Class XI Session 2023-24 Subject - Chemistry Sample Question Paper - 4

Time All	owed: 3 hours	Maximum Marks	s: 70
General	Instructions:		
	1. There are 33 questions in this question paper with internal c	hoice.	
	2. SECTION A consists of 16 multiple-choice questions carryi	ing 1 mark each.	
	3. SECTION B consists of 5 very short answer questions carry	ing 2 marks each.	
	4. SECTION C consists of 7 short answer questions carrying 3	marks each.	
	5. SECTION D consists of 2 case-based questions carrying 4 r	narks each.	
	6. SECTION E consists of 3 long answer questions carrying 5	marks each.	
	7. All questions are compulsory.		
	8. The use of log tables and calculators is not allowed		
		Section A	
1.	27°C in Kelvin is		[1]
	a) 227 K	b) 246.15 K	
	c) 300.15 K	d) 127.15 K	
2.	Among the following pairs of orbitals which orbital will experi 3d and 3p:	ience the larger effective nuclear charge? (i) 2s and 3s, (ii) 4d and 4f, (iii)	[1]
	a) 4f, 3d, and 3s respectively	b) 2s, 4d and 3p respectively	
	c) 2s, 4d and 3d respectively	d) 4d, 3p and 2s respectively	
3.	During complete combustion of one mole of butane, 2658 kJ o	f heat is released. The thermochemical reaction for above change is	[1]
	a) $C_{4}H_{10}\left(g ight)+O_{2}\left(g ight) ightarrow4CO_{2}\left(g ight)+5H_{2}O\left(l ight)\Delta_{c}H=$	$= - b 329 \mathcal{G} \mathcal{H}_{\mathbf{k}} \mathcal{J}(\boldsymbol{g}) d \mathbb{H}^{1} 13 O_{2}\left(g\right) \rightarrow 8 C O_{2}\left(g\right) + 10 H_{2} O\left(l\right) \Delta_{c} H = -2658$	$3.0 \ kJ$
	c) $C_{4}H_{10}\left(g ight)+O_{2}\left(g ight) ightarrow4CO_{2}\left(g ight)+5H_{2}O\left(l ight)\Delta_{c}H=0$	$=4$ 2 658H _1k(lg)nol ${\mathcal O}_2\left(g ight) o 4CO_2\left(g ight)+5H_2O\left(l ight)\Delta_c H=+2658.0~k.$	J moi
4.	The formula $E = h\nu$ is used to calculate		[1]
	a) wave number	b) energy of the ejected electrons	
	c) radiation emitted by a black body	d) energy of quantum	
5.	For an isolated system, ΔU = 0, what will be ΔS ?		[1]
	a) $\Delta S > 0$	b) $\Delta \mathrm{S}$ will increase for some time and then reduce	
	c) $\Delta S < 0$	d) $\Delta S = 0$	
6.	2×10^8 atoms of carbon are arranged side by side. Calculate t	he radius of carbon atom if the length of this arrangement is 2.4 cm.	[1]
	a) 6.0 $ imes$ 10 ⁻¹¹ m	b) $6.0 \times 10^{-11} \mathrm{m}$	
	c) $3.0 \times 10^{-11} \text{ m}$	d) $5.7 \times 10^{-11} \text{ m}$	
7.	Which of the following processes takes place in oxidation?		[1]
	a) Addition of hydrogen	b) Removal of oxygen	
	c) Addition of oxygen	d) Removal of chlorine	
8.	Which method is used for the separation of a mixture of sodiur	n sulphate and sodium dichromate?	[1]
	a) Fractional crystallisation	b) Sublimation	

