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Wave Mechanics

The wave mechanics of Schrödinger (1926) and the equivalent matrix formulation by

Heisenberg (1926) are the basis of what is known as ‘modern physics’. Without exception

they have been successful in replacing or including classical mechanics over the whole

range of physics at atomic and molecular levels; these in turn govern the larger scale

macroscopic properties. Very high energy phenomena in the physics of elementary

particles still, however, present many problems.

In this chapter we shall be concerned only with Schrödinger’s wave mechanics and in the

way it displays the dual wave–particle nature of matter. This dual nature was first

established for electromagnetic radiation but the parallel attempt to establish the wave

nature of material particles is the basic history of twentieth century physics.

Origins of Modern Quantum Theory

In the nineteenth century interference and diffraction experiments together with classical

electromagnetic theory had confirmed the wave nature of light beyond all doubt but in

1901, in order to explain the experimental curves of black body radiation, Planck

postulated that electromagnetic oscillators of frequency � had discrete energies nh� where

n was an integer and h was a constant (p. 252). A quarter of a century was to elapse before

this was formally derived from the new quantum mechanics.

X-rays had been found by Roentgen in 1895, their wave-like properties were displayed

by the diffraction experiments of von Laue in 1912, and their electromagnetic nature was

soon proved. A much longer time was required to reconcile a wave nature with the

negatively charged particles which J. J. Thomson found in his cathode ray experiments of

1897. It was not until 1927 that interference effects from reflected or scattered electrons

were obtained by Davisson and Germer whilst in 1928 G. P. Thomson (the son of J. J.)

produced concentric ring diffraction patterns by firing electrons through a thin foil.

In the meantime, in 1906, Einstein had used Planck’s idea to explain the photoelectric

effect where light falling on a given surface caused electrons to be ejected. Einstein

considered the light beam as a stream of individual photons, or quanta of light, each of
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energy hv. Collisions between these quanta and electrons in the target material gave the

electrons sufficient energy to escape.

In 1912 the alpha particle scattering experiments of Rutherford led to his proposal that

the atom consisted of a small positively charged nucleus surrounded by enough negative

electrons to leave the atom electrically neutral. This atom was the model used by Bohr and

Sommerfeld in their ‘old quantum theory’, a mixture of classical mechanics and quantum

postulates, attempting to explain, amongst other things, the regularity of spectroscopic

series from radiating atoms. Electrons were required to orbit the nucleus at definite energy

levels (like planets round the Sun), and radiation at a fixed frequency � was given out when
an electron moved from a higher to a lower energy orbit with an energy difference

�E ¼ h�. These orbits were required to be stable or ‘stationary’ orbits with quantized, that

is, allowed values of energy and angular momentum. The fact that classical

electromagnetic theory had shown that an accelerating charge (electron in an orbit) was

itself a source of radiation remained an unresolved difficulty.

By 1920 Einstein had provided two of the vital tools necessary for further progress (a)

that a quantum of radiation has energy E ¼ h�, and (b) that a particle of momentum

p ¼ mv and rest mass m0 has a relativistic energy E where E 2 ¼ p2c2 þ ðm0c
2Þ2.

This relation established the equivalence of matter and energy; a stationary particle

v ¼ 0 has an energy E ¼ m0c
2 where c is the velocity of light.

The time was now ripe for the final steps leading to the modern quantum theory. The first

of these was provided by Compton (1922–23) and the second by de Broglie in 1924.

Compton fired X-rays of a known frequency at a thin foil and observed that the

frequency � of the scattered radiation was independent of the foil material. This implied

that the scattering was the result of collisions between X-ray quanta of energy h� and the

electrons in the target material. In addition to scattering at the incident frequency a lower

frequency of scattered radiation was always found which depended only on the mass of the

scattering particles (electrons) and the angle of scattering. Compton showed that these

results were consistent if momentum and energy were conserved in an elastic collision

between two ‘particles’, the electron and an X-ray of energy h�, a rest mass m0 ¼ 0 and

(from Einstein’s relativistic energy equation), a momentum

p ¼ E

c
¼ h�

c
¼ h

�
;

where c ¼ ��.
De Broglie in 1924 proposed that if the dual wave-particle nature of electromagnetic

fields required a particle momentum of p ¼ h=�, it was possible that a wavelength � of a

‘matter’ field could be associated with any particle of momentum p ¼ mv to give the

relation p ¼ h=�. His argument was as follows.

If the phase velocity of such a ‘matter’ wave obeys the usual relation

v p ¼ ��

where � is the frequency, the assumption that any particle has a momentum p ¼ h=�
together with Einstein’s expression E ¼ h� yields v p ¼ E=p.
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The theory of relativity gives, for a particle of rest mass m0 and velocity v an energy

E ¼ mc2 and a momentum p ¼ mv, where

m ¼ m0 1� v 2

c2

� ��1=2

is the particle mass at velocity v. For such a particle the phase velocity

v p ¼ E

p
¼ c2

v

that is,

vv p ¼ c2

(an expression we met earlier for the wave guides of p. 243).

This gives a phase velocity v p > c for a particle velocity v < c. However, the energy in

the de Broglie wave (or particle) travels with the group velocity

v g ¼ @!

@k

which, for

E ¼ h� ¼ h

2�
!

and

p ¼ h

�
¼ h

2�
k

gives

v g ¼ @!

@k
¼ @E

@p

Such a particle with relativistic energy E where

E 2 ¼ p2c2 þ ðm0c
2Þ2

has

2E
@E

@p
¼ 2pc2
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or

v g ¼ @E

@p
¼ pc2

E
¼ vc2

c2
¼ v

so that the group velocity of de Broglie matter wave corresponds to the particle velocity v.
Even the ‘old quantum theory’ of Bohr–Sommerfeld gained something from de

Broglie’s hypothesis. Their postulate that the angular momentum of stationary orbits was

restricted to integral (quantum) numbers of the unit angular momentum h was shown, for

the circular orbit of radius r, to yield

2�rp ¼ nh

or

2�r ¼ nh

p
¼ n�

so that the circumference of a stationary orbit was a standing wave system and contained an

integral number n of �, the de Broglie wavelength.

Within three years, however, such quantum numbers ceased to be assumptions. They

were the natural outcome of the new quantum theory of Schrödinger and Heisenberg.

Heisenberg’s Uncertainty Principle

Although, as we shall see, Schrödinger’s equation takes the form of a standing wave

equation, the fitting of an integral number of de Broglie standing waves around a Bohr orbit

presents a fundamental difficulty. The azimuthal symmetry of such a pattern, Figure 13.1,

Figure 13.1 Integral number of de Broglie standing waves � ¼ h=p around a circular Bohr orbit
does not allow the exact position of the electron to be specified at a particular time
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representing an electron in an orbit, does not allow the exact position of the electron to be

specified at a particular time. This dilemma was resolved by Heisenberg on the basis of the

Bandwidth Theorem we first met on p. 134.

There, a group of waves with a group velocity v g and a frequency range �� superposed

effectively only for a time �t where

���t � 1

Similarly, a group in the wave number range �k superposed in space over a distance �x

where

�x�k � 2�

But the velocity of the de Broglie matter wave is essentially a group velocity with a

momentum

p ¼ h

�
¼ h

2�
k ¼ �hk

where

�h ¼ h

2�

so

�p ¼ �h�k

and the Bandwidth Theorem becomes Heisenberg’s Uncertainty Principle

�x�p � h

Since

E ¼ h� ¼ h

2�
! ¼ �h!

it follows that

�E

��
¼ �E�t � h

and

�E � �h�!

are also expressions of Heisenberg’s Uncertainty Principle.
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This relation sets a fundamental limit on the ultimate precision with which we can know

the position x of a particle and the x component of its momentum. If Figure 13.2 shows a

wave group representing the particle, the range �x shows the uncertainty of the position of

the particle in the range of space over which it could be found, with the probability of its

being at a particular place given by the square of the wave amplitude of that position. The

relation

�x�p � h

means that the velocity of the particle ð p ¼ mvÞ is also uncertain, the more accurate the

knowledge of the particle position, the less certain that of the value of its velocity. If the

particle is ‘observed’ at some later time, dispersion of the group will have increased the

range �x and decreased the amplitude. The uncertainty of the position has increased and

the probability of its being at any one place has become less. But this is because of the

original uncertainty of its velocity, through �p, which makes an accurate forecast of its

position after time t even more unlikely.

The shape of the wave group above is often taken as a Gaussian curve written �ðx; tÞ
with a width �x at t ¼ 0 where the value �ðx; tÞ is e�1 of its maximum value (see p. 289).

PðxtÞ defines the probability density of finding the particle at a position �x, i.e. within

the range x and xþ�x.

The position x and momentum px of a particle are conjugate parameters, so the

representation of the particle in momentum space �ðpx; tÞ is the Fourier transform of

�ðx; tÞ and �ðpx; tÞ is also a Gaussian curve with a width �px where �ðpxtÞ is e�1 of its

maximum value.

If the group velocity of the wave packet is vg ¼ p0=m a rigorous treatment of the time

development of these functions leads to the conclusion that PðxtÞ falls to e�1 of its

maximum value at the points where

x� vgt ¼ ��x

∆ x

∆ x

x

Wave group

Same group
after time t

Figure 13.2 A wave group representing a particle showing dispersion after time t. The square of the
wave amplitude at any point represents the probability of the particle being in that position, and the
dispersion represents the increasing uncertainty of the particle position with time (Heisenberg’s
Uncertainty Principle)
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where

�xðtÞ ¼ �h

px
1þ ð�pxÞ4

m2�h2
t2

" #1
2

and hence increases with time.

