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Foreword

The National Curriculum Framework, 2005, recommends that children’s life at school
must be linked to their life outside the school. This principle marks a departure from the
legacy of bookish learning which continues to shape our system and causes a gap
between the school, home and community. The syllabi and textbooks developed on the
basis of NCF signify an attempt to implement this basic idea. They also attempt to
discourage rote learning and the maintenance of sharp boundaries between different
subject areas. We hope these measures will take us significantly further in the
direction of a child-centred system of education outlined in the National Policy on
Education (1986).

The success of this effort depends on the steps that school principals and teachers
will take to encourage children to reflect on their own learning and to pursue imaginative
activities and questions. We must recognise that, given space, time and freedom, children
generate new knowledge by engaging with the information passed on to them by adults.
Treating the prescribed textbook as the sole basis of examination is one of the key
reasons why other resources and sites of learning are ignored. Inculcating creativity
and initiative is possible if we perceive and treat children as participants in learning, not
as receivers of a fixed body of knowledge.

These aims imply considerable change in school routines and mode of functioning.
Flexibility in the daily time-table is as necessary as rigour in implementing the annual
calendar so that the required number of teaching days are actually devoted to teaching.
The methods used for teaching and evaluation will also determine how effective this
textbook proves for making children’s life at school a happy experience, rather than a
source of stress or boredom. Syllabus designers have tried to address the problem of
curricular burden by restructuring and reorienting knowledge at different stages with
greater consideration for child psychology and the time available for teaching. The
textbook attempts to enhance this endeavour by giving higher priority and space to
opportunities for contemplation and wondering, discussion in small groups, and activities
requiring hands-on experience.
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NCET appreciates the hard work done by the textbook development committee
responsible for this book. We wish to thank the Chairperson of the advisory group in
Science and Mathematics, Professor .. Narlikar and the Chiefdvisor for this book,
Professor P.. ain for guiding the work of this committee. Several teachers contributed
to the development of this textbook we are grateful to their principals for making this
possible. We are indebted to the institutions and organisations which have generously
permitted us to draw upon their resources, material and personnel. s an organisation
committed to systemic reform and continuous improvement in the quality of its products,
NCET welcomes comments and suggestions which will enable us to undertake further
revision and refinement.

Director
New elhi National Council of Educational
20 November 2006 esearch and Training



Preface

The National Council of Educational esearch and Training (NCET) had constituted

21 Focus roups on Teaching of various subjects related to School Education,
to review the National Curriculum Framework for School Education - 2000
(NCFSE - 2000) in face of new emerging challenges and transformations occurring in
the fields of content and pedagogy under the contexts of National and International
spectrum of school education. These Focus roups made general and specific comments
in their respective areas. Consequently, based on these reports of Focus roups, National
Curriculum Framework (NCF)-2005 was developed.

NCET designed the new syllabi and constituted Textbook evelopment
Teams for Classes [ and II to prepare textbooks in Mathematics under the new
guidelines and new syllabi. The textbook for Class I is already in use, which was
brought in 2005.

The first draft of the present book (Class II) was prepared by the team
consisting of NCET faculty, experts and practicing teachers. The draft was refined
by the development team in different meetings. This draft of the book was exposed
to a group of practicing teachers teaching Mathematics at higher secondary stage
in different parts of the country, in a review workshop organised by the NCET at
elhi. The teachers made useful comments and suggestions which were incorporated
in the draft textbook. The draft textbook was finalised by an editorial board constituted
out of the development team. Finally, the dvisory roup in Science and Mathematics
and the Monitoring Committee constituted by the Ministry, overnment of India
have approved the draft of the textbook.

In the fitness of things, let us cite some of the essential features dominating the
textbook. These characteristics have reflections in almost all the chapters. The existing
textbook contains thirteen main chapters and two appendices. Each chapter contains
the followings

® Introduction ighlighting the importance of the topic connection with earlier
studied topics brief mention about the new concepts to be discussed in the
chapter.

» rganisation of chapter into sections comprising one or more concepts
subconcepts.

= Motivating and introducing the conceptssubconcepts. Illustrations have been
provided wherever possible.



Viii

= Proofsproblem solving involving deductive or inductive reasoning, multiplicity
of approaches wherever possible have been inducted.

= ecometric viewing visualisation of concepts have been emphasied whenever
needed.

= pplications of mathematical concepts have also been integrated with allied
subjects like Science and Social Sciences.

» dequate and variety of examplesexercises have been given in each section.

= Forrefocusing and strengthening the understanding and skill of problem solving
and applicabilities, miscellaneous types of examplesexercises have been
provided involving two or more subconcepts at a time at the end of the chapter.
The scope of challenging problems to talented minority have been reflected
conducive to the recommendation as reflected in NCF-2005.

= For more motivational purpose, brief historical background of topics have been
provided at the end of the chapter and at the beginning of each chapter, relevant
quotation and photograph of eminent mathematician who have contributed
significantly in the development of the topic undertaken, are also provided.

= astly, for direct recapitulation of main concepts, formulas and results, brief
summary of the chapter has also been provided.

I am thankful to Professor rishan umar, irector, NCET who constituted the
team and invited me to join this national endeavour for the improvement of Mathematics
education. e has provided us with an enlightened perspective and a very conducive
environment. This made the task of preparing the book much more enjoyable and
rewarding. | express my gratitude to Professor .. Narlikar, Chairperson of the dvisory
roup in Science and Mathematics, for his specific suggestions and advice towards
the improvement of the book from time to time. I, also, thank Professor
. avindra, oint irector, NCET for his help from time to time.

I express my sincere thanks to Professor ukum Singh, Chief Coordinator and
ead, ESM, r.. P. Singh, Coordinator and Professor, S. . Singh autam who
have been helping for the success of this project academically as well as administratively.
Iso, I would like to place on records my appreciation and thanks to all the members
of the team and the teachers who have been associated with this noble cause in one or
the other form.