	c) Steam distillation	d) Simple distillation	
9.	The hydrocarbon which can react with sodium in liquid ammo	nia is	[1]
	a) CH ₃ CH=CHCH ₃	b) $\rm CH_3 CH_2 C \equiv CH$	
	c) $\mathrm{CH}_3\mathrm{CH}_2\mathrm{CH}_2\mathrm{C}\equiv\mathrm{CCH}_2\mathrm{CH}_2\mathrm{CH}_3$	d) $\rm CH_3 CH_2 C \equiv \rm CCH_2 CH_3$	
10.	Where is nitrogen found in the periodic table?		[1]
	a) 3 nd period, group 15	b) 2 nd period, group 15	
	^{C)} 2 nd period, group 14	d) 2 nd period, group 18	
11.	The sign of ΔG for a spontaneous and non-spontaneous proce	ess respectively are	[1]
	a) positive and negative	b) negative and positive	
	c) zero and positive	d) positive and zero	
12.	A liquid hydrocarbon is converted to a mixture of gaseous hyd	lrocarbon by	[1]
	a) hydrolysis	b) oxidation	
	c) cracking	d) distillation	
13.	Assertion (A): Cyclopentadienyl anion is much more stable th Reason (R): Cyclopentadienyl anion is aromatic in character.	an allyl anion.	[1]
	a) Both A and R are true and R is the correct explanation of A.	b) Both A and R are true but R is not the correct explanation of A.	
	c) A is true but R is false.	d) A is false but R is true.	
14.	Assertion: Alkylbenzene is not prepared by Friedel-Crafts alky Reason: Alkyl halides are less reactive than acyl halides.	ylation of benzene.	[1]
	a) If both Assertion & Reason are true and the reason is the correct explanation of the assertion.	b) If both Assertion & Reason are true but the reason is not the correct explanation of the assertion.	
	c) If Assertion is true statement but Reason is false.	d) If both Assertion and Reason are false statements.	
15.	Assertion (A): Orbitals form the basis of the electronic structure Reason (R): An atomic orbital is the wave function ψ for an e	ire of atoms. electron in an atom.	[1]
	a) Both A and R are true and R is the correct explanation of A.	b) Both A and R are true but R is not the correct explanation of A.	
	c) A is true but R is false.	d) A is false but R is true.	
16.	Assertion (A): One mole of SO ₂ contains double the number of	of molecules present in one mole of O_2 .	[1]
	Reason (R): Molecular weight of SO_2 is double to that of O_2 .		
	a) Both A and R are true and R is the correct explanation of A.	b) Both A and R are true but R is not the correct explanation of A.	
	c) A is true but R is false.	d) A is false but R is true.	
		Section B	
17.	Glycine is an α -amino acid. It exists in the form of Zwitter ion	as $^+NH_3CH_2COO^-$.	[2]
	Write the formula of its		
	i. conjugate acid		
	ii. conjugate base		
18. 10	Explain why cation are smaller and anions larger in radii than t	their parent atoms?	[2]
19.	i. 34.216		[2]
	ii. 10.4107		
	iii. 0.04597		

	iv. 2808	
20.	Rotation around carbon-carbon single bond of ethane is not completely free. Justify the Statement.	[2]
	OR	
	Despite their - I effect, halogens are o - and p-directing in haloarenes. Explain.	
21.	Calculate the energy of each of the photons which	[2]
	i. correspond to light of frequency $3 imes 10^{15}\mathrm{Hz}$	
	ii. have wave length of 0.50 $\stackrel{0}{A}$	
	Section C	
22.	Arrange the following in order of increasing:	[3]
	i. dipole moment H ₂ O, H ₂ S, BF ₃	
	ii. covalent character LiCI, LiBr, LiI	
	iii. covalent character NaCI, MgCI ₂ , AICI ₃	
23.	Answer:	[3]
	(i) Give the mathematical expression of heat capacity.	[1]
	(ii) Water can be lifted into the water tank at the top of the house with the help of a pump. Then why is it not considered to be	[1]
	spontaneous?	
	(iii) Define surroundings.	[1]
24.	At 60 ^o C, dinitrogen tetroxide is fifty percent dissociated. Calculate the standard free energy change at this temperature and at one	[3]
	atmosphere.	
25.	Calculate the oxidation state of	[3]
	i. Mn in $KMnO_4$ and	
	ii. N in NO_3^- .	
26.	Correct the following electronic configuration of the elements in the ground state.	[3]
	i. $1s^22s^1, 2p_x^2, 2p_y^2, 2p_z^2, 3s^2, 2p_x^1$	
	ii. $1s^22s^1, 2p_x^1, 2p_y^1, 2p_z^1$	
	iii. 1s ² 2s ¹ , 2p ⁶ , 3s ² , 3p ⁶ , 3d ⁵	
	iv. 1s ² 2s ² , 2p ⁶ ,3s ² , 3p ⁶ , 3d ⁴ , 4s ²	
27.	Write the general outer electronic configuration of s, p ,d and f-block elements?	[3]
28.	A sugar syrup of weight 214.2 g contains 34.2 g of sugar ($C_{12}H_{22}O_{11}$). Calculate	[3]
	i. molal concentration, and	
	ii. mole fraction of sugar in the syrup	
	Section D	
29.	Read the text carefully and answer the questions:	[4]
	Once an organic compound is extracted from a natural source or synthesised in the laboratory, it is essential to purify it. Various methods	