If the time is sufficiently small so that

t � t1 ¼ m�h

ð�pxÞ2

the second term in the bracket is negligible and the wave packet propagates with only a

very small change in its width.
As an example, a Gaussian wave packet for an electron localized at time t ¼ 0 to within

a distance of 10�10m (atomic dimensions) with �px ¼ �h=�x � 10�24kg �m � s�1 will have

spread to twice its size at time t ¼ t1
ffiffiffi
3

p � 10�16s.

An example of the relation

�E�t � h

may be found in considering the time spent by an electron in an atomic orbit. In a stable

orbit this time �t is long and the energy uncertainty �E is small so the energy levels of

stable orbits are well defined. When an electron changes energy levels and radiation is

emitted the time in the orbit may be short and the energy levels ill defined so that the term

�E contributes to the breadth of a spectral line.

(Problems 13.1, 13.2, 13.3, 13.4, 13.5, 13.6, 13.7, 13.8, 13.9, 13.10)

Schrödinger’s Wave Equation

The old quantum theory had sought to establish rules for the existence of discrete

frequencies and energy levels. An integral number of de Broglie half wavelengths could be

fitted around a circular Bohr orbit. Both of these facts are consistent with the classical

standing wave systems we examined in Chapters 5 and 9 when waves travelling between

rigid boundaries were perfectly reflected.

In Chapter 5 we saw that the transverse displacement yðxtÞ of a string of length l with

both ends fixed obeys the wave equation

@ 2y

@x2
� 1

v 2
p

@ 2y

@t 2
¼ 0

where v p is the wave velocity.

The x and t dependence could be separated in the solution for standing waves to give

yðx; tÞ ¼ A sin
!nx

v p

sin!nt
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where n could take the integral values n ¼ 1; 2; 3, etc. to give the discrete eigenfrequencies,

!n ¼ n�v p

l

The solution yðx; tÞ corresponding to a given !n is called an eigenfunction or a wave

function.

In developing the Schrödinger wave equation which applies to particle behaviour we use

arguments below which in no way constitute a proof because wave mechanics cannot be

derived from classical mechanics. Wave mechanics is based on certain postulates the

validity of which can be confirmed only by the accuracy of the predicted results.

From the preceding sections we have the representation of a particle as a matter wave

with energy E ¼ �h!, momentum p ¼ �hk and velocity v g ¼ @!=@k.
Wave mechanics uses the notation

�ðx; tÞ ¼ �0 e
�ið!t�kxÞ ¼ �0 e

iðpx�EtÞ=�h

to define the amplitude of a matter wave at a point x at time t. The physical significance of

 is amplified on p. 422 but for the moment we note the reversed sign of the exponential

index which follows the convention used in all books on quantum mechanics. This merely

introduces a � rad phase difference from the notation consistently used in the earlier

chapters of this book but the new convention will be used throughout this chapter to avoid

confusion with other texts and attention will be carefully drawn to any possible ambiguity.

In classical mechanics the total energy E of a particle of mass m and momentum p in a

conservative field of potential V is given by

E ¼ p2=2mþ V

Differentiating �ðx; tÞ gives

@ 2

@x2
�ðx; tÞ ¼ �p2

�h2
�ðx; tÞ

and inserting this value of p2 in the classical energy equation above gives

�h2

2m

@ 2

@x2
�ðx; tÞ þ ðE � VÞ�ðx; tÞ ¼ 0

If we now express �ðx; tÞ ¼  ðxÞ e�i!t we may cancel the common e�i!t factor from the

equation above to obtain the time independent Schrödinger wave equation

�h2

2m

@ 2

@x2
 ðxÞ þ ðE � VÞ ðxÞ ¼ 0

This time independent wave equation will give states of constant frequency; that is, of

constant energy, and these are the only states we shall consider in this book.
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Note that this equation has the same form as the standing wave equation we first met on

p. 124.

States which are not of constant energy require the time dependence to be retained in

Schrödinger’s equation. We do this by using the fact that

@

@t
�ðx; tÞ ¼ �iE

�h
�ðx; tÞ

and inserting this value of E in the classical energy equation. This gives the time dependent

Schrödinger wave equation

��h2

2m

@ 2

@x2
�ðx; tÞ þ V�ðx; tÞ ¼ i�h

@

@t
�ðx; tÞ:

One-dimensional Infinite Potential Well

Consider as a first example the case of a particle constrained to move in a region between

x ¼ 0 and x ¼ a where the potential V ¼ 0. At x ¼ 0 and x ¼ a the potential walls are

infinitely high as shown in Figure 13.3. This is an idealized form of the potential seen by an

electron in the low energy levels near the nucleus of an atom.

h 2 p 2

2ma 2

V (x )

V (x ) = 0

n = 3

x = ax = 0

y = 0y = 0 y n = A sin k n x

E 3 = 9E 1

n = 2 E 2 = 4E 1

n = 1 E 1 =

Figure 13.3 An infinitely deep potential well showing allowed energy levels En for a particle
constrained to move within it with wave function  n ¼ A sin knx where k 2

n ¼ 2mE=�h 2 and m is the
particle mass
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Since VðxÞ ¼ 0 for 0 < x < a Schrödinger’s equation becomes

@ 2 ðxÞ
@x2

þ 2mE

�h2
 ¼ 0

which may be written, as on p. 124, in the form

@ 2 

@x2
þ k 2 ¼ 0

with

k 2 ¼ 2mE

�h2

The boundary conditions are that  ðxÞ ¼ 0 at x ¼ 0 and x ¼ a where VðxÞ becomes

infinite, whilst the other terms in the equation remain finite. The particle must lie within the

well and classically, whatever the value of its energy E it will rebound elastically off the

potential ‘walls’. When moving to the right the particle behaviour may be represented by a

wave function of the form eþikx which satisfies Schrödinger’s equation, and when moving

to the left by a wave function of the form

e�ikx

But, as with the waves on the string, perfect reflection which reverses the amplitude

allows  nðxÞ, the solution of Schrödinger’s equation, to represent a standing wave system

at !n; expressed in the form

 nðxÞ ¼ C eik nx � C e�ik nx

¼ A sin knx

where

A ¼ C

2i

The boundary condition  nðxÞ ¼ 0 at x ¼ a gives kna ¼ n� for n ¼ 1; 2; 3, etc. i.e.
kn ¼ n�=a.
Hence

k 2
n ¼

2mEn

�h2
¼ n2�2

a2

giving energy eigenvalues

En ¼ n2�2�h2

a22m
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Thus, we see that discrete energy values governed by the quantum number n arise naturally

from the application of boundary conditions to the wave function solutions of

Schrödinger’s equation. Values of the particle momentum are also quantized since

p ¼ h

�
¼ �hk ¼ n��h

a

It is evident that in an infinite potential well, an electron or particle cannot have an arbitrary

energy but must take only the quantized values En. This restriction will hold whenever

Schrödinger’s equation is solved for a potential VðxÞ which imposes boundary conditions

constraining the particle to move in a limited region.

The wave functions  nðxÞ for n ¼ 1; 2; 3 are plotted in Figure 13.4 showing them to be

identical with the allowed amplitude functions for standing waves on a vibrating string

with fixed ends. Note that the interval between allowed energy states decreases as either the

mass of the particle or the dimensions of the potential box increase relative to h. For

particles of large mass and systems of large dimensions the allowed energy states form, for

all practical purposes, a continuum and are no longer quantized. Thus, in passing from

atomic to much larger dimensions the results of quantum mechanics approach those of

classical physics.

We see that the minimum value of the energy of the particle in the potential well is not

zero but

E1 ¼ �h2�2

2ma2

y 2

y 3

y 1

n = 1

x = 0 x = 0x = a x = a

n = 2

n = 3

y 3
2

y 2
2

y 1
2

Figure 13.4 Wave functions  nðxÞ and probability densities j nðxÞj 2 for the first three allowed
energy levels in an infinitely deep potential well of width a
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This minimum energy is related to Heisenberg’s Uncertainty Principle

�x�p � h

The uncertainty in the position of the particle is obviously �x ¼ a and the particle

momentum p may be in either the positive or negative x direction giving an uncertainty

�p ¼ 2p

Thus

�x�p ¼ a � 2p � h

or

p � h

2a

Now, for VðxÞ ¼ 0

E ¼ p2

2m
� h2

8ma2
� �h2�2

2ma2

This is an example of the so-called zero point energy. We shall meet others.

(Problem 13.11)

Significance of the Amplitude wnðxÞ of the Wave Function

In Figure 13.4 the amplitude  nðxÞ of the wave function is plotted for the values n ¼ 1; 2; 3
together with the values

j nðxÞj2

In the waves we have met so far, the amplitude, or rather the amplitude squared, has been a

measure of the intensity of the wave. At a position of high amplitude, the wave was more

intense—more energy was localized there. Here we have expressed the motion of a particle

confined to a small region of space in terms of its associated matter wave. The amplitude of

the wave function  ðxÞ varies from point to point within the small region in which the

particle is to be found. Outside the infinite well  ðxÞ is zero. The intensity of the matter

wave is written

j ðxÞj2 ¼  �ðxÞ ðxÞ

where the complex conjugate  �ðxÞ indicates that  ðxÞ may sometimes be complex. Since

the matter field describes the motion of the particle we may say that the regions of space in
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which the particle is more likely to be found are those in which the intensity j ðxÞj2 is

large, or, more formally

‘the probability of finding the particle described by the wave function  ðxÞ in the
interval dx around the point x is j ðxÞj2 dx’.