Pw .
Chief Advisor
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CONSTITUTION OF INDIA

Preamble

WE, THE PEOPLE OF INDIA, having
solemnly resolved to constitute India into
a SOVEREIGN SOCIALIST SECULAR
DEMOCRATIC REPUBLIC and to secure to
all its citizens:

JUSTICE, social, economic and
political; P
LIBERTY of thought, expression, belief, |/ |
faith and worship; oy

EQUALITY of status and of opportunity
and to promote among them all;

FRATERNITY assuring the dignity of
the individual and the unity and integrity of
the Nation;

IN OUR CONSTITUENT ASSEMBLY
this twenty-sixth day of November, 1949,
do HEREBY ADOPT, ENACT AND GIVE
TO OURSELVES THIS CONSTITUTION.
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Chapter 7

INTEGRALS

% Just as a mountaineer climbs a mountain — because it is there, so
a good mathematics student studies new material because
it is there. — JAMES B. BRISTOL

7.1 Introduction

Differential Calculus is centred on the concept of the
derivative. The original motivation for the derivative was
the problem of defining tangent lines to the graphs of
functions and calculating the slope of such lines. Integral
Calculus is motivated by the problem of defining and
calculating the area of the region bounded by the graph of
the functions.

If a function f is differentiable in an interval I, i.e., its
derivative /' exists at each point of I, then a natural question
arises that given f'at each point of I, can we determine
the function? The functions that could possibly have given

A\

function as a derivative are called anti derivatives (or G .W. Leibnitz

primitive) of the function. Further, the formula that gives (1646 -1716)

all these anti derivatives is called the indefinite integral of the function and such
process of finding anti derivatives is called integration. Such type of problems arise in
many practical situations. For instance, if we know the instantaneous velocity of an
object at any instant, then there arises a natural question, i.e., can we determine the
position of the object at any instant? There are several such practical and theoretical
situations where the process of integration is involved. The development of integral
calculus arises out of the efforts of solving the problems of the following types:

(a) the problem of finding a function whenever its derivative is given,

(b) the problem of finding the area bounded by the graph of a function under certain

conditions.

These two problems lead to the two forms of the integrals, e.g., indefinite and
definite integrals, which together constitute the Integral Calculus.
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There is a connection, known as the Fundamental Theorem of Calculus, between
indefinite integral and definite integral which makes the definite integral as a practical
tool for science and engineering. The definite integral is also used to solve many interesting
problems from various disciplines like economics, finance and probability.

In this Chapter, we shall confine ourselves to the study of indefinite and definite
integrals and their elementary properties including some techniques of integration.

7.2 Integration as an Inverse Process of Differentiation

Integration is the inverse process of differentiation. Instead of differentiating a function,
we are given the derivative of a function and asked to find its primitive, i.e., the original
function. Such a process is called integration or anti differentiation.

Let us consider the following examples:

(e know that di(sin x) [Jcos x (D
X
d x"
—(—) Ox? . (2
dx( [) x )
d
and —(e) Le* (D
dx

[Je observe that in ([), the function cos x is the derived function of sin x. [J e say
)
that sin x is an anti derivative (or an integral) of cos x. Similarly, in (2) and ([, - and

e* are the anti derivatives (or integrals) of x* and e, respectively. Again, we note that
for any real number C, treated as constant function, its derivative is [ero and hence, we
can write (), (2) and ([) as follows :
d . d x° d
— (sinx [C)=cos x , — (— [1C) =x*and — (¢* [IC)=¢"
Cdx ] dx [ ] dx ]
Thus, anti derivatives (or integrals) of the above cited functions are not unique.

Actually, there exist infinitely many anti derivatives of each of these functions which
can be obtained by choosing C arbitrarily from the set of real numbers. For this reason
C is customarily referred to as arbitrary constant. In fact, C is the parameter by
varying which one gets different anti derivatives (or integrals) of the given function.

. . . d .
More generally, if there is a function F such that = F(x) Uf (x), v x € I (interval),

then for any arbitrary real number C, (also called constant of integration)

%[F(x) [C] Of(x),x el
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Thus, [F 0JC, C € Rl0denotes a family of anti derivatives of f.

Remark Functions with same derivatives differ by a constant. To show this, let g and 4
be two functions having the same derivatives on an interval I.

Consider the function f [ g [0/ defined by f(x) Og(x) Dh(x), vx €1

d
Then d_]; OfOg” Oh’giving f'(x) Og’x) Oh'(x) vx €1
or f’(x) 00 ¥x € I by hypothesis,

i.e., the rate of change of f'with respect to x is [éro on I and hence f'is constant.

In view of the above remark, it is justified to infer that the family 'F T1C, C € R[J
provides all possible anti derivatives of f.

U e introduce a new symbol, namely, I Jf(x) dx which will represent the entire

class of anti derivatives read as the indefinite integral of /' with respect to x.

Symbolically, we write j f(x)dx OF (x) [IC.

d
Notation Given that d_i =/ (%), we write y [ _[ S (x)dx.

For the sake of convenience, we mention below the following symbols/ferms phrases
with their meanings as given in the Table (7.0).

Table7.1
Symbols/Terms/Phrases Meaning
j S (x)dx Integral of / with respect to x
SG)in [ f(x)dx Integrand
X in j f(x)dx Cariable of integration
Integrate Find the integral
An integral of f A function F such that
F'(x) Of (%)
Integration The process of finding the integral
Constant of Integration Any real number C, considered as
constant function
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Oe already know the formulae for the derivatives of many important functions.
From these formulae, we can write down immediately the corresponding formulae
(referred to as standard formulae) for the integrals of these functions, as listed below
which will be used to find integrals of other functions.