used for the purification of organic compounds are based on the nature of the compound and the impurity present in it. Finally, the purity of a compound is ascertained by determining its melting or boiling point. This is one of the most commonly used techniques for the purification of solid organic compounds. In crystallisation Impurities, which impart colour to the solution are removed by adsorbing over activated charcoal. In distillation Liquids having different boiling points vaporise at different temperatures. The vapours are cooled and the liquids so formed are collected separately. Steam Distillation is applied to separate substances which are steam volatile and are immiscible with water. Distillation under reduced pressure: This method is used to purify liquids having very high boiling points.

(i) Which method can be used to separate two compounds with different solubilities in a solvent?

OR

[4]

Why chloroform and aniline are easily separated by the technique of distillation?

- (ii) Distillation method is used to separate which type of substance?
- (iii) Which technique is used to separate aniline from aniline water mixture?

30. **Read the text carefully and answer the questions:**

When anions and cations approach each other, the valence shell of anions are pulled towards the cation nucleus and thus, the shape of the anion is deformed. The phenomenon of deformation of anion by a cation is known as polarization and the ability of the cation to polarize

the anion is called as polarizing power of cation. Due to polarization, sharing of electrons occurs between two ions to some extent and the bond shows some covalent character.

The magnitude of polarization depends upon a number of factors.

- (i) Out of AlCl₃ and AlI₃ which halides show maximum polarization?
- (ii) Out of AlCl₃ and CaCl₂ which one is more covalent in nature?
- (iii) The non-aqueous solvent like ether is added to the mixture of LiCl, NaCl and KCl. Which will be extracted into the ether?

OR

[5]

[5]

[1]

Out of CaF₂ and CaI₂ which one has a minimum melting point?

Section E

31. Attempt any five of the following:

(i) Write the IUPAC name given below:

(ii)	Why does the iodination of benzene is carried out in the presence of nitric acid or iodic acid? [1	
(iii)	Although benzene is highly unsaturated it does not undergo addition reactions.	[1]
(iv)	Why is benzene extraordinarily stable though it contains three double bonds?	[1]
(v)	Write an IUPAC name: CH_2 CH_2 CH_2 $CH=CH_2$	[1]
(vi)	Why do alkynes not show geometrical isomerism?	[1]
(vii)	How will you distinguish between acetylene and ethylene?	[1]
What is	the pH of 0.001 M aniline solution? The ionisation constant of aniline is 4.27×10^{-10}	[5]

What is the pH of 0.001 M aniline solution? The ionisation constant of aniline is 4.27 × 10⁻¹⁰.
 Calculate the degree of ionisation of aniline in the solution. Also calculate the ionisation constant of the conjugate acid of aniline.

OR

The ionization constant of benzoic acid is 6.46×10^{-5} and K_{sp} for silver benzoate is 2.5×10^{-13} . How many times is silver benzoate more soluble in a buffer of pH 3.19 compared to its solubility in pure water?

33. **Answer:** (i)

i.	Which of the two: $O_2NCH_2 CH_2O^-$ or $CH_3CH_2O^-$ is expected to be more stable and why?	[2.5]
ii.	Show the polarization of carbon-magnesium bond in the following structure: CH ₃ —CH ₂ —CH ₂ —CH ₂ —Mg—X.	[2.5]
	OR	
i.	Write the structural formula of	[2.5]
	i. o-ethylanisole,	

- ii. p-nitroaniline,
- iii. 2, 3-dibromo-1-phenylpentane,
- iv. 4-ethyl-1-fluoro-2-nitrobenzene

ii. Give condensed and bond line structural formulas and identify the functional groups present, if any, for: [2.5]

- a. 2, 2, 4-Trimethylpentane
- b. 2-Hydroxy-1, 2, 3-propanetricarboxylic acid

c. Hexanedial?

Solution

Section A

1.

(c) 300.15 K

Explanation: The relation between Kelvin (K) & $^{\circ}C$ is given by the expression, K = ($^{\circ}C$ + 273.15)

: plugging in 27 (given) for ^oC in the above expression we get,

 $\mathbf{K} = (27 + 273.15) = 300.15$

 $\therefore 27^{\circ} \text{C} = 300.15 \text{ K}$

2.