The probability per unit length of finding the particle at x is

PðxÞ ¼ j ðxÞj2

In three dimensions a wave function would be of the form  ðx; y; zÞ and the probability of

finding the particle in the unit volume element surrounding the point xyz is

PðxyzÞ ¼ j ðxyzÞj2

The probability of finding the particle within a finite volume V is obviously

PV ¼
ð
V

j ðxyzÞj2 dx dy dz

Now the particle must always be somewhere in space so, in extending the integral over all

space, the probability becomes a certainty; that is, it equals unity, orð
all space

j ðxyzÞj2 dx dy dz ¼ 1

This process of integrating over all possible locations to give unity is called

normalization and it always imposes restrictions on the form of  ðx; y; zÞ which must

tend to zero as x, y or z tends to infinity.

Normalization determines the value of the constant A in our wave function

 nðxÞ ¼ A sin
n�x

a

for the case of the infinite potential well.

There ð1

�1
j nðxÞj2 dx ¼

ð a

0

j nðxÞj2 dx

¼ A2

ð a

0

sin2 n�x

a
dx ¼ A2 a

2
¼ 1

Hence

A ¼
ffiffiffi
2

a

r
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and the normalized wave function

 nðxÞ ¼
ffiffiffi
2

a

r
sin

n�x

a

(Problem 13.12)

Particle in a Three-dimensional Box

Suppose the particle is confined to a rectangular volume abc at the bottom of an infinitely

deep potential well ðV ¼ 0Þ where a, b and c are the lengths of the sides of the rectan-

gular box.

The energy of the particle is then

E ¼ p2

2m
¼ 1

2m
ð p2

x þ p2
y þ p2

z Þ

where the momentum components are

px ¼ n1

��h

a

py ¼ n2

��h

b

pz ¼ n3

��h

c

and n1, n2 and n3 are integers.

The energy levels allowed in the box are therefore given by

E ¼ �2�h2

2m

n2
1

a2
þ n2

2

b2
þ n2

3

c2

� �

and solutions for the space part of the wave function may be written

 ðx; y; zÞ ¼ A sin
n1�x

a
sin

n2�y

b
sin

n3�z

c

in accordance with the three-dimensional normal mode solution of p. 249.

If the box is cubical so that a ¼ b ¼ c the allowed energy levels become

E ¼ �2�h2

2ma2
ðn2

1 þ n2
2 þ n2

3Þ ¼
�2�h2

2ma2
k 2

where k 2 ¼ n2
1 þ n2

2 þ n2
3 with wave functions

 ðxyzÞ ¼ A sin
n1�x

a
sin

n2�y

a
sin

n3�z

a
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We saw, however, on p. 250 that combinations of different n values can give the same k

value; that is, the same energy value. When n1, n2 and n3 are permuted without changing

the k value, the wave function is also changed so that a certain energy level may be

associated with several different wave functions or dynamical states. The energy level is

said to be degenerate, the order of degeneracy being defined by the number of different or

independent wave functions associated with the given energy.

In the case of the cubic potential box, the lowest energy level is 3E1, i.e.

ðn1 ¼ n2 ¼ n3 ¼ 1Þ

where

E1 ¼ �2�h2

2ma2

The next energy level is given by 6E1, with a degeneracy of 3 where the n values are

given by (2, 1, 1) (1, 2, 1) and (1, 1, 2). Higher energy values with degeneracy orders are

shown in Table 13.1 above.

(Problem 13.13)

Number of Energy States in Interval E to E þ dE

As long as the dimensions of the cubical box above are small the energy levels remain

distinct. However, when the volume increases, as is the case for free electrons in a metal,

successive energy levels become so close that an almost continuous spectrum is formed.

If we wish to find how many energy levels may be contained in the small energy range

dE when the potential box is very large, we have only to apply the result of p. 251 where

we found that the number of possible normal modes of oscillation per unit volume of an

enclosure in the frequency range � to � þ d� is given by

dn ¼ 4�� 2d�

c3

Table 13.1

Energy n1, n 2, n 3 Combinations Degeneracy

3E1 (1, 1, 1) 1

6E1 (2, 1, 1) (1, 2, 1) (1, 1, 2) 3

9E1 (2, 2, 1) (2, 1, 2) (1, 2, 2) 3

11E1 (3, 1, 1) (1, 3, 1) (1, 1, 3) 3

12E1 (2, 2, 2) 1

14E1 (1, 2, 3) (3, 2, 1) (2, 3, 1) (1, 3, 2) (2, 1, 3) (3, 1, 2) 6
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There we stressed that the result was independent of any particular system and we applied

it to Planck’s Radiation Law and Debye’s Theory of Specific Heats. Here we use it with

E ¼ p2

2m
¼ h� and p ¼ E

c
¼ h�

c�
so that

dE ¼ p

m
dp ¼ h d�

and

dp ¼ h d�

c

�

to give the number of states per unit volume in the energy interval dE as

dnðEÞ ¼ 4�ð2m3Þ1=2E 1=2

h3
dE

This may be applied directly to determine how free electrons in a metal may distribute

themselves in a band of energies from zero to some value E. Each energy level can

accommodate two electrons (with opposing spins) according to Pauli’s Principle so the

total number of electrons per unit volume in the energy range zero to E is

n ¼
ð
dnðEÞ ¼ 2 � 4�ð2m3

eÞ1=2
h3

ð E

0

E 1=2 dE

¼ 16�ð2m3
eÞ1=2

3h3
E 3=2

where m e is the electron mass.

If the metal is in its ground state the available electrons will occupy the lowest possible

energy levels, and if the total number of electrons per unit volume n0 is less than the total

number of energy levels in the band, then the electrons will occupy all energy states up to a

maximum energy EF called the Fermi Energy which is given by

n0 ¼ 16�ð2m3
eÞ1=2 E 3=2

F

3h3

Typical values of EF are of the order of 5 eV ð1 eV ¼ 1:6� 10�19 JÞ.
(Problems 13.14, 13.15)

The Potential Step

The standing wave system of the infinite potential well where the wave function

 nðxÞ
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is finite in the region VðxÞ ¼ 0 but zero at all other points is unique in the formal

correspondence it presents between classical and quantum mechanical results. The

quantum effects become evident when we consider the general case of the potential step of

finite height V in Figure 13.5 which is an idealized form of the very steep potential gradient

of a conservative force

FðxÞ ¼ � @V

@x

Such a potential step would be seen by a free electron near the surface of a metal.

It is necessary to consider separately the two cases where the total particle energy E is (a)

less than the potential energy V, and (b) greater than V, where

E ¼ p2

2m
þ VðxÞ

(a) E < V

When E is less than V, the region x > 0 of Figure 13.5 is forbidden to the particle by

classical mechanics for the kinetic energy

p2

2m

would then have a negative value.

In finding the complete solution for  ðxÞ for the potential step we must solve

Schrödinger’s equation for the separate regions of Figure 13.5, x < 0 (region 1) and x > 0

(region 2).

V (x ) = 0

V (x ) = V

x = 0

E < V

E > V

y 1(x ) = A

y 1(x )
y 2(x )

y 2(x ) =

(1) (2)

eik 1x
A e–α x

e–ikxik 1 + a
ik 1 – a

2ik 1

ik 1 – a+

2m (V – E)a 2 =
h 2

k1
2 = 2mE / h 2

Figure 13.5 Wave functions  1ðxÞ and  2ðxÞ for a particle mass m, energy E < V at a potential
step VðxÞ ¼ V
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In region 1, VðxÞ ¼ 0 and we have

@ 2 1ðxÞ
@x2

þ 2mE

�h2
 1ðxÞ ¼ 0

with a solution

 1ðxÞ ¼ A eik 1x þ B e�ik 1x

where

k 2
1 ¼

2mE

�h2

The term A eik 1x (with the sign convention of this chapter) is the wave representation of an

incident particle moving to the right, and B e�ik 1x represents a reflected particle moving to

the left.

In region 2, VðxÞ ¼ V and Schrödinger’s equation becomes

@ 2 2ðxÞ
@x2

þ 2mðE � VÞ
�h2

 2ðxÞ ¼ 0

or

@ 2 2ðxÞ
@x2

� �2 2ðxÞ ¼ 0

where

�2 ¼ 2mðV � EÞ
�h2

This equation has the solution

 2ðxÞ ¼ C e��x þ D e�x

Now the probability of finding the particle in region 2 where it is classically forbidden

depends on the square of the wave function amplitude j 2ðxÞj2 with the condition that for

any wave function to be normalized

�
i.e. for

ð
j 2ðxÞj2 dx ¼ 1

�

the wave function  2ðxÞ ! 0 as x ! 1.

This forbids the second term D e�x which increases with x but still leaves

 2ðxÞ ¼ C e��x
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to give a finite probability of finding the particle beyond the potential step, a probability

which decreases exponentially with distance. This is a profound departure from classical

behaviour.

At the boundary x ¼ 0,  ðxÞ must be finite to give a finite probability of finding the

particle there, but there is a finite discontinuity in VðxÞ. In these circumstances

Schrödinger’s equation asserts that the second derivative

@ 2 ðxÞ
@x2

at x ¼ 0 is finite, which means that both  ðxÞ and ð@ ðxÞ=@xÞ are continuous at x ¼ 0.