Derivatives

(1)

(i)

(iii)

(iv)

V)

(vi)

(vii)

(viii)

(ix)

(x)

(xi)

i anr[ _xn
dx\ n+[ -

Carticularly, we note that

%(x)=E 0

%(sin x)=cosx O
%([cosx)zsinx O
%(tan x)=sec’x [
%([cot x)=cosec’x [
%(secx)zsecxtanx O
% (Dcosec x) = cosec x cot x [
b e
aelteo =
%(tanmx)=[+[x2 0
—x([cotmx)=[+[x2 0

Integrals (Anti derivatives)

xn+u
jx”dx= +C,n= 1
n+ U
jdx=x+C

jcosxdxzsinx+C
jsinxdxz—cosx+C
jseczxdxztanx+C
jcoseczxdx=—cotx+C

sec x tanx dx =secx + C

J
jcosec x cotx dx = cosec x +C
J

dx — oo +C
\/; sin x
j\/dx_zz—cos[[x+c

[x

d.
j x2 =tan "x+C
[Hx

dx
J‘[+x2 T

cot'"'x+C
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(xii) i(sec[[x)z—[ J‘Lzsec[[x+c
xAalx? =T xalx? =10
d oo 0 dx o0
.o —(Ocosec™ x)|=———m— ———=—cosec x+C
(xiii) x( ) x /xz_[ O jx 2 _0
d X X X X
xiv) —(e)=e [ je dx=e"+C

dx

(xv) i(IOgDC[1=£[ j—[dleogExB—C
dx X X

d| a a*
N — =a" Tdx = +C
(xvi) dx (Iog aJ “ Ia ’ log a

In practice, we normally do not mention the interval over which the various
functions are defined. CJowever, in any specific problem one has to keep it in mind.

7.2.1 Geometrical interpretation of indefinite integral

Let f(x) 0 2x. Then j f(x)dx=x>+C. For different values of C, we get different

integrals. [Jut these integrals are very similar geometrically.

Thus, y [1x* [IC, where C is arbitrary constant, represents a family of integrals. [y
assigning different values to C, we get different members of the family. These together
constitute the indefinite integral. In this case, each integral represents a parabola with
its axis along yfaxis.

Clearly, for C [1[] we obtain y [1x?% a parabola with its vertex on the origin. The
curve y [1x? [1 [for C [1[Jis obtained by shifting the parabola y [1x? one unit along
ylaxis in positive direction. For C [1[1[] y [1x* [1[Jis obtained by shifting the parabola
v [lx* one unit along y(axis in the negative direction. Thus, for each positive value of C,
each parabola of the family has its vertex on the positive side of the ylaxis and for
negative values of C, each has its vertex along the negative side of the ylaxis. Some of
these have been shown in the Fig 7.[]

Let us consider the intersection of all these parabolas by a line x [a. In the Fig 7.0]
we have taken a [J [] The same is true when a ][] If the line x [J @ intersects the
parabolas y Ox?,y x> OOy Ox* 02,y Ox* OOy Ox* 02 at [, 0, 0, [, [, etc,,

d
respectively, then Ey at these points equals 2a. This indicates that the tangents to the

curves at these points are parallel. Thus, j2x dx=x" + C=F. (x) (say), implies that
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Fig 7.1
the tangents to all the curves y [IF_(x), C € R, at the points of intersection of the
curves by the line x Ja, (a € R), are parallel.

Further, the following equation (statement) jf(x) dx=F (x)+ C =y (say),

represents a family of curves. The different values of C will correspond to different
members of this family and these members can be obtained by shifting any one of the
curves parallel to itself. This is the geometrical interpretation of indefinite integral.

7.2.2 Some properties of indefinite integral
In this sub section, we shall derive some properties of indefinite integrals.
(D The process of differentiation and integration are inverses of each other in the
sense of the following results :

L reyar 7o
dx

and j S'(x)dx f(x) OC, where C is any arbitrary constant.
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Proof Let F be any anti derivative of £, i.e.,
d
— Fx) Uf(x)
dx

Then jf(x) dx [F(x) OC

Therefore % jf(x) dx ] % (F(x) CC)

d
O—F® Of(x)
dx
Similarly, we note that
d
1) 0= f(x)
dx

and hence jf'(x) dx [f(x) OC

where C is arbitrary constant called constant of integration.

Two indefinite integrals with the same derivative lead to the same family of
curves and so they are equivalent.
Proof Let fand g be two functions such that

d d
~Jreax o ~Jewax

or %Uf(x)dx—jg(x)dx] 00

Tence j S (x) dx — jg (x) dx (1 C, where C is any real number ([ hy?)
or [feax o [g@yav+C

So the families of curves {jf(x) dx+C,C e R}

and {jg(x) dx+Cy,Cy e R} are identical.

Clence, in this sense, j f(x) dx and j g(x) dx are equivalent.
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The equivalence of the families {If(x) dx DCDC[ER} and

{Ig (x)dx [1C,,C, € R} is customarily expressed by writing I f(x)dx DI gx)dx,

without mentioning the parameter.

iy [[£6) Dg@)]dr=[ f(x)dx Of gx) dx
Proof [y [roperty (I), we have

%Utf(x) g | /() Dg) ()

[In the otherhand, we find that

Ll rwa fewa] oL e L g ax

L) Dg(x) . (2
Thus, in view of [roperty (II), it follows by ([) and (2) that

[(fe)+g@)dr i [ £6x) dr + [ g ax.

(I0) For any real number £, _[k S)de=k _[f(x) dx

Proof Ly the [roperty (), di j k f(x)dx=Fk f(x).
X

Also % [k [r@ dx] 0 k% [rede ok f)

Therefore, using the [roperty (II), we have _[k Sx)de=k j S (x)dx

(O0) Toperties (III) and (IC0) can be generalised to a finite number of functions
S/, - [, and the real numbers, & , k,, ..., k_giving

? 2%

j[k[f[(x) +hy fy (X) + .+ k, f, (x)] dx

k[ der k[ f @) dx+ ok, [ f, () dx

To find an anti derivative of a given function, we search intuitively for a function
whose derivative is the given function. The search for the requisite function for finding
an anti derivative is known as integration by the method of inspection. [J e illustrate it
through some examples.
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Example 1 Orite an anti derivative for each of the following functions using the
method of inspection:

L
@) cos 2x i) Ok (i) —,x#0
X

Solution

(i) Oe look for a function whose derivative is cos 2x. Recall that

d
— sin 2x [12 cos 2x
dx

2 Dd . 2 4L sin 2x
or oS x[zdx (sin x)[dx 5
o . H.
Therefore, an anti derivative of cos 2x is 5 sin 2x
(i) e look for a function whose derivative is [x* [][x . Note that
d O O
E(x +x )[Dc2 Olx.