(b) 2s, 4d and 3p respectively

Explanation: Nuclear charge is defined as the net positive charge experienced by an electron in the orbital of a multi-electron atom. The closer the orbital, the greater is the nuclear charge experienced by the electron (s) in it.

(i) 2s is closer to the nucleus than 3s.Hence 2s will experience larger effective nuclear charge.

(ii) 4d will experience greater nuclear charge than 4f since 4d is closer to the nucleus than 4f.

(iii) 3p will experience greater nuclear charge since it is closer to the nucleus than 3f because 3p is closer to nucleus than 3f.

3.

(b) $2C_4H_{10}\left(g\right) + 13O_2\left(g\right) \rightarrow 8CO_2\left(g\right) + 10H_2O\left(l\right)\Delta_c H = -2658.0 \ kJ \ mol^{-1}$

Explanation: Enthapy of combustion is the energy released when 1mole of a hydrocarbon (butane) reacts completely in presence of excess of oxygen. The chemical equation for exothermic reaction for combustion of one mole of butane is represented as;

 $2C_{4}H_{10}\left(g
ight)+13O_{2}\left(g
ight)
ightarrow8CO_{2}\left(g
ight)+10H_{2}O\left(l
ight)\Delta_{c}H=-2658.0\ kJ\ mol^{-1}$

4.

(d) energy of quantum

Explanation: For an isolated system,

Explanation: Max Planck theorized that energy was transferred in chunks known as quanta, equal to $h\nu$. The variable h is a constant equal to 6.63×10^{-34} J·s and the variable ν represents the frequency in 1/s.

This equation allows us to calculate the energy of photons, given their frequency.

If the wavelength is given, the energy can be determined by first using the wave equation ($c = \lambda \times \nu$) to find the frequency, then using Planck's equation to calculate energy.

5. (a) $\Delta S > 0$

$$\triangle U = 0$$

and for a spontaneous process, Total entropy change must be positive.

$$igtriangleup S = rac{q_{rev}}{T} = rac{igtriangleup H}{T} = rac{igtriangleup U}{T} = rac{0+pigtriangle V}{T}$$

i. e. $Tigtriangleup S > 0$
Moreover, Or $igtriangleup S > 0$

6. **(a)** $6.0 \times 10^{-11} \text{ m}$

Explanation: Total Length = 2.4 cm Total number of atoms along the length = 2×10^8 Therefore diameter of each atom = $\frac{2.4}{2 \times 10^8}$ = 1.2×10^{-8} cm And the radius of the atom = $\frac{1.2 \times 10^{-8}}{2}$ = 0.60×10^{-8} cm = 6.0×10^{-11} m. 7.

(c) Addition of oxygen

Explanation: Addition of oxygen takes place in oxidation.

- 8. (a) Fractional crystallisation Explanation: Fractional crystallisation
- 9.

(b) $CH_3CH_2C \equiv CH$

Explanation: Terminal alkynes react with Na in the presence of liquid NH_3 to form higher alkynes. The alkyne contains acidic H at the end (i.e. the H bonded to C_1 of the chain). Therefore, it is easily replaced with highly electropositive metals such as Na in liquid ammonia, to form sodium alkaline ion which can react further in the presence of a suitable catalyst to yield higher alkynes/hydrocarbons.

10.

(b) 2nd period, group 15

Explanation: Nitrogen is the seventh element on the periodic table. It is located in period 2 and group 15. It is at the top of the periodic table, between carbon and oxygen.

11.

(b) negative and positive

Explanation: ΔG gives a criteria for spontaneity at constant pressure and temperature.

i. If ΔG is negative (< 0), the process is spontaneous.

ii. If ΔG is positive (>0), the process is non-spontaneous.

12.

(c) cracking

Explanation: Pyrolysis of higher alkanes into a mixture of lower alkanes, alkenes, etc. is called cracking. Preparation of oil gas from kerosene oil and petrol gas from petrol is based upon the process of cracking.

13. (a) Both A and R are true and R is the correct explanation of A.

$$\overline{C}H_2CH = CH_2 \iff CH_2 = CH\overline{C}H_2$$

allyl anion

Here the resonance approach is a poor predictor of stability. The Huckel rule. based on molecular orbital theory is a much better predictor of stability for this aromatic and antiaromatic system.

14.

(d) If both Assertion and Reason are false statements.