These are the boundary conditions which allow the separate solutions

 1ðxÞ and  2ðxÞ
for the wave function, to be matched across the boundary of the two regions.

The continuity of  ðxÞ at x ¼ 0 gives  1ðxÞ ¼  2ðxÞ or Aþ B ¼ C whilst

@ 1ðxÞ
@x

¼ @ 2ðxÞ
@x

at x ¼ 0 gives

ik1ðA� BÞ ¼ ��C ¼ ��ðAþ BÞ
Thus

B ¼ ik1 þ �

ik1 � �

� �
A

and

C ¼ 2ik1

ik1 � �
A

The wave functions for the separate regions then become

 1ðxÞ ¼ A eik 1x þ ik1 þ �

ik1 � �
e�ik 1x

� �

and

 2ðxÞ ¼ 2ik1

ik1 � �
A e��x

and these are shown in Figure 13.5. Note particularly that the intensity of the incident part

of the wave function

j 1ðxÞj2 ¼ jAj2
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whilst the reflected intensity is

jBj2 ¼ ik1 þ �

ik1 � �
A

����
����
2

¼ jAj2

Thus, for any energy E < V we have total reflection as in the classical case, even for those

particles which penetrate the classically forbidden region x > 0 where  2ðxÞ is finite.
In region 2 the probability of finding the particle is

PðxÞ ¼ j 2ðxÞj2 ¼ jC e��xj2

¼ 2ik1

ik1 � �
A e��x

����
����
2

¼ 4k 2
1

k 2
1 þ �2

A2 e�2�x

Since the exponential coefficient � depends on VðxÞ the greater the value VðxÞ the faster

the wave function  2ðxÞ goes to zero in region 2 for a given total energy E < V.

When VðxÞ ! 1, as in the case of the infinite potential well,  2ðxÞ becomes zero, as we

have seen; and there is no penetration into the classically forbidden region.

Several important physical phenomena may be explained on the assumption that a

particle with E < V meeting a potential step of finite height V and finite width b has a wave

function  2ðxÞ which is still finite at x ¼ b, making it possible for the particle to tunnel

through the potential barrier (Figure 13.6). The probability that the particle will penetrate

the barrier to x ¼ b is given by

PðxÞ ¼ j 2ðxÞj2 / e�2�x

and beyond this barrier the particle will propagate in region 3 with a wave function  3ðxÞ
of reduced amplitude. The boundary conditions must then be applied at x ¼ b to match

 2ðxÞ to  3ðxÞ.

y2(x)

y3(x)

y1(x)

Region 1

b

Region 3

Figure 13.6 Narrow potential barrier of width b penetrated by a particle represented by  1ðxÞ
leaving a finite amplitude  3ðxÞ as a measure of the reduced probability of finding the particle in
region 3
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This quantum ‘tunnel effect’ is the basis of the explanation of the radioactive decay of

the nucleus. In addition the potential step seen by a free electron near the surface of a metal

may be distorted, as shown in Figure 13.7, by the application of an external electric field, to

form a barrier of finite width. The most energetic electrons near the surface of the metal can

leak through the barrier in a process known as field electron emission.

Another example results from the two possible positions of the single nitrogen atom with

respect to the three hydrogen atoms in the ammonia molecule NH3. These positions are

shown as N and N 0 in Figure 13.8 together with the potential barrier presented to the

nitrogen atom as it moves to and fro between N and N 0. This penetration occurs at a

frequency of 2:3786� 1010 Hz for the ground state of NH3 and its high definition is used

as an atomic clock to fix standards of time.

Metal surface
potential

Tunnelling
of energetic
electron

V  = V 0 – Ex

V 0

x = 0

Figure 13.7 Application of an electric field E to the surface of a metal at potential V0 reduces the
potential to V ¼ V 0 � E x forming a barrier of finite width which may be penetrated by an energetic
electron near the metal surface

H

N

N′

N

H

H

H H

H
HH

N′

H

V for
N motion

Potential
barrier

Figure 13.8 The two possible configurations N and N 0 of the nitrogen atom with respect to the
triangular hydrogen base in the ammonia molecule NH3 and the finite potential barrier penetrated by
the nitrogen atom at a frequency of >1010 Hz in the NH3 ground state
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(Problem 13.16)
(b) E > V

In the region x < 0 in Figure 13.5 VðxÞ ¼ 0 and Schrödinger’s equation is

@ 2 1ðxÞ
@x2

þ 2mE

�h2
 1ðxÞ ¼ 0

or

@ 2 1

@x2
þ k 2

1 1 ¼ 0

with

k 2
1 ¼

2mE

�h2

having a solution

 1ðxÞ ¼ A eik 1x þ B e�ik 1x

with both incident and reflected terms.

The momentum of the particle is p1 where p2
1=2m ¼ E.

In the region x > 0, VðxÞ ¼ V and Schrödinger’s equation is

@ 2 2ðxÞ
@x2

þ 2mðE � VÞ
�h2

 2ðxÞ ¼ 0

or

@ 2 2

@x2
þ k 2

2 2 ¼ 0

where

k 2
2 ¼

2mðE � VÞ
�h2

and the particle momentum p2 is given by p2
2=2m ¼ ðE � VÞ.

In the wave function solution for this region we consider only the right-going or

transmitted term since there is nothing beyond x ¼ 0 to cause a reflection, so

 2ðxÞ ¼ C eik 2x

Now the wave number k is related to the de Broglie wavelength of the particle and we

see that k changes when the potential V changes; that is, when the particle experiences a
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change in the force acting on it. Such a particle therefore reacts to a changing potential as

light reacts to changing refractive index. As the potential V increases for E > V the

momentum p and wave number kðp ¼ �hkÞ decrease and the wavelength � increases.

At x ¼ 0 the conditions for continuity give

 1ðxÞ ¼  2ðxÞ

or

Aþ B ¼ C

and

@ 1ðxÞ
@x

¼ @ 2ðxÞ
@x

or

k1ðA� BÞ ¼ k2C

These two equations give

B ¼ ðk1 � k2Þ
ðk1 þ k2Þ A

and

C ¼ 2k1

k1 þ k2
A

Since B is not zero, some reflection takes place at x ¼ 0 even though the energy E > V.

This is clearly not classical behaviour. If many particles form an incident beam at x ¼ 0

and each particle has velocity

v 1 ¼ p1

m
¼ �hk1

m

then the velocity of transmitted particles will be

v 2 ¼ p2

m
¼ �hk2

m

The incident flux of particles; that is, the number crossing unit area per unit time, may be

seen as the product of the velocity and the intensity; that is

v 1jAj2
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The reflected flux is

v 1jBj2
and the transmitted flux is

v 2 jC j2
Thus, the reflection coefficient, the ratio of reflected to incident flux is

R ¼ v 1 jB j2
v 1 jA j2 ¼

ðk1 � k2Þ2
ðk1 þ k2Þ2

and the transmission coefficient, the ratio of transmitted to incident flux is

T ¼ v 2 jC j2
v 1 jA j2 ¼ k2

k1

ð2k1Þ2
ðk1 þ k2Þ2

¼ 4k1k2

ðk1 þ k2Þ2

results which are similar to those for our classical waves in earlier chapters.

Note that Rþ T ¼ 1 showing that the number of particles is conserved.

We have chosen here to apply R and T to a number of particles forming a beam. These

coefficients, when applied to identical particles forming the beam, measure the average

probability that an individual particle will be reflected or transmitted.

(Problem 13.17)

The Square Potential Well

Let us consider a particle with energy E < V moving in the square potential well of width a

in Figure 13.9. Within the well the potential is zero, and the value Vof the height of the well

V (x) = V

V (x) = 0

E < V

x = 0 x = a

ψ
3(x) ψ

1(x) ψ
2(x)

3 1 2

Figure 13.9 A particle with energy E < VðV ¼ the finite height of a square potential well of width
a) may take only the energy values E satisfying the equation

tan a

ffiffiffiffiffiffiffiffiffi
2mE

�h 2

r
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðV � EÞp
2E � V

The wave functions in the three regions are matched at the boundaries x ¼ 0 and x ¼ a by the
conditions that  ðxÞ and @ ðxÞ=@x are continuous
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is finite. This potential approximates that of a finite range force which has no influence

beyond a limited distance. Outside the range of the force the potential may be considered

constant. From our discussion of the infinitely deep potential well ðV ¼ 1Þ and of the

potential step we can expect our wave function representation to have the form of an

integral number of de Broglie half wavelengths within the well, plus an exponentially

decaying penetration into the wall on either side.