Therefore, an anti derivative of [x? [1[x 'is x'[Jx'.
(ii)) e know that

i(logx)=—[,x> [andiﬂog(_x)[z_[(_gz_;x< [
dx X dx —x x

Combining above, we get 4 (10g|x|) .
) e >

0 , o U
Therefore, j; dx =log |X| is one of the anti derivatives of T

Example 2 Find the following integrals:

2
X

o_ 5 O
W [ dx (i) [ +Ddr (i) [(2+2¢" [;[)dx

Solution
(i) Oe have

jx[z_[dxz jxdx— J‘xfz dx (by [roperty [)
x
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+0O -2+0
X X ‘ ‘
0 [ + C[J - [ N + CzJ 71C, C, are constants of integration

(0 -2+0
x2 -0 2
[7+Cu— — -C, 0—+—-0C -C,
52
O - +—UC, where C UC [IC, is another constant of integration.
x

From now onwards, we shall write only one constant of integration in the
final answer.

(i) Ce have
2

j(sz +Ddx= ij dx + jdx

2+[
xb oL
O +x+C O0—x"+x+C
2
Z40
U

O O
5 U 5 L
(iii) e have j(x2+2ex——)dx=jx2 dx+j2ex dx—j—dx
x X
£+[
x2
0——+2e" [log|x|[C
U
—+0
2
O

[%xz +2e" [10g|x| [cC

Example 3 Find the following integrals:
@) j(sin X+ cos x) dx (ii) jcosec x (cosec x + cot x) dx
[sin x
- dx
(i) '[ cos® x

Solution
(i) Oe have

j(sin X+ cos x) dx =jsinx dx + jcos X dx

[l Ocosx+sinx+C
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(i) Oe have
j(cosec x (cosec x [cot x) dx = jcoseczx dx + jcosec x cot x dx
[] Ccot x —cosec x + C

(i) e have

[-sin x O sin x
[—F—dr=[——dr- [—-ax
cos“x cos“x cos“x

0 jseczx dx — jtan x sec x dx
Otanx—secx +C

Example 4 Find the anti derivative F of fdefined by f'(x) [0 [x" 0] where F (0) O

Solution [ne anti derivative of f'(x) is x" [k since

i(x[—[x) 0”00
dx

Therefore, the anti derivative F is given by

F(x) Ox" OCx OC, where C is constant.

Given that F(D O which gives,
OO 000x 00C or C O

Cence, the required anti derivative is the unique function F defined by
F(x) Ox"Ox 00O

Remarks

(i) Oe see that if F is an anti derivative of f, then so is F [ C, where C is any
constant. Thus, if we know one anti derivative F of a function f, we can write
down an infinite number of anti derivatives of f' by adding any constant to F
expressed by F(x) TC, C € R. In applications, it is often necessary to satisfy an
additional condition which then determines a specific value of C giving unique
anti derivative of the given function.

(i) Sometimes, F is not expressible in terms of elementary functions vi[l, polynomial,
logarithmic, exponential, trigonometric functions and their inverses etc. [J e are

therefore blocked for finding j S (x) dx . For example, it is not possible to find

2

je_ * dx by inspection since we can not find a function whose derivative is e *
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(ii)) [ henthe variable of integration is denoted by a variable other than x, the integral

formulae are modified accordingly. For instance

0+ 0
0 Yy U g
dy = +C=—y +C
jy 7 0+ 0 [y

7.2.3 Comparison between differentiation and integration

Coth are operations on functions.
Coth satisfy the property of linearity, i.e.,

b 4 L 4
W) [k L0 +h fo@]=k £+ k- f, ()

() [[k /£ +k f, @]de=k [ £ () dx+k, [ £, () dx
ere k and k, are constants.

[Je have already seen that all functions are not differentiable. Similarly, all functions
are not integrable. [Je will learn more about nondifferentiable functions and
nonintegrable functions in higher classes.

The derivative of a function, when it exists, is a unique function. The integral of
a function is not so. [Jlowever, they are unique upto an additive constant, i.e., any
two integrals of a function differ by a constant.

[J hen a polynomial function Jis differentiated, the result is a polynomial whose
degree is [less than the degree of ][] hen a polynomial function Tis integrated,
the result is a polynomial whose degree is [Jmore than that of [

e can speak of the derivative at a point. [Je never speak of the integral at a
point, we speak of the integral of a function over an interval on which the integral
is defined as will be seen in Section 7.7.

The derivative of a function has a geometrical meaning, namely, the slope of the
tangent to the corresponding curve at a point. Similarly, the indefinite integral of
a function represents geometrically, a family of curves placed parallel to each
other having parallel tangents at the points of intersection of the curves of the
family with the lines orthogonal (perpendicular) to the axis representing the variable
of integration.

The derivative is used for finding some physical quantities like the velocity of a
moving particle, when the distance traversed at any time # is known. Similarly,
the integral is used in calculating the distance traversed when the velocity at time
t is known.

Differentiation is a process involving limits. So is integration, as will be seen in
Section 7.7.
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[T]1 The process of differentiation and integration are inverses of each other as
discussed in Section 7.2.2 (i).

| EXERCISE 7.1
Find an anti derivative (or integral) of the following functions by the method of inspection.
1. sin2x 2. cos [x 3. ex
4. (ax [1b)* 5. sin 2x O0e™

Find the following integrals in Exercises [Jto 2[t

U
6. [Cernnax 7 [FEO e 8 [@ +bxeo)de
X

2 n 2
X 0 x +[x" =L
9. j(zxz te )dx 10. j[\jx _ﬁJ dx 11. J‘de

[}
x +lx+L x'—xT+x—0
12 |—F——a 13 [T a4 [(—x0)Vxdx
'[ \/; '[ x -0 '[( )
15. [Va(x+2x+ D 16. [(2x—Tcosx+e")d
17. j(2x2—Esinx+[\/;)dx 18. jsecx(secx+tanx)dx
2
sec X 1
1. J——dr g0 [2MX gy
cosec” x cos? x