Explanation: Assertion: Di, tri alkylated benzenes are also formed in addition to monoalkylated benzene and the separation of these products is difficult. Alkylbenzene is prepared by Friedel-Craft's alkylation of benzene followed by the reduction of acyl benzene to the alkylbenzene. This gives mono alkylated products.

Reason: The carbonyl C atom is more electrophilic than C atom of alkyl halides.

Hence, both Assertion and Reason are are false statements.

15.

(b) Both A and R are true but R is not the correct explanation of A.

Explanation: Whenever an electron is described by a wave function, the electron occupies that orbital. Since many such wave functions are possible for an electron, many atomic orbitals are possible in an atom corresponding to it. Orbitals form the basis of the electronic structure of atoms. Each orbital has a definite energy. All the information about the electron in an atom is stored in its orbital wave function ψ and quantum mechanics make it possible to extract this information out of ψ .

16.

(d) A is false but R is true.

Explanation: One mole of any substance corresponds to 6.023×10^{23} entities irrespective of its weight.

Molecular weight of SO₂ = $32 + 2 \times 16 = 64g$

Molecular weight of $O_2 = 2 \times 16 = 32g$

Therefore Molecular weight of SO₂ is double to that of O₂.

Section B

17. Conjugate acid ⁺NH₃CH₂COOH

Conjugate base NH₂CH₂COO⁻

18. A variation in size of a cation or anion is due the difference in effective nuclear charge on the outermost electrons. In cation, on loss of an electron the effective nuclear charge experienced is more by the remaining valence electrons. They are more tightly held towards centre, thereby the size of the cation decreases. On the other hand in anion, the effective nuclear charge on valence electrons decrease with addition of each new electron. Moreover, there are more inter-electron repulsions in the valence shell. The combination of these two effects eventually increase the size of anion.

19.	Given number	Rounded off (upto three significant figures)
	(i) 34.216	34.2
	(ii) 10.4107	10.4
	(iii) 0.04597	0.0460
	(iv) 2808	2810

20. Ethane contains carbon-carbon sigma (*σ*) bond and electron distribution of sigma molecular orbital is symmetrical around the internuclear axis of the C-C bond which is not distributed due to rotation about its axis and permits free rotation around C-C bond. However, the rotation around C—C single bond is not completely free due to repulsion between electron clouds of C-H bonds on adjacent carbon atoms. Such type of repulsive interaction is called torsional strain.

OR

Halogens present on benzene ring have -I and R effect. -I effect deactivates the ring by withdrawing electron, but +R effect increases the electron density on ortho and para positions. Hence, halogens are ortho and para directing.

21. i. Energy of photon (E) = hv

h =
$$6.626 \times 10^{-34}$$
 J s; v = 3×10^{15} Hz = 3×10^{15} s⁻¹

E =
$$(6.626 \times 10^{-34} \text{ Js}) \times (3 \times 10^{15} \text{ s}^{-1}) = 1.986 \times 10^{-18} \text{ J}$$

ii. Energy of photon (E) = hv = $\frac{hc}{\lambda}$

$$h = 6.26 \times 10^{-34} \text{ Js; } c = 3 \times 10^8 \text{ ms}^{-1}$$
$$\lambda = 0.50 \frac{0}{A} = 0.5 \times 10^{-10} \text{ m}$$
$$E = \frac{(6.626 \times 10^{-34} \text{ Js}) \times (3 \times 10^8 \text{ ms}^{-1})}{(0.5 \times 10^{-10} \text{ m})} = 3.98 \times 10^{-15} \text{ Js}^{-10}$$

Section C

- i. BF₃ is a symmetrical molecule. It has zero dipole moment. oxygen being more electronegative than S, bond moment of O H is more than S H. So, the dipole moments are in the order of
 BF₃ < H₂S < H₂O
 - ii. The anion size in increasing order is

 $CI^- < Br^- < I^-$

Hence, LiCI is least covalent and Lil most. The order is

LiCI < LiBr < Lil

iii. Cation size in decreasing order is

 $Na^+ > Mg^{2+} > AI^{3+}$

Thus, AI^{3+} ion has a maximum polarisation effect and Na+ ion has the least. Thus, the covalent order is NaCI < MgCI₂ < AICI₃

23. Answer:

(i) The mathematical expression of heat capacity is

m q = c imes m imes ΔT

where c = heat capacity

m = mass and

- Δ T= temperature change.
- (ii) A spontaneous process should occur continuously by itself after initiation. But this is not so in the given case because water will go up so long as the pump is working.

