{C} \frac{-4}{A} \frac{-4}{B} \frac{A}{A} \frac{-4}{A} \frac{-4}{A} \frac{A}{A} \frac{A} \frac$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

value of A.

- **62.** 212 *x* 5 is a multiple of 3 and 11. Find the value of *x*.
- **63.** Find the value of k where 31k2 is divisible by 6.
- **64.** 1y3y6 is divisible by 11. Find the value of *y*.
- **65.** 756 x is a multiple of 11, find the value of x.
- **66.** A three-digit number 2 *a* 3 is added to the number 326 to give a three-digit number 5b9 which is divisible by 9. Find the value of b-a.

67. Let E = 3, B = 7 and A = 4. Find the other digits in the sum

ΒA	\S	E
+B A	L	L
G AN	ΙE	S

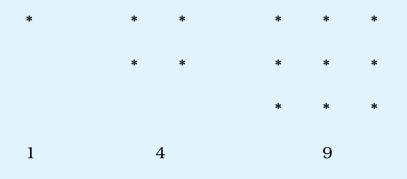
68. Let D = 3, L = 7 and A = 8. Find the other digits in the sum

Μ	A D
+	AS
+	А
ΒU	JLL

- **69.** If from a two-digit number, we subtract the number formed by reversing its digits then the result so obtained is a perfect cube. How many such numbers are possible? Write all of them.
- **70.** Work out the following multiplication.

Use the result to answer the following questions.

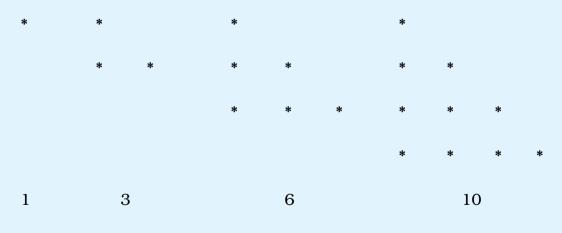
- (a) What will be 12345679 × 45?
- (b) What will be $12345679 \times 63?$
- (c) By what number should 12345679 be multiplied to get 888888888?
- (d) By what number should 12345679 be multiplied to get 999999999?
- **71.** Find the value of the letters in each of the following:


(i) P	Q ((ii)	2 L M
×	6 -	ł	L M 1
QQ	<u>}Q</u>		M 1 8

- **72.** If 148101B095 is divisible by 33, find the value of B.
- **73.** If 123123A4 is divisible by 11, find the value of A.
- **74.** If 56x32y is divisible by 18, find the least value of *y*.

(D) Application, Games and Puzzles

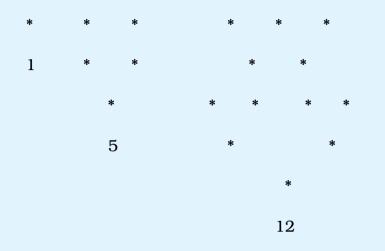
1. Polygonal Numbers


Study the patterns given below and extend it. We already know about square numbers.

Draw two more.

Here for the first square number, use 1^2 ; for the second square number, use 2^2 . To find the third square number use 3^2 and so on. Write the *n*th square number.

Now let's move to triangular numbers.

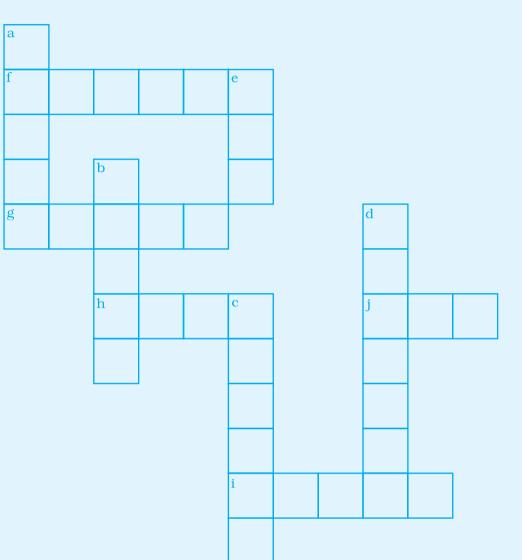


Find the next triangular number.

To find the nth triangular number we use the formula $\frac{n \times (n+1)}{2}$

Are you familiar with pentagonal numbers?

First three are given to you. Write the next one



Draw the dot patterns for the next pentagonal number. Count the number of dots inside the entire shape and write the number under the shape.

2. Put tick mark in the appropriate boxes if the given numbers are divisible by any of 2, 3, 4, 5, 6, 8, 10, 11 numbers.

S.No.	Number	Divisible by									
		2	3	4	5	6	7	8	9	10	11
1.	40185										
2.	92286										
3.	56390										
4.	419562										
5.	10593248										

3. Cross Number Puzzle

Fill in the blank spaces in the cross number puzzle using following clues.

Down

- (a) 59 <u>63 ÷ 33</u>
- (b) 81 _____ 42 ÷ 6
- (c) 7 _____ 6988 ÷ 11
- (d) 37604 _____ 5 ÷ 15

UNIT-13

(e) 56 _____ ÷ 10

Across

- (f) 90 _____ 815 ÷ 15
- (g) 3514 _____ ÷ 12
- (h) 4 _____ 07 ÷ 7
 - (i) 8 <u>558</u> ÷ 6
 - (j) 6 _____ 5 ÷ 55

Rough Work

Rough Work