Choose the correct answer in Exercises 2[land 22.

e C
21. The anti derivative of (\/; + \/—J equals
X

0 O 2

(A) “x +2¢24C @) 2x +2¢4c
C o2
O O O O
i i [ i [ =
©) %xz +2x2+C (D) Exz +5x2 +C

O

L
22. If % f(x)=Tx —— such that £(2) [ (1 Then f(x) is
X

w wal2 O e D2
x- 8 x 8
x 8 x 8
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7.3 Methods of Integration

In previous section, we discussed integrals of those functions which were readily
obtainable from derivatives of some functions. It was based on inspection, i.e., on the
search of a function F whose derivative is f which led us to the integral of /. Jowever,
this method, which depends on inspection, is not very suitable for many functions.
Cence, we need to develop additional techniques or methods for finding the integrals
by reducing them into standard forms. [rominent among them are methods based on:

[1 Integration by Substitution
2. Integration using [artial Fractions
[1 Integration by [arts
7.3.1 Integration by substitution
In this section, we consider the method of integration by substitution.

The given integral j S (x) dx can be transformed into another form by changing
the independent variable x to ¢ by substituting x Cg (¢).

Consider 10 [ f@)dx

Tt x Cg(f) so that % Tg(0).

[e write dx 0g'(t) dt

Thus 10 [f()dr=f(e@) gy dt

This change of variable formula is one of the important tools available to us in the
name of integration by substitution. It is often important to guess what will be the useful
substitution. [sually, we make a substitution for a function whose derivative also occurs
in the integrand as illustrated in the following examples.

Example 5 Integrate the following functions w.r.t. x:

@ sinmx (i) 2xsin (2 010)

_ tan" Jxsec®x ~ sin(tan” x)
(iii) NS (iv) T 12
Solution

(1) Oe know that derivative of mx is m. Thus, we make the substitution
mx [t so that mdx [ dt.

. e . 0 C
Therefore, jsm mx dx =—j51n tdt [1 ) —costJC I —cosmx IC
m m m
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(i) Derivative of x* [] []is 2x. Thus, we use the substitution x> [1 [1[]¢ so that
2x dx Tdt.

Therefore, j2x sin (x* +E)dx=jsintdt 0 Ocost [1C [lcos (x> 1D [1C

O

— .03 [
(iii) Derivative of /x is Ex 2=

2+/x

dx = dt giving dx [12¢ dt.

. Thus, we use the substitution

]
2Jx

J-tan[ x sec? \/; 2¢tan fsec’t dt
dx = j

\/;=tso that

Thus, 112 [tan't sec’t dt
e J
Again, we make another substitution tan ¢ Ju so that sec* t dt [ldu
O
Therefore, 2 jtan “tsec’tdt=2 ju[ du 02 u? +C
2 0 .
O - tan 7+ C (since u [Itan ¢)
2 4 .
[Etan X +C(smcet=x/;)
tan' +/x sec’ 2
[Jence, j ol \/;dx O —tan[\/;+C
Jx C

Alternatively, make the substitution tan~/x = ¢

(iv) Derivative of tan~ x= > Thus, we use the substitution

[Hx

dx

tan'" x []¢ so that O dt.

T x?

sin (tan~ x)
T x?

Now, we discuss some important integrals involving trigonometric functions and
their standard integrals using substitution technique. These will be used later without
reference.

Therefore , J dx = jsin tdt 11 [cos ¢t [IC cos(tan"'x) [1C

(i) jtan x dx =log|sec x|+ C

[le have

sin x
dx

jtanxdxzj

COS x



om MATCEMATICS

Cut cos x [ so that sin x dx [ Cdt
Then jmnxdx:_j%:_log|t|+cz_1og|cosx|+c
or [tan x dx =log|sec x| + C

(i) [cot x dx=log|sinx|+C

COS x

Oe have jcotxdxzjsinx dx

Cut sin x [0¢ so that cos x dx [ dt
dt
Then jCOthX=J7 O 10g|t|+C O 10g|sin x|+C

(iii) jsecxdx=log|secx+tanx|+C

[le have

sec x (sec x + tan x
jsecxdxzj ( )dx

sec x []tan x
Cut sec x [tan x (¢ so that sec x (tan x [Jsec x) dx [ dt

Therefore, jsec xdx = J‘% =log | t| 0C Olog |sec X+ tan x| +C

(iv) jcosec x dx =log |cosec x —cot x| +C

e have
cosec x (cosec x + cot x)

jcosec X dx= j
(cosec x +cot x)

Cut cosec x [Jcot x [J¢ so that Ccosec x (cosec x [Icot x) dx Cldt

So jcosec xdx= [j% = [og [7 = Tlog [cosec x + cotx [+ C
2 2
—cot

- Dog|cosec X —co x|+c
| cosec x —cot x |

[]log |cosec x —cot x| +C

Example 6 Find the following integrals:
. . O 2 . sin x [
sin x cos” x dx ——dx —dx
® -[ (it) '[ sin (x + a) (it -[ [+ tan x
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Solution
(i) Oe have

jsin[ x cos’x dx = jsinz x cos®x (sin x) dx
O j([[coszx) cosx (sin x) dx
Cut ¢ Ccos x so that dt [ Tsin x dx

Therefore,  [sin’x cos™x (sin x) dx 71— [(C00¢%) £ dt
&t
2 0

O-|@ Ot )ydt=—| ———|+C

f@ o) ([ [J

] ]
[——cos[x+—cos[x+C

] L

@) [utx Oa O¢ Then dx Odt. Therefore

sin (¢ —

j sin x dxzj a)dt

sin (x + a) sin ¢

dt

sintcosa —costsin a
o :
sin ¢t

fcosa jdt Usin a jcot tdt

U (cos a) t — (sin a) [log |sin t| + C[:I

U (cos a) (x + a) — (sin a) [log |sin (x+ a)| + C[:I
[Jxcosa+acosa—(sina)log |sin (x+ a)| —C.sina

sin x

Clence, _[ dX [1xcosa [sina log sin (x (a)[T]C,

sin (x + a)
where, C JTC_sin a Da cos a, is another arbitrary constant.

j dx _J cos x dx
(iif) [+ tan x COS X +sin x

¢ (cos x Osin x Clcos x [sin x) dx
5] .
COS X +sin x

RN
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cos x [sin x
05 Jd b JORESRE gy
COS x + sin x

J-cosx—smx

COS x +SsIn x

. CoS x —sin x
Now, consider 1= j —dx

COoS X +sin x
Cut cos x [Isin x (¢ so that (cos x [sin x) dx Odt

Therefore 1= J‘% =loglt| + C, [ log |cos x +sin x| + C,

Cutting it in (), we get

U .
jsz[&[—log|cosx+smx|+&
[Htanx 2 2 2 2

[ C, C,
[ 10g|cosx+smx| 2+7

[= o
O l\.)