So, this process is not considered as a spontaneous process.

(iii)Surroundings: The surroundings include everything other than the system.

For example, if we are studying the reaction between two substances A and B kept in a beaker, the beaker containing the reaction mixture is the system and the room where the beaker is kept is the surroundings.

24. According to the question, at 60° C, dinitrogen tetroxide is fifty percent dissociated.

Reaction:

$$\begin{split} \mathrm{N}_{2}\mathrm{O}_{4}(g) &\rightleftharpoons 2\mathrm{NO}_{2}(g) \\ \mathrm{If} \ \mathrm{N}_{2}\mathrm{O}_{4} \ \mathrm{is} \ 50 \ \% \ \mathrm{dissociated}, \\ x_{\mathrm{N}_{2}\mathrm{O}_{4}} &= \frac{1-0.5}{1+0.5} \\ &\Rightarrow x_{\mathrm{NO}_{2}} = \frac{2\times0.5}{1+0.5} \\ p_{\mathrm{N}_{2}\mathrm{O}_{4}} &= \frac{0.5}{1.5} \times 1 \ \mathrm{atm}, \ p_{\mathrm{NO}_{2}} = \frac{1}{1.5} \times 1 \ \mathrm{atm} \end{split}$$
The equilibrium constant K_{D} is given by

$$K_p = rac{ig(p_{ ext{NO}_2}ig)^2}{p_{ ext{N2} ext{O}_4}} = rac{1.5}{(1.5)^2(0.5)} = 1.33 ext{ atm}$$

Since

 $\Delta_r G^o$ = -RT ln K_p

 $\Delta_{\rm r}{\rm G}^{\rm o}$ = -8.314 JK⁻¹ mol⁻¹ × 333 K × 2.303 × 0.1239 = -763.8 kJ mol⁻¹

25. i. 1. Let the oxidation state of Mn atom be x, other atom like O-atom have -2 while K-atom have +1.

+1 x -2 K Mn O₄ 1 × (+1) + (1 × x) + 4 × (-2) = 0 1 + x + (-8) = 0 1 + x - 8 = 0 x - 7 = 0 ∴ x = +7 Hence, the oxidation number of Mn in MnO₄ is +7.

ii. N in NO_3^- .

Let the oxidation number of N in NO_3^- be x and other atom like O⁻ atom is -2.

: Sum of the oxidation numbers of all the atoms in $NO_3^- = x + 3(-2) = x - 6$

But the sum of oxidation numbers of all the atoms in NO_3^- ion is equal to the charge present on it i.e., -1 $\therefore x - 6 = -1$

or x = +5

Thus, the oxidation numbers of N in NO_3^- is +5.

26. i. $1s^22s^2, 2p_x^2, 2p_y^2, 2p_z^2, 3s^2$

- ii. $1s^22s^2, 2p_x^1, 2p_y^1, 2p_z^1$
- iii. 1s² 2s², 2p⁶, 3s², 3p⁶, 4s², 3d²
- iv. 1s² 2s², 2p⁶, 3s², 3p⁶, 3d⁵, 4s¹
- 27. The general outer electronic configuration are:

(i) s-Block elements : ns^{1-2} where n = 2 - 7

(ii) p-Block elements : $ns^2 np^{1-6}$ where n = 2 - 6

(iii) d-Block elements : $(n-1)d^{1-10} ns^{0-2}$ where n = 4 - 7

(iv) f-Block elements : $(n-2)f^{0-14} (n-1)d^{0-1} ns^2$ where n = 6 - 7

28. i. Weight of sugar syrup = 214.2 g

Weight of sugar in syrup = 34.2 g weight of water in syrup = 214.2 - 34.2 = 180.0 g Moles of sugar = $\frac{34.2}{342}$ = 0.1 (Molar mass = 342) Molality = $\frac{0.1}{180} \times 1000 = 0.56$ m ii. Moles of sugar = $\frac{34.2}{342} = 0.1$ Moles of water = $\frac{180}{18} = 10$ Mole fraction of sugar = $\frac{0.1}{10+0.1}$ = 0.0099

Section D

29. Read the text carefully and answer the questions:

Once an organic compound is extracted from a natural source or synthesised in the laboratory, it is essential to purify it. Various methods used for the purification of organic compounds are based on the nature of the compound and the impurity present in it. Finally, the purity of a compound is ascertained by determining its melting or boiling point. This is one of the most commonly used techniques for the purification of solid organic compounds. In crystallisation Impurities, which impart colour to the solution are removed by adsorbing over activated charcoal. In distillation Liquids having different boiling points vaporise at different temperatures. The vapours are cooled and the liquids so formed are collected separately. Steam Distillation is applied to separate substances which are steam volatile and are immiscible with water. Distillation under reduced pressure: This method is used to purify liquids having very high boiling points.