Writing Schrödinger’s equation for each of the three regions, we have for region

1ð0 < x� aÞ

@ 2 1ðxÞ
@x2

þ 2mE

�h2
 1ðxÞ ¼ 0

with a solution, for k 2
1 ¼ 2mE=�h2 of

 1ðxÞ ¼ A eik 1x þ B e�ik 1x

¼ Aðcos k1xþ i sin k1xÞ þ Bðcos k1x� i sin k1xÞ
¼ A1 cos k1xþ B1 sin k1x

where A1 ¼ Aþ B and B1 ¼ iðA� BÞ.
In region 2ðx	 aÞ

@ 2 2ðxÞ
@x2

þ 2mðE � VÞ
�h2

 2ðxÞ ¼ 0

has the solution

 2ðxÞ ¼ A2 e
�x þ B2 e

��x

where

�2 ¼ 2m

�h2
ðV � EÞ

In region 3, ðx < 0Þ

@ 2 3ðxÞ
@x2

þ 2mðE � VÞ
�h2

 3ðxÞ ¼ 0

has the solution

 3ðxÞ ¼ A3 e
�x þ B3 e

��x

For  ðxÞ to remain finite as x ! �1 (normalization condition) A2 and B3 must be zero,

and the boundary conditions  ðxÞ and @ ðxÞ=@x continuous, must be satisfied at x ¼ 0 and

x ¼ a.
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At x ¼ 0,

 1ðxÞ ¼  3ðxÞ and
@ 1ðxÞ
@x

¼ @ 3ðxÞ
@x

give

A1 ¼ A3 ð13:1Þ
and

k1B1 ¼ �A3 ð13:2Þ
whilst at x ¼ a

 1ðxÞ ¼  2ðxÞ and
@ 1ðxÞ
@x

¼ @ 2ðxÞ
@x

give

A1 cos k1aþ B1 sin k1a ¼ B2 e
��a ð13:3Þ

and

�k1A1 sin k1aþ k1B1 cos k1a ¼ ��B2 e
��a ð13:4Þ

In order to satisfy equations (13.1), (13.2), (13.3) and (13.4) some conditions must be

imposed on k and �; that is, on the value of E, so only certain values of E are allowed.

Equations (13.1) and (13.2) give

A1

B1

¼ k1

�

and this equation with equations (13.3) and (13.4) yields

tan k1a ¼ 2k1�

k 2
1 � �2

or

tan a

ffiffiffiffiffiffiffiffiffi
2mE

�h2

r
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðV � EÞp
2E � V

Only those values of E which satisfy this relation are allowed energy states, but these

values must be found by numerical or graphical methods.

The wave functions for the first three allowed energy values are shown in Figure 13.10

and their general behaviour may be clarified by considering Schrödinger’s equation in the

form

@ 2 

@x2

.
 ¼ �ðþve constantÞðE � VÞ
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Now @ 2 =@x2 is the rate of change of the slope; that is, the curvature of the wave function
and when E > V both sides of the equation are negative and the  curve must everywhere

keep its concave side towards the x axis as it always does, for example, in sine and cosine

curves. The curvature increases with E so we shall expect more de Broglie half

wavelengths in the higher energy levels. This is consistent with the argument that an

increase in E increases the wave number k and reduces the de Broglie wavelength �.
In the lowest energy level the  curve is always without a node, the next level always has

one node, the third two nodes, etc. but the zeros will not be quite equally spaced and the  
amplitude will not be uniform across the well. In particular it will increase near the

potential walls as the particle is slowed down to give a higher probability of the particle

being found there. Where E < V the ratio

@ 2 =@x2

 

(x) for E3ψ

(x) for E2ψ

(x) for E1ψ

x = ax = 0

Figure 13.10 Wave functions for a particle in a square potential well with the lowest three allowed
energies E1, E 2, E 3. Note the exponential decay of  ðxÞ outside the box
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will be positive and the  curve must keep its convex side towards the axis as in

exponential curves. The classical boundary E ¼ V must always mark the division where

the character of the  curve changes from one form to the other and the two parts of the

curve will only match for certain values of E.

The Harmonic Oscillator

As a final example to illustrate the fitting of  curves into a potential well we shall consider

the potential curve V ¼ 1
2
sx2 of the harmonic oscillator in Figure 13.11. The calculation of

the  curves is too complicated for this chapter but their essential features confirm what we

may expect from our earlier examples. Moreover, by purely classical arguments we shall

obtain a very good approximation to the wave mechanical results.

In 1901 Planck had postulated that the energy of such an oscillator could have the values

E ¼ nh� where n was an integer and � was the frequency. Schrödinger was able to derive

this result in 1926 but one essential difference arises from the Uncertainty Principle which

requires a minimum energy level or zero point energy of 1
2
h�.

For a classical oscillator the minimum energy E ¼ 0, point 0 in Figure 13.11 gives the

precise and simultaneous values x ¼ 0 and p ¼ 0; that is, a zero oscillation. The

Uncertainty Principle forbids this. If a0 is the smallest amplitude of the oscillator

compatible with the Uncertainty Principle, then

a0 
 1
2
�x

2 a

V

E

E4 =
9
2

hν

E3 =
7
2

hν

E2 =
5
2

hν

E1 =
3
2

hν

E0 =
1
2

hν

0
x

Figure 13.11 Potential energy curve V of a harmonic oscillator with allowed energy levels
En ¼ ðnþ 1

2Þh� . The energy E (with oscillator amplitude a) is shown in the text to define an average
value of the de Broglie wavelength � ¼ h=ð43mEÞ 1=2
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If p0 is the maximum momentum of the oscillator with amplitude a0 it may be either in the

positive or negative direction so

p0 
 1
2
�p

The energy of a classical oscillator is given by

E ¼ 1
2
m!2a2

0 ¼ 1
2
!ða0Þðm!a0Þ ¼ 1

2
!a0p0

� 1
8
!�x�p � 1

8
h! � 1

2
�h! ¼ 1

2
h�

All other energy levels will therefore take integral steps of h� above this zero point energy.

Let us consider the energy level of the oscillator which has an amplitude a so that

E ¼ p2

2m
þ V ¼ p2

2m
þ 1

2
sx2 ¼ 1

2
sa2 ¼ 1

2
m!2a2

so that

2a ¼ 2

!

ffiffiffiffiffiffi
2E

m

r

The value of the kinetic energy of the oscillator averaged over the distance 2a between �a

may be writtenÐ a

�a
p2=2m dxÐ a

�a
dx

¼ 1

2a

ð a

�a

E � 1

2
m!2x2

� �
dx ¼ E � 1

6
m!2a2 ¼ 2

3
E

because

E ¼ 1
2
m!2a2

Thus, the average value of the kinetic energy

p2

2m
¼ 2

3
E

giving

p ¼ h

�
¼

ffiffiffiffiffiffiffiffiffi
4mE

3

r

This gives an average value for the de Broglie wavelength of

� ¼ hffiffiffiffiffiffiffiffiffi
4mE

3

r
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and we expect n half wavelengths to fit into the length 2a at energy E where

2a ¼ 2

!

ffiffiffiffiffiffi
2E

m

r

Thus

n
�

2
¼ nh

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mE=3

p ¼ 2

!

ffiffiffiffiffiffi
2E

m

r

Writing ! ¼ 2�� we have

E ¼ �

4

ffiffiffi
3

2

r
nh� ¼ 0:96 nh�

which is a fairly close approximation to nh�. The correct result, however, must take into

account the zero point energy of 1
2
h� and the energy levels are given by

E ¼ ðnþ 1
2
Þh�; n ¼ 0; 1; 2; 3; etc:

The  curves for the first four energy levels are plotted in Figure 13.12 together with those

for j j2.
We see that whilst a classical oscillator may never exceed its maximum amplitude a

particle obeying a wave mechanical description has a finite probability of being found

beyond this limit.

ψ2

ψ1

ψ0

ψ3

0 0

ψ3
2

ψ2
2

ψ1
2

ψ0
2

E3 =
7
2

hν

E2 =
5
2

hν

E1 =
3
2

hν

E0 =

E3 

E2 

E1 

E0 
1
2

hν

Figure 13.12 Wave functions  ðxÞ and probability densities j ðxÞj 2 for the first four energy levels
of the harmonic oscillator
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(Problems 13.18, 13.19)

Electron Waves in a Solid

Bloch Functions and the Kronig--Penney Model

When electrons move through a solid, e.g. a metal, they meet a series of potential barriers

generated by the atoms or ions located at the centre of the valleys between successive

barriers. Figure 13.13 shows such a one-dimensional lattice array of ions. The electron

wave function is derived via Bloch functions and the electron behaviour is demonstrated

using the Kronig–Penney Model which replaces Figure 13.13 in the first instance with a

periodic series of potential wells of finite depth as shown in Figure 13.14. An exact but

unwieldy solution can be found for the situation described by Figure 13.14, but Kronig and

Penney, by deepening the wells and reducing their separation, were able to show how the

electrons behaved and to demonstrate the restrictions imposed on their motion.

L

> l <

+ + + + + +

Figure 13.13 A one-dimensonal periodic array of poterntial barriers formed by ions or atoms
located along a crystal lattice

b

a x
l

V

V0

Figure 13.14 A series of finite potential wells used by Kronig and Penney as a first approximation
of Figure 13.13
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In Figure 13.14 the space between the potential wells is a, the well thickness is b and its

height is V0. The problem is similar to that described on p. 435 where the total energy of

the electron is E � V0 so the wave equation is

@2 

@x2
þ 2m

�h2
ðE � V0Þ ¼ 0

Now, VðxÞ is periodic so Vx ¼ Vðxþ lÞ where l ¼ aþ b. Evidently, since the probability

of finding an electron at x or at xþ l is the same, we have

j ðxÞj2 ¼ j ðxþ lÞj2

Hence, we may write  ðxþ lÞ ¼ � ðxÞ where ��� ¼ j�j2 ¼ 1 (�� is the complex conjugate

of �).
At this stage we could write � ¼ eikx, but this does not define k well enough to satisfy the

boundary conditions at each end of the crystal. For periodic functions the conventional

method to meet the boundary conditions is to form a ring of circumference of length

L ¼ Nl where L is the length of the crystal and N is the number of atoms along its length.