. C. C
0= [—10g|cosx+smx|+C, C=—"C4=22
2 2 2 7

| EXERCISE 7.2|

Integrate the functions in Exercises [to [7:

2x (log x)2

4. sin x sin (cos x) 5. sin (ax + b) cos (ax + b)

- (0

O %2 : X " x+xlogx

6. Jax+b 7. xJx+2 8. x«/[+2x2

C

9. (x+2)yx?+x+0 10. x 11. N
X+

2
X

[}
12. (x =D x" 13. ———= 14

Q2+0k) " x(logx)"’

15. 16. o2x+0 17. —

O- [x? e



18.

21.

24.

27.

30.

33.

36

tan  x

e
T+ x2

tan® (2x [11)

2cos x — [$in x

[cos x + [8in x

«/sin 2x cos 2x

sin x
[Hcos x

[

[—tan x

(x+0) (x+log x)2

X

19.

22.

25.

28.

31.

34.

37.

e -1

¥+

sec? (7 (k)

[

cos®x (T tan x)*

coS X

/[ Hsin x
sin x

([+ cos x)2

«/tan X

sin x cos x

x sin (tanf [x[)

Hx®

Choose the correct answer in Exercises [8 and []

38

39

. j[[}£+[[xloge[[dx
X"+
(A) (¥ x70C
x\DH [C

(ONEEE

. j % equals

sin” x cos” x

(A) tanx Ocotx OC
(C) tanxcotx JC

equals

20.

23.

26.

29.

32.

35.

INTEGRALS RN

COos \/;
NS

cotx log sin x

O
[H cot x

([+ log x)2

(0) (M x-noc
(D) log (@ +x" OC

(0) tanx Cecotx OC
(D) tan x Ocot 2x 01C

7.3.2 Integration using trigonometric identities
[J hen the integrand involves some trigonometric functions, we use some known identities
to find the integral as illustrated through the following example.

Example 7 Find (i) [cos’xdx (i) [sin2xcos xdx (i) [sin xdx
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Solution
(i) Recall the identity cos 2x [12 cos? x [1[] which gives

4 cos 2x

cos’x [
x 2

2 0 U (]
Therefore, _[cos xdx [ EJ([[COS 2x) dx [ 3 jdx + 5 jcos 2x dx
O i E sin 2x +C
2 C
(i) Recall the identity sin x cos y [ 3 [sin (x Oy) Osin (x Oy)0 (O hy?)

. Ore . .
Then jsm 2xcoskdx [ 5Usm [xdx’jsmxdx]
g g
[]—|——coslx+cosx|+C
2 0

g g
[——coslkxk+—cosx+C
1] 2

(i) From the identity sin Tk [Jsin x [JJsin"x, we find that
[$in x —sin [x
L

sin' x [
. |: |: . |: .
Theref sin xdx []—|sinxdx—— |sin [Xx dx
erefore, j [I [I

g g
[l =cosx+—cos [x+C
0 2

Alternatively, jsin[x dx = jsinzx sinxdx [ j([[coszx) sin x dx

[ut cos x [1¢ so that [Isin x dx [ dt

Therefore, jsin[x dx O —I(D— tz)dt O —Idt +J~t2 dt=—t+t—;+ C

g
O —cosx+—[cos[x+C

Remark It can be shown using trigonometric identities that both answers are equivalent.
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EXERCISE 7.3
Find the integrals of the functions in Exercises [Ito 22:
1. sin®* (2x [J0) 2. sin [k cos [k 3. cos 2x cos [k cos [k
4. sin"(2x + D) 5. sin“x cos"x 6. sinx sin 2x sin [x
. ) [-cosx CoS X
7. sin [X sin 8x 8§, ——— 9, ——
[+ cosx [+ cos x
.2
10. sin x 11. cos 2x 12. — %
[+ cosx
- cos x —sin x
13, Sos2xocos2ay, COSXTMRX s fand2x sec 2x
COS X — COS & [Hsin 2x
LS| ) -2
sin”- x +cos x 2x+2
16. tan'x 17. ———= g, TSR T
sin” x cos” x cos” x
O cos 2x )
19, ——— 200 ——————— 21. sin "(cosx)
sin x cos x (cos x +sin x)
U
22.
cos (x —a) cos (x — b)
Choose the correct answer in Exercises 2[Jand 2]
-2 2
23. jw dx is equal to
sin” x cos” x
(A) tanx Ocotx 0C (0) tan x Ccosec x 1C
(C) Otan x Dcotx 0JC (D) tanx Osecx OC
24. J ¢ (D+ x) dx equals
cos’(e*x)
(A) [cot (ex®) [1C () tan (xe*) [IC
(C) tan (e) [1C (D) cot(e) [1C

7.4 Integrals of Some Particular Functions

In this section, we mention below some important formulae of integrals and apply them
for integrating many other related standard integrals:
1

dx xX—a
=—-Ilo +C
M sz—az 2a & x+ta
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at+x

j dx =ilog
a*—x* 2a

Q) +C

a—x

1., x
———=—tan —+C
@ Jaya=

“) J‘%=log‘x+\/xz—a2 +C
dx . -

(5) jﬁ=sm 1§+C

(6) j—z‘b‘ : =log‘x+\/x2+a2 +C
X" ta

[Je now prove the above results:

U U

(1) Cehave Xt —d? :(x—a)(x+a)

[g{w}g{i E }

2a| (x—a)(x+a) 2a | x—a x+a

Therefore, J‘%Z_EU dx _J‘ dx }

—-a 2a | x—a x+a
O
[2—[log|(x—a)[—log|(x+a)EI+C
a

[—[log almil e

2a

xX+a

(2) Inview of ([) above, we have

_[_[{w} z[ 0 [}

0— +
(a+x)(a—x) 2ala—-x a+x

a’ Ox* 2a
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Therefore, J‘azi [—[U d +j dx }

Cx? 2a | a—x a+x
O
[2—[—logm—xEHogB1+x[[+C
a

a+x

O
—1lo +C
[2a g

a—Xx

The technique used in (1) will be explained in Section 7.L

(3) Cutx Uatan 0. Then dx Ua sec® 0 do.
J a sec’ 0d0]

dx
Therefore, j 2

X’ +a’ a* tan’ T+ a’

g g g
—J‘d[z—[+C=—tan*[£+C

a a a a
(4) Let x asecO. Then dx [(a secO tan6 do.
a sectanJd[

Therefore, j \/7 -[ m

0 jsec[a’[z log |sec[ [tan[] e

2

[ log S — —0+C.

D log| x +/x* —a’ —10g|a|+C[

[ log| x +~/x* —a®| IC, where C [IC Llog lal]
(5) Letx Ca sind. Then dx Ca cosd do.

=

Y
Q

Therefore j 0 J‘ acostldl’
’ Ji Ji—a*sint

o fanoonc osine 24 c
a
(6) Letx Uatan6. Then dx Ua sec?6 doO.

a sec’1dr]

Therefore, .[ m - '[ m

O jsec[d[[log |(secu+ tanL)| +C-
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+C,

[2
- log 2y x—2+[
a \Va

7 log|x ++x* +a*|—log|a|+C,

(1 log|x +Nx* +a? +C, where C [1C [log al]

Applying these standard formulae, we now obtain some more formulae which
are useful from applications point of view and can be applied directly to evaluate
other integrals.

dx .
To find the integral '[ax2+ bx+c’we write
[2 b c} H bJZ (c b? H
ax: Obx Dca| X" +—x+—|=a|| x+— | + ———
a a 2a a [a
b . b 2
Now, put x+2—=tso that dx [ dt and writing ——§=ik . Oe find the
a a

. & dt . . e b
integral reduced to the form P e depending upon the sign of ¢ 2
and hence can be evaluated.

dx . .
To find the integral of the type j— , proceeding as in (7), we
2
Vax“ +bx+c

obtain the integral using the standard formulae.

To find the integral of the type IM
8 P ) o ibxte

constants, we are to find real numbers A, [] such that

, Where p, g, a, b, c are

px Ug [Adi(ax2+bx+c) O00A (Qax+b) OC
X

To determine A and [, we equate from both sides the coefficients of x and the
constant terms. A and [] are thus obtained and hence the integral is reduced to
one of the known forms.
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(10) For the evaluation of the integral of the type J-—(px to & we proceed
2 b
vax® +bx+c

as in ([) and transform the integral into known standard forms.
Let us illustrate the above methods by some examples.

Example 8 Find the following integrals:

0 o2 i |2
1 o il ——

X’ -0 V2x—x*
Solution
X —
X+

8

dx dx 1
i) Leh = -1 +C by 7.0(D0
(i) Clehave sz L sz 2 0g a y 7.0(0)

&
(ii) J\/2x—x2_'[\/[—(x—[)2

(ut x 00 ¢ Then dx [dt.

Tsin” (£)+C by 7.L(D

Therefore, j dx O j dt
\/ 2x—x° \/ 7
Tsin (x OD)+C
Example 9 Find the following integrals :
dx y dx R
o lrhs o e e Ims

Solution
(1) Dehave x? [k + (110X Olx OO OO0 Qe D102 010

dx 0
So, B dx
© '[xz—[x+[[ J‘(x—[)2+22
Let x JOO¢ Then dx Odt
dx dt O, .t
=—tan —+C
Therefore, sz—[x+[[ O jt2+22 > > by 7.0(D0
|: 7[ -
[I—tan ——+C
2
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(i) The given integral is of the form 7.0](7). [J e write the denominator of the integrand,

) , Ox [T
W+ x—L O +—-—

U L
TV (72
oY x+—[ |5/ | (completing the square)
dx [ dx
s [ Dol

(=5 -(7)

1]
Cut x+—[=t, Then dx [ dt.

dx O dt
Therefore, jz— U=l—7—=
SR S
O
7
0 -5
O log = +C- by 7.031)C
[(X2x— t+—
O
el
Lo "o +C
X+—+—
0 0
(k-
—1lo +C
[[7 g T+ o
0 [(x—2 O L
—1lo +C +—log—
[[7 g x+0 T g[
0 (x—2 O L
—lo +C C.+—log—
[[7 g 0 ,where C 1 C Uog[
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Gi) Ceh I dx _I dx
il ave =
© \/sz - \/[(xz _296]
L
] & leting th
NG \/( [Jz ~ (completing the square)
x_ J— J— J—
t L

g
Cut x——[=f.Thendx O dt.