(i) Fractional crystallizationis used to separate two compounds with different solubilities in a solvent.

OR

Chloroform and aniline are easily separated by the technique of distillation because chloroform and aniline have sufficient difference in their boiling points.

- (ii) volatile liquids from nonvolatile impurities.
 - the liquids having sufficient difference in their boiling points.
- (iii)Aniline is separated from aniline water mixture by steam distillation as one of the substances in the mixture is water and the other, a water insoluble substance.

30. Read the text carefully and answer the questions:

When anions and cations approach each other, the valence shell of anions are pulled towards the cation nucleus and thus, the shape of the anion is deformed. The phenomenon of deformation of anion by a cation is known as polarization and the ability of the cation to polarize the anion is called as polarizing power of cation. Due to polarization, sharing of electrons occurs between two ions to some extent and the bond shows some covalent character.

The magnitude of polarization depends upon a number of factors.

(i) $\rm AlI_3$ halides show maximum polarization. The most covalent halide is $\rm AlI_3.$

Since lesser, the electronegativity difference, the more covalent is the aluminum halide.

(ii) $AlCl_3$ is more covalent in nature.

(iii)LiCl will be extracted into the ether.

 CaI_2 has a minimum melting point.

OR

Section E

31. Attempt any five of the following:

(i)

2 - Methylphenol

(ii) The iodination of benzene is usually brought about by refluxing benzene with iodine and conc. HNO₃ or HIO₃.

 HNO_3 or HIO_3 oxidises HI to I₂ and prevents the backward reaction to occur.

$$+ I_2 \xrightarrow{HNO_3 \text{ or}} + HI$$

(iii)It is due to delocalization of π -electrons in benzene it is highly stable.

(iv)Due to resonance, benzene is extraordinarily stable.

(v)
$$(H_2 - CH_2 - CH_$$

- 4 Phenylbut 1 ene
- (vi)Alkynes have a linear structure. Alkynes have triple bond. So, rotation is not possible. Hence, alkynes cannot show geometrical isomerism.

(vii)Acetylene forms precipitate with ammoniacal silver nitrate solution, ethylene does not react with these reagents.

$$32. C_6H_5NH_2 + H_2O \rightleftharpoons C_6H_5NH_3^+ + OH^-$$

$$K_{b} = \frac{[C_{6}H_{5}NH_{3}^{+}][OH^{-}]}{[C_{6}H_{5}NH_{2}]}$$

$$= \frac{[OH^{-}]^{2}}{[C_{6}H_{5}NH_{2}]}$$

$$[OH^{-}] = \sqrt{K_{b} \cdot C} = \sqrt{4.27 \times 10^{-10} \times 0.001}$$

$$[OH^{-}] = 6.534 \times 10^{-7}$$

$$pOH = -\log[OH^{-}] = -\log[6.534 \times 10^{-7}]$$

$$pOH = -0.8152 + 7 = 6.18$$
From, pH + pOH = 14
pH = 14 - 6.18 = 7.82

$$C_{6}H_{5}NH_{2} + H_{2}O \Longrightarrow C_{6}H_{5}NH_{3}^{+} + OH^{-}$$
Initial conc. $C - C\alpha \qquad C\alpha \qquad C\alpha$

$$K_{b} = \frac{C\alpha \cdot C\alpha}{C(1-\alpha)} [(1-\alpha) \approx 1 \text{ for weak base}]$$