Note that in Figure 13.13 the potential barriers at each end of the crystal add l to its length.

Proceeding along the crystal (or around the ring) we have

 ðxþ 2lÞ ¼  ðxþ lþ lÞ ¼ � ðxþ lÞ ¼ �2ð Þ

or for r integral steps

 ðxþ rlÞ ¼ �r ðxÞ r ¼ ð0; 1; 2; 3 . . .N � 1Þ

Now r ¼ 0 and r ¼ N are identical positions (one complete circuit of the ring), so

 ðxþ NlÞ ¼ �N ðxÞ ¼  ðxÞ

that is

�N ¼ 1

We may now write

� ¼ ei2�r=N ðr ¼ 0; 1; 2; 3 . . .Þ

so that

 ðxþ lÞ ¼ � ðxÞ ¼ e i2�r=N ðxÞ

The Bloch function �kðxÞ is defined by

 ðxÞ ¼ �kðxÞeikx
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where

�kðxÞ ¼ �kðxþ lÞ
Here, k ¼ 2�r=lN and �kðxÞ has the periodicity of the potential. Since r changes by units as
we move along the crystal each step of r=N (for N large) is so small that k ¼ 2�r=lN may

be considered as varying continuously.

The Bloch functions satisfy all conditions because

 ðxþ lÞ ¼ eikðxþlÞ�kðxþ lÞ ¼ eikleikx�kðxÞ ¼ ei
2�r
N  ðxÞ ¼ � ðxÞ

The wave equations of Figure 13.14 are

@2 1

@x2
þ �2 1 ¼ 0 0 < x < a ð13:5Þ

and

@2 2

@x2
� �2 2 ¼ 0 � b < x < 0 ð13:6Þ

where

�2 ¼ 2mE

�h2
and �2 ¼ 2m

�h2
ðV0 � EÞ

with

VðxÞ ¼ Vðxþ lÞ and l ¼ aþ b

The Bloch function �kðxÞ ¼ �kðxþ lÞ where l ¼ aþ b, so for x ¼ �b we have

�xðaÞ ¼ �kð�bÞ, which is evident from Figure 13.14.

Earlier examples in this chapter have shown that the boundary conditions require  ðxÞ
and its first derivative to be continuous across any potential change.

Applying  ðxÞ ¼ �kðxÞeikx to equations (13.5) and (13.6), we have

�1ðxÞ ¼ Aeið��kÞx þ Be�ið�þkÞx 0 < x < a

�2ðxÞ ¼ Ceð��ikÞx þ De�ð�þikÞx � b < x < 0

so that the boundary conditions are

�1ð0Þ ¼ �2ð0Þ with
@�1
@x

� �
x¼0

¼ @�2
@x

� �
x¼0

and

�1ðaÞ ¼ �2ð�bÞ with
@�1
@x

� �
x¼a

¼ @�2
@x

� �
x¼�b
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which give four homogenous equations.

Remember that

�ðxÞ ¼ �ðxþ lÞ

As with the rectangular well on p. 435 these boundary conditions determine the permitted

values of E (via a and b). Here, the boundary conditions require either

A ¼ B ¼ C ¼ D ¼ 0 or the determinant of their coefficients to be zero. Equating the

determinant of the coefficients to zero gives the unwieldy expression

�2 � �2

2��
sin�a sinh�bþ cos�a cosh�b ¼ cos kðaþ bÞ ð13:7Þ

Kronig and Penney simplified this equation by allowing V0 to tend to infinity as b

approached zero in such a way that V0b remained constant. This has two important

implications. First, the potential wells become very deep so that Figure 13.14 approximates

Figure 13.13. Second, their separation is narrowed so that l ¼ aþ b � a and we may

rewrite equation(13.7) as

V0b
ma

�h2

� �
sin�a

�a
þ cos�a ¼ cos ka ð13:8Þ

The values of � ¼ ð2mE=�h2Þ12 which satisfy this equation determine the permitted energy

values and wave functions of the electrons.

Note that when V0 ! 1 equation (13.8) requires sin�a ¼ 0 to remain valid, leaving

� ¼ � n�

a
ðn ¼ 1; 2; 3 . . .Þ

or

E ¼ �2�h2n2

2ma2

which are the quantized energies of the tightly bound electron in the infinitely deep

potential of p. 420.

At the other extreme when V0 ¼ 0 equation (13.8) gives

� ¼ k ¼ 2mE

�h2

� �1
2

which allows E to take any positive value. This gives a free particle solution to the wave

equation (graphed as the dotted parabola in Figure 13.16).

Between these two extreme values of V0 the permitted values of the energy E are

displayed on the graph in Figure 13.15 where the left-hand side of equation (13.8) is plotted

against �a where �a is written w and V0bðma�h2 Þ is written K.
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Now the limits of cos ka in equation (13.8) are �1 and these determine the allowed

values of w ¼ �a indicated by the heavy horizontal line on the w or �a axis. These in turn

denote the permitted ranges or bands of energy values which the electron may take. The

bands increase with w ¼ �a and between the bands are gaps where electron energies are

forbidden. The limits of each energy band are defined by cos ka ¼ �1 that is

k ¼ � n�

a
ðn ¼ 1; 2; 3; . . .Þ

and the regions in k space defining the energy bands are known as Brillouin zones. The

band for n ¼ 1 is called the first Brillouin zone, n ¼ 2 is the second Brillouin zone and so

on. Figure 13.15 can be displayed as the energy E versus k graph in Figure 13.16 where the

dotted parabola defines the free electron energy E ¼ �h2

2m
k2 and the heavy lines at the k

boundaries denote the permitted electron energies in a given band. The cosine curves

joining the zone boundaries are justified by Figure 5.15, which shows that no new

information is gained by extending the k range beyond ��=a � k � �=a. This limited

range of k values defines the reduced zone scheme.

W = αa3π2ππ

Cos ka

−1

+1

0

Cos ka

K
Sin W

W
+ Cos W,

Figure 13.15 Allowed electron energy values are denoted by heavy horizontal lines which define
the Brillouin zones. These occur when the left-hand side of equation (13.8) has values between � 1.
The curve is symmetric about the axis w ¼ 0.
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The number of energy states (excluding spin) in each zone is determined by

k ¼ 2�r

lN
¼ 2�r

aN
ðr ¼ 0; 1; 2; 3 . . .N � 1Þ

for each k value represents an allowed energy state. Each value of r gives a different value

of k; there are N such values. Hence, in this range

��

a
� k � �

a
i:e:

2�

a
¼ 2�r

Na
where a � l

the number of energy levels is equal to the number of atoms.

As aþ b ¼ l ! 1 each band contracts to a single level which is N-fold degenerate

since the electron can be bound to any one of the atoms. For finite values of l this

degeneracy is removed and each discrete atomic level spreads into a band of N levels.

k
3π
a

− 3π
a

2π
a

− 2π
a

π
a

0− π
a

V1

V3

V2

B4

B3

B2

B1

Figure 13.16 Figure 13.15 displayed as allowed electron energies versus k. The dotted parabola
defines the free electron energy E ¼ �h2k2=2m and the allowed energy bands are the Brillouin zones
Bi. V1; V2; V3 are the energy gaps between the zones. The cosine curves joining the zone boundaries
are justified by Figure 5.15, i.e. all relevant information is contained in the region ��

a � k � �
a
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Only free electrons will escape interaction with the ions in the crystal lattice; almost free

electrons will experience weak coupling to the lattice. Coupling which is strong enough to

reflect electron waves may be seen in terms of Bragg reflection, Figure 13.17. Here, waves

reflected by successive planes in a crystal which are separated by a distance a reinforce to

give maxima on reflection when 2a sin � ¼ n�.
When � ¼ �=2 and the coupling is strong enough the electron waves will be reflected

from successive ions, Figure 13.18, giving a path difference of 2a. Reflection maxima

occur for

2a ¼ �n� ¼ �n
2�

k
; i:e: k ¼ � n�

a

Thus, Bragg reflections define the Brillouin zone boundaries.

θ θ

kk ′

a

Figure 13.17 Elastic Bragg reflection occurs when electron waves are scattered by atoms in planes
separated by a distance a. Principal maxima are formed when 2a sin ¼ n�

1

1′

2′

2

a a a a

Figure 13.18 When � ¼ �=2 in Figure 13.17 Bragg scattering by electron--ion interactions gives
principal maxima when electron waves are reflected from ions separated by multiples of a. The
condition 2a ¼ n� defines the Brillouin zone boundaries for n ¼ 1; 2; 3; etc.
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Wave functions of electrons can be represented by travelling waves in both directions,

i.e. by e�ikx and for k ¼ � n�=a standing waves will be formed by the sum or difference of,

e.g.

ei�x=a and e�i�x=a

The sum of these terms creates

 even ¼ cos
�x

a

and their difference gives

 odd ¼ sin
�x

a

The energies associated with these two wave functions will differ when they interact with

the ions.  even ¼ cos�x=a has anti-nodes (maxima) at the site of each ion so the electron–

ion interaction is attractive and the energy corresponding to  even is lowered.

 odd ¼ sin�x=a has its anti-node midway between ion sites where the potential is

repulsive, Figure 13.19. The calculation of these energy shifts requires knowledge of the

effective potential, but it can be shown that for  even the energy change at a given Vn in

Figure 13.16, where Vn is the energy gap between bands, is �E ¼ � 1
2
Vn and for  odd the

energy change is �E ¼ 1
2
Vn (see Problem 13.21). Note that the band widths and gaps

increase with n.