Therefore,

dx REN -
Nl e
t_

0 0
[T[k)g t+ tz—(—[J +C by 7.(D) ]

[

O = log + 40X

— X—— _Z
NiE 0
Example 10 Find the following integrals:

. j x+2 d . j x+ [
O e ® \/7@‘2

Solution

(i) Osing the formula 7.0J(0), we express
x[02 [Aj (2x +Dc+[)+[ DA(k+D+LC
Equating the coefficients of x and the constant terms from both sides, we get

C C
(A D0Oand A2 or ALl— and [ [ —

5
x+2 L+
Therefore, jm '[2x Okt O +5.[m
[—[I[+£Iz (say) - (D)
O 2
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Inl,put2x? (10x (1010t so that ([x [10) dx [1dt

Therefore, I [J‘%zlog|t|+C[

M log 2x* + [x+ 14 C . (2

q . I dx O dx

an g 5 =7

2 2x +x+0 2 x2+Dc+E

2
0 dx
[EJ

e dt o
I EEJ 7 [ 26 +C, By 7.0(0)0
t2+(j 2%
) 2
N 0 .
[] tan 2(x+EJ[C2 [] tan (2x+ D)DC2 .. (D

Osing (2) and (0) in (D), we get

j—2x+2 dxz—Elog‘zx2+[x+[‘+—[tan’[(2x+[)+c
2x° + e+ U 2

C, C
where, Co—+-—=%

o 2

This integral is of the form given in 7.7J([T). Let us express

d
x 000 Ad—(E—Dc—xz) OCOA (0002 OO
X

Equating the coefficients of x and the constant terms from both sides, we get

L
02A O0and OOA OO OO e, AD —5 and 0 00
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= 2x dx

Therefore, j all dx [__.[ .[
V= —x7 \/[ [k — \/[ - x7
[——[ I 0L - (D

2
In1, put 000 Ox? O, so that (D0 02x) dx Ddt.

I[j\/ij

02N 0=k —x" +C_ e

Therefore, N C

Now consider

I [J' dx ZJ' dx
N Y (RN T
Cut x (12 ¢, so that dx [dt.

[

Therefore, L0 j\/— =sin G, by 7.0(D0
2 -

O sin’[xJr2

+C, - (D
Substituting (2) and ([) in (), we obtain

ox+2
j%z_«/[[a [x? [sin [%+C,where c=c2_%
U-[k—x

|EXERCISE 7.4 |
Integrate the functions in Exercises [to 2[]
[x? 0 , 0
2, T B
x 4+ NENE (2—x)2 +L
O 5 s 6 x*
‘/[—2[)(2 T 2x" T o-x"
x—L x2 sec’x

8. ——— 9. T/——
x*-C x“+a" Vtan®x+ [
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(] N (]
10. ,—x2+2x+2 11. 02 + Ort L 12. Lkl
B oy e s
’ (x—[)(x—2) ’ \/8+[x—x2 . (x—a)(x—b)
Lx+L x+2 x=2
16. —,—2x2+x—[ 17. ,—xZ—E 18. —[+2x+[x2
[(x+7 x+2 x+2
19, ———— 20. — 21, ——
(x—[)(x—[) Tx—x? VX +2x+ T
x+LC (x+ 1

22, —5———— 23. .
x> —2x—1 N2 T+0T

Choose the correct answer in Exercises 2[Jand 2[]

24. J‘ZL equals
x°+2x+2

(A) xtan"(x 0D OC (0) tan"(x 0D OC
(C©) xODtan'x OC (D) tan''x OC
25. J‘Lequals
N —
(A) —EsinE[[ DCS_SJJFC (0) gsin[[[gx[_ [J+C
_ 0. fx-8
© —Esin[[[ch 8J+C (D) Esm [ - J+C

7.5 Integration by Partial Fractions

Recall that a rational function is defined as the ratio of two polynomials in the form

[(x)) , where [J(x) and [J(x) are polynomials in x and [J(x) # [ If the degree of [(x)
x

is less than the degree of [J(x), then the rational function is called proper, otherwise, it
is called improper. The improper rational functions can be reduced to the proper rational
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functions by long division process. Thus, if E(X)) is improper, then ™ =T(x)+ L)
x

((x) Ox)’

(x)
O(x

where T(x) is a polynomial in x and is a proper rational function. As we know
how to integrate polynomials, the integration of any rational function is reduced to the
integration of a proper rational function. The rational functions which we shall consider
here for integration purposes will be those whose denominators can be factorised into

, , () ()

linear and quadratic factors. Assume that we want to evaluate |— — dx, where
O(x) O(x)

is proper rational function. It is always possible to write the integrand as a sum of
simpler rational functions by a method called partial fraction decomposition. After this,
the integration can be carried out easily using the already known methods. The following
Table 7.2 indicates the types of simpler partial fractions that are to be associated with
various kind of rational functions.

Table 7.2
S.No. | Form of the rational function Form of the partial fraction
1. | X1 a0 B L, 0
(x[a) (x[b) x—a x-b
A O
5 px+q N .
(x[a)Z X—da (x_a)
3 pxt+qx+r A N O N C
’ (x Da)(x—b) (x—c) x—a x-b x-c
4. pxigx+r A n O —+ C
(x Da)? (x—b) x—a (x-a)" x-b
s X’ Hgxtr A mxOC
(x Da) (x* +bx +c) x—a xX*+bxtc
where x? [1bx [1c cannot be factorised further

In the above table, A, [Jand C are real numbers to be determined suitably.
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dx

Example 11 Find '[(x+[) x+2)

Solution The integrand is a proper rational function. Therefore, by using the form of
partial fraction [Table 7.2 (i)[)we write
0 A O
0 +
E+D(x+2) x+0 x+2

-

where, real numbers A and [] are to be determined suitably. This gives
O0A (x 02) OO0 (x D).
Equating the coefficients of x and the constant term, we get
A 000
and 2A 0000
Solving these equations, we get A [lland [J (J010]
Thus, the integrand is given by

U - U N 0
@+D@E+2) x+0 x+2

Theref: j dx Ej dx _J- dx
erefore, —(x+E)(x+2) _x+[ 12

O 10g|x+[[—log|x+2|+C

X+
+C
x+2
Remark The equation () above is an identity, i.e. a statement true for all (permissible)
values of x. Some authors use the symbol =[to indicate that the statement is an

identity and use the symbol [MTto indicate that the statement is an equation, i.e., to
indicate that the statement is true only for certain values of x.

7 log

2
. x“+0
Example 12 Find jz— dx
x"—Lk+L

2

Solution [ere the integrand PR is not proper rational function, so we divide
x J—

x2 [1 by x* [k [1[]and find that
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2 —0O —O
B Y VO P
Coxrl o Xexdl G-DG-D)

Let [x—[ - A N C