$$K_{b} = C\alpha^{2} = \alpha = \sqrt{\frac{K_{b}}{C}}$$
Degree of ionisation,

$$\alpha = \sqrt{\frac{4.27 \times 10^{-10}}{0.001}} = 6.53 \times 10^{-4}$$

$$K_{a} of conjugate acid of aniline,$$

$$K_{a} = \frac{K_{w}}{K_{b}}$$

$$= \frac{10^{-14}}{4.27 \times 10^{-10}} = 2.34 \times 10^{-5}$$

OR

$$C_6H_5COOAg
ightarrow C_6H_5COO^- + Ag^+$$

Solubility of water. Suppose solubility in water = $x \mod L^{-1}$ then

$$\begin{split} & [\mathrm{C_6H_5COO^-}] = [\mathrm{Ag^+}] = \mathrm{x} \ \mathrm{mol} \ \mathrm{L^{-1}} \\ & \mathrm{x^2} = \mathrm{K_{sp}} \ \mathrm{or} \ x = \sqrt{K_{sp}} = \sqrt{2.5 \times 10^{-13}} \\ & = 5 \times 10^{-7} \ mol \ L^{-1} \\ & \mathrm{Solubility} \ \mathrm{in} \ \mathrm{buffer} \ \mathrm{of} \ \mathrm{pH} = 3.19 \\ & \mathrm{pH} = 3.19 \ \mathrm{means} - \log[H^+] = 3.19 \\ & \mathrm{or} \ \log[H^+] = -3.19 = \overline{4}.81 \ \mathrm{or} \ [H^+] = 6.457 \times 10^{-4} M \end{split}$$

C₆H₅COO⁻ ions now combine with the H⁺ ions to form benzoic acid but [H⁺] remains almost constant because we have buffer solution. Now

$$C_6H_5COOH \rightleftharpoons C_6H_5COO^- + H^+$$

 $\therefore K_a = \frac{[C_6H_5COO^-][H^+]}{[C_6H_5COOH]} \text{ or } \frac{[C_6H_5COOH]}{[C_6H_5COO^-]} = \frac{[H^+]}{K_a} = \frac{6.457 \times 10^{-4}}{6.46 \times 10^{-5}} = 10 \quad (i)$

Suppose solubility in the buffer solution is 'y' mol L⁻¹. Then as most of the benzoate ions are converted into benzoic acid molecules (which remain almost ionized), we have

$$y = [Ag^{+}] = [C_{6}H_{5}COO^{-}] + [C_{6}H_{5}COOH] = [C_{6}H_{5}COO^{-}] + 10[C_{6}H_{5}COO^{-}] = 11[C_{6}H_{5}COO^{-}] using equation (i)$$

$$\therefore [C_{6}H_{5}COO^{-}] = \frac{y}{11} \therefore K_{sp} = [C_{6}H_{5}COO^{-}][Ag^{+}]$$

$$2.5 \times 10^{-3} = \frac{y}{11} \times y \text{ or } y^{2} = 2.75 \times 10^{-12} \text{ or } y = 1.66 \times 10^{-6}$$

$$\frac{y}{x} = \frac{1.66 \times 10^{-6}}{5 \times 10^{-7}} = 3.32$$

Note that in case of salts of weak acids, the solubility is more in the acidic solution than in water. The reason, in general, may be explained as follows: Taking example of C_6H_5COOAg , we have

$$C_6H_5COOAg
ightarrow C_6H_5COO^- + Ag^+$$

In acidic solution, the anions ($C_6H_5COO^-$ in the present case) undergo protonation in presence of acid. Thus, $C_6H_5COO^-$ ions are removed. Hence, equilibrium shifts forward producing more Ag^+ ions. Alternatively, as $C_6H_5COO^-$ ions are removed, Q_{sp}

decreases. In order to maintain solubility product equilibrium ($Q_{sp} = K_{sp}$), Ag^+ ion concentration must increase. Hence, solubility is more.

33. Answer:

- (i) i. O₂N → CH₂ → CH₂ → O⁻ is more stable then CH₃ → CH₂ → O⁻ because NO₂ group has -I-effect and hence it tends to disperse the -ve charge on the O-atom. In contrast, CH₃CH₂ has + I-effect. It, therefore, tends to intensify the -ve charge and hence destabilizes it.
 - ii. Carbon is more electronegative than magnesium.So, Mg has a partially positive charge and C has a partially negative charge because a bonded pair of electrons attracted towards carbon.

$$CH_3-CH_2-\overset{\delta-}{CH_2}-CH_2<\overset{\delta+}{-Mg}-X$$

OMe

OR

Condensed formula

(a) (CH₃)₃CCH₂CH(CH₃)₂

ii. (b) HOOCCH₂C(OH)

(COOH)CH2COOH

(c) OHC(CH₂)₄CHO

Bond line formula

Functional group/s

O ∥ −C−−H (aldehyde)