The band structure may also be demonstrated by considering the effect of tunnelling.

Two widely separated equivalent potential wells may each contain a single electron

occupying identical energy levels. When the potential well separation becomes small

enough for the tunnelling of Figure 13.6 to be possible this symmetry is destroyed because

the wave function of an electron spreads right across both wells and their separating

potential barrier, Figure 13.20. There is a finite probability of finding an electron at any

ψ

Ψeven

Ψodd

a 2a 3a x

Figure 13.19 The wave function c (even) has an anti-node at an ion (atom) site. The anti-node for
c (odd) is located midway between sites. This governs the energy of interaction, which is different
for the two c values
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point x of its wave function  ðxÞ so the two electrons cannot occupy the same energy level

and the single state splits into two. The lowest lying energy levels split into a narrow band

of very closely spaced states since the barrier to tunnelling is very large for electrons in

these levels. Higher energy levels have a wider spread and it is even possible for bands to

overlap. The band structure helps to explain the difference between electrical conductors

and insulators.

Once an energy level is occupied by an electron it cannot accept another electron.

However, in a metal only the lower energy levels in a band or Brillouin zone are occupied

and an applied electric field can accelerate electrons which move to occupy higher

available energy states within the band. Insulators have completely filled energy bands so

the electrons cannot move under the influence of an electric field – there are no empty

neighbouring states.

−a −b b a

Ψ(x )

Ψ1

Ψ0

Figure 13.20 When an electron can tunnel between two potential wells (a, b) and � (a, b) it cannot
exist in a single energy state. The higher of the two resulting energy states has a greater curvature
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However, a very strong electric field can cause an electron to jump from the top of a band

across a gap to occupy an empty level immediately above the gap, so the insulator breaks

down. A spark can jump across an air gap between two terminals; lightning is such a spark

on a much larger scale. A semiconductor is basically an insulator with a very narrow

forbidden gap where even a small energy change will switch the insulator into a conductor.

Phonons

Pages 135 and 162 showed that the elastic field in a crystal could sustain transverse and

longitudinal modes of vibration along a chain of atoms acting as a series of coupled

oscillators. In a normal mode of angular frequency !i every atom performed simple

harmonic oscillations of !i. On p. 440 we saw that the energy of such oscillations at atomic

and sub-atomic levels was quantized with values of ðnþ 1=2Þ�h!.
The concept of photons as quanta of energy �h! associated with an electromagnetic field

allows the analogy of phonons as quanta of energy associated with the elastic field. In a

normal mode of angular frequency !i the energy of a phonon is �h!i so phonons can be seen

as exciting a mode to an energy state ðnþ 1
2
Þ�h!i. When n ¼ 0 the mode !i is left with the

zero-point energy 1
2
�h!i. A more detailed calculation of Debye’s theory of specific heats

(page 253) takes account of this quantization.

Normal modes are plane waves extending throughout the crystal and phonons are not

localized particles. The uncertainty principle prevents an exact determination of a phonon

position and it exists as a localized wave packet of combined modes with a small spread of

frequency and wavelength and a group velocity d!=k. The number of phonons, like that of

photons, is not conserved. They are created and absorbed by collisions and, like photons,

they obey Bose–Einstein statistics (appendix 1). However, unlike photons, they exist only

within the crystal. They contribute to the crystal momentum but do not carry momentum.

This is evident from Figure 5.15 where a lattice vibration has a wave number

k ¼ k � m�
a

ðm ¼ 1; 2; 3; . . .Þ so �hk has no precise meaning. Indeed, when the mode

oscillations are purely harmonic the equilibrium position is zero so phonon momentum is

zero.

Phonon–phonon collisions are usually three-phonon processes in which both transverse

and longitudinal waves are involved. They are characterized by energy conservation

�h!1 ¼ �h!2 þ �h!3

and by phonon wave vector conservation

q1 ¼ q2 þ q3

A phonon of wave vector q1 can separate into two phonons with wave vectors q2 and q3.
Alternatively, q2 can absorb q3 to form q1. Phonon–phonon collisions play a role in the

thermal conductivity of a crystal; neutron interactions with the crystal lattice also involve

the concept of phonons.

When particles, as waves, interact with crystal structures they create diffraction patterns

when the particle wavelength is of the order of atomic separation within the crystal,
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typically 
 2� 10�10 m. The waves of X-rays striking a crystal create principal maxima

on reflection to satisfy Braggs Law (p. 447) when the path difference

2a sin � ¼ n�

where a is the separation between the reflecting (diffracting) planes. If k is normal to the

particle wave fronts before striking the crystal and k0 is normal to the wave front leaving

the crystal the condition jkj ¼ jk0j defines the scattering as elastic, so Bragg scattering is

elastic. Knowing the plane separation of a nickel crystal, determined by X-rays, Davisson

and Germer were able to find the wavelength of electrons by Bragg elastic scattering (see

Problem 13.20).

Neutrons with � 
 2� 10�10 m have been used in non-elastic scattering experiments

where jkj 6¼ jk0j to probe the structure of crystals, that is, the atomic arrangements and

separation. Where X-rays interact chiefly with electrons surrounding the nucleus of an

atom, uncharged neutrons interact much more strongly with its nucleus; lattice vibrations

are set up so phonons play a role in the scattering.

Non-elastic scattering may be seen in terms of Figure 13.21 where waves in the wave

front normal to k are scattered by atoms 1 and 2 in a row where the atomic separation is a.

The phase lag of the wave incident on atom 2 is 2�
� a sin � with respect to that striking atom

1, but after scattering it leads the wave scattered by atom 1 by a phase 2�
�0 a sin	. A

diffraction maximum occurs when the phase difference

2�

�
a sin �� 2�

�0
a sin	 ¼ ka sin �� k0a sin	 ¼ l2� ðl ¼ 1; 2; 3; . . .Þ

i.e.

aðk� k0Þ ¼ l2�

or

k� k0 ¼ l
2�

a

k k ′

a
21 a1 2

θ φ

Figure 13.21 When electrons are scattered from atoms separation a, in the same plane, the
scattering may be inelastic, i.e. jkj 6¼ jk0j. Here, the electron of wave number k ¼ 2�=� strikes atom
1 ahead in phase of that striking atom 2 by 2�=� a sin �, but after scattering it lags that from atom 2
by a phase difference 2�

�0 a sin	. Note that l need not ¼l0
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Note that k� k0 is a vector in diffraction space and �0 need not equal �. This is true for

every row of lattice points in the x direction.

The expression l2�=a represents a series of planes in k space with a separation 2�=a.
Crystal planes in a second dimension with separation b would form another series of planes

m 2�
b
ðm ¼ 1; 2; 3; . . .Þ with separation 2�

b
in k space having lines of intersection with the

series l. A set of crystal planes in a third dimension with separation c would form a final set

of planes n 2�
c
ðn ¼ 1; 2; 3; . . .Þ with separation 2�=c in k space. These three sets of planes

would meet in points ðl;m; nÞ in k space to form the reciprocal lattice. In three dimensions

the diffracted vector k � k0 would end on a reciprocal lattice point l;m; n. There is no

requirement for the directions a; b and c in the crystal to be mutually perpendicular, but a

symmetry exists between the crystal lattice and its reciprocal in that planes in the one are

perpendicular to rows of points in the other and the plane spacing in one is 2� times the

reciprocal of the point spacing in the other.

When neutrons are diffracted from a crystal lattice in which a phonon of wave vector q
and frequency ! is already excited, more than one diffraction maximum can appear. This

first maximum will result from Bragg elastic scattering, i.e. jkj ¼ jk0j.
A second maximum occurs in a vector direction

g ¼ k� k0 þ q

or

k0 ¼ kþ q� g

This suggests that a neutron of wave vector k has absorbed a phonon of wave vector q to

become a neutron of wave vector k0. In the scattering, because the neutron is initially

outside the crystal, the crystal plus the phonon receives a momentum

�hðk� k0Þ ¼ �hðg� qÞ

Conventionally, the momentum �hg is associated with the whole lattice while �hq (associated

with the absorbed phonon) is known as the crystal or quasi-momentum of the phonon

because it acts as a momentum when absorbed by the neutron.

In pure phonon–phonon collisions two processes may occur. The three phonons involved

may begin and end in the same Brillouin Zone. this is called a normal process. In some

cases, however, the third phonon may finish outside the Brillouin zone. This is known as

the Umklapp process. This occurs when a phonon is Bragg reflected (at the edge of a

Brillouin zone) at the same time as it absorbs another phonon. We know, however, that a

phonon of wave vector q is identical with a phonon of wave vector q� 2�
a
, so the third

phonon may be considered as remaining within the Brillouin zone. Umklapp processes play

a role in the thermal conductivity of a crystal in the following way.

When the crystal lattice vibrations are purely harmonic the separation between adjacent

atoms during vibrations contributes an energy term / ðxi � xi�1Þ2, where xi is the

displacement of an atom from its equilibrium position. In this case a phonon may travel
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along hundreds of atoms without hindrance. However, with increasing energy, i.e.

temperature, vibrations become anharmonic and cubic terms replace the squared term

above because separate normal modes become coupled. Effectively, a cubic term describes

the emission of a phonon by another phonon or the decay of a phonon into two phonons

and the energies of individual phonons are changed. The phonons constitute a gas where

the phonons have approximately constant speed (unlike in a real gas), but have a larger

number density and energy density at the hot end of the crystal. Heat flow is primarily by

phonon flow with phonons being created at the hot end and destroyed at the cold end. The

thermal resistance in an insulator is produced by collisions which reverse the group

velocity of the phonons, and the Umklapp process involving high-energy phonons at Bragg

reflection on the edge of the Brillouin zone is significant here.

(Problems 13.20, 13.21)

Problem 13.1
The energy of an electron mass m charge e circling a proton at radius r is

E ¼ p2

2m
� e2

4�" 0r

where p is its momentum.
Use Heisenberg’s Uncertainty Principle in the form �p�r � �h to show that the minimum energy

(H2 atom ground state) is

E0 ¼ �me4

8" 20 h
2

at a Bohr radius

r ¼ " 0h
2

�me2

Problem 13.2
The observation of a particle annihilates its mass m and its rest mass energy is converted to radiation.

Use the relations �p�x � h and E ¼ pc for photons to show that the short wavelength limit on

length measurement is the Compton wavelength

� ¼ h

mc

Show that this is 2:42� 10�12 m for an electron.

Problem 13.3
When x and p vary simple harmonically it can be shown that the averaged values of the squares of

the uncertainties satisfy the relation

ð�x2Þð�p2Þ � �h2

4
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If the energy of a simple harmonic oscillation at frequency ! is written

E ¼ p2

2m
þ 1

2
m! 2x2

show that its minimum energy is 1
2
h�.

Problem 13.4
An electron of momentum p and wavelength � ¼ h=p passes through a slit of width �x. Its

diffraction as a wave may be regarded in terms of a change of its momentum �p in a direction

parallel to the plane of the slit (its total momentum remaining constant). Show that the approximate

position of the first minimum of the diffraction pattern is in accordance with Heisenberg’s

uncertainty principle. (Note that the variation of the intensity of the principal maximum in the

pattern is a direct measure of the probability of the electron arriving at a point on the screen.)

Problem 13.5
A beam of electrons with a de Broglie wavelength of 10�5 m passes through a slit 10�4 m wide.

Show that the angular spread due to diffraction is 5�47 0.

Problem 13.6
Show that the de Broglie wavelength of an electron accelerated across a potential difference V is

given by

� ¼ h=ð2m eeVÞ 1=2 ¼ 1:29� 10�9V �1=2 m

where V is measured in volts.

Problem 13.7
If atoms in a crystal are separated by 3� 10�10 m (3 Å) show that an accelerating voltage of 
 3 kV

would be required to produce electrons diffracted by the crystal.

Problem 13.8
Electromagnetic radiation consists of photons of zero rest mass. Show that the average momentum

per unit volume associated with an electromagnetic wave of electric field amplitude E0 is given by

p ¼ 1
2
"0E

2
0=c

(Verify the dimensions of this relation.)

Problem 13.9
Show that the average momentum carried by an electromagnetic wave develops a radiation pressure

P ¼ cp ¼ 1
2
" 0E

2
0

when the wave is normally incident on a perfect absorber and a pressure

P ¼ 2cp ¼ " 0E
2
0
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when the wave is normally incident on a perfect reflector. (Radiation incident from all directions

within a solid angle of 2� will introduce a factor of 1=3 in the expressions above.)

Problem 13.10
If the radiation energy from the sun incident upon the perfectly absorbing surface of the earth is

1.4 W m�2 and the radiation comes from all directions within a solid angle of 2� show that the

radiation pressure is about 10�11 of the atmospheric pressure.

Problem 13.11
In a carbon molecule the two atoms oscillate with a frequency of 6:43� 10�11 Hz. Show that the

zero point energy is 1:34� 10�3 eV ð1 eV ¼ 1:6� 10�19 JÞ.

Problem 13.12
A particle of mass m moves in an infinitely deep square well potential of width 2a defined by

VðxÞ ¼ 0 � a � x � þ a

VðxÞ ¼ 1 jxj > a

If it is described by the wave function

 ðxÞ ¼ 1ffiffiffi
a

p 1� �2x 2

8a2

� �
for jxj � a

¼ 0 jxj > a

show by calculating
Ð a

�a
j ðxÞj 2 dx that the probability of finding it in the box is 0.96.

Show that in its normalized ground state, it is represented by  ðxÞ ¼ ð1= ffiffiffi
a

p Þ cos ð�x=2aÞ and
expand this in powers of �x=2a to compare it with the wave function above.

Problem 13.13
Show that the normalization constant for the wave function

 ðxyzÞ ¼ A sin
n1�x

a
sin

n2�y

b
sin

n3�z

c

describing an electron in a volume abc at the bottom of a deep potential well is equal to

ð8=abcÞ 1=2.

Problem 13.14
A total of N electrons occupy a volume V in a solid at a very low temperature between the energy

levels 0 to EF the Fermi energy.

Show that their total energy

U ¼
ð
E dn ¼

ð E F

0

E
dn

dE
dE

¼ 3

5
NEF

giving an average energy per electron of 3
5
EF.
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Problem 13.15
Copper has one conduction electron per atom, a density of 9 and an atomic weight of 64. Show that

n0, the number of free electrons per unit volume is � 8� 1028 m�3 and that the value of its Fermi

energy level is about 7 eV ð1 eV ¼ 1:6� 10�19 JÞ.

Problem 13.16
The probability of a particle of mass m penetrating a distance x into a classically forbidden region is

proportional to e�2� x where

� 2 ¼ 2mðV � EÞ=�h 2

If x is 2� 10�10 m (2 Å) and ðV � EÞ is 1 eV ð1:6� 10�19 JÞ show that

e�2� x ¼ 0:1 for an electron

¼ 10�43 for a proton

Problem 13.17
A particle of total energy E travels in a positive x direction in a region where the potential energy

V ¼ 0. The potential suddenly drops to a very large negative value. Show that, quantum

mechanically, the amplitude of the reflected wave tends to unity and that of the transmitted wave to

zero. Note that this implies non-classical total reflection.

Problem 13.18
Show that Schrödinger’s equation for a one dimensional simple harmonic oscillator of frequency ! is

given by

d2 

dx2
þ 2m

�h2
E � 1

2
m!2x2

� �
 ¼ 0

and verify that if a 2 ¼ m!=�h then

 0ðxÞ ¼ ða= ffiffiffi
�

p Þ1=2 e�a 2x 2=2

and

 1ðxÞ ¼ ða=2 ffiffiffi
�

p Þ 1=22ax e�a 2x 2=2

are respectively the normalized wave functions for E0 ¼ 1
2
�h! (zero point energy) and E1 ¼ 3

2
�h!:

Problem 13.19
The normalized wave function for a one-dimensional harmonic oscillator with energy

En ¼ ðnþ 1
2
Þ�h! is

 n ¼ NnHnðaxÞ e�a 2x 2=2;

where

Nn ¼ ða=� 1=22nn!Þ 1=2
a2 ¼ m!=�h
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and

HðyÞ ¼ ð�1Þ n e y 2 dn

dyn
e�y 2

Verify that  0ðxÞ and  1ðxÞ of Problem 13.18 satisfy the expression for  n and calculate  2ðxÞ and
 3ðxÞ.

Problem 13.20
Davisson and Germer (1927) fired electrons with an energy of 54 eVat a nickel crystal which had an

atomic plane separation of 0:91� 10�10 m ð0:91�AÞ. Bragg reflection gave a diffraction maximum at

65�. Calculate the reflected electron momentum p and the kinetic energy to show that the difference

between the incident and scattered kinetic energies was within 3.9%.

Problem 13.21
The perturbed energies of c (odd) and c (even) due to electron–ion interactions are given by

�E ¼
Ð
 �V dxÐ
 � dx

where  � is the complex conjugate of  

If the zero of energy is taken as the mean value of the potential then the potential may be written as
a Fourier series in the form

V ¼ �
X1
n¼1

Vn cos 2�nx=a

where the Vn are the potential gaps in Figure 13.16. They are positive numbers for a potential with

strong negative peaks at the lattice sites. For travelling waves  ¼ e�ikx so  � ¼ 1, which gives

�E ¼ 0 in the above expression except for  ¼ sin kx or cos kx when k ¼ n�=a where a is the

periodicity of the lattice.
Show that for  ¼ sin ka

�E ¼ �
X1
n�1

Ð
sin 2kxVn cos

2�nx
a

dxÐ
sin 2kxdx

¼ 1

2
Vn for k ¼ n�=a

Show that  ¼ cos kx in the above expression gives �E ¼ � 1
2
Vn for k ¼ n�=a

Summary of Important Results

De Broglie Wavelength � ¼ h=p

Heisenberg’s Uncertainty Principle (Bandwidth Theorem)

�x�p � h

�E�t � h

determines zero point energy.
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Schrödinger’s time independent wave equation

d2 ðxÞ
dx2

þ 2mðE � VÞ
�h2

 ðxÞ ¼ 0

 ðxÞ ¼ A ei k x þ B e�i k x;

where

k 2 ¼ 2mðE � VÞ
�h2

E > V

 ðxÞ ¼ C e�x þ D e��x;

where

�2 ¼ 2mðV � EÞ
�h2

V > E

Probability per unit length of finding a particle at x

PðxÞ ¼ j ðxÞj2

Normalization ð
j ðxyzÞj2 dx dy dz ¼ 1

all space

Harmonic oscillator

Energy levels En ¼ ðnþ 1
2
Þh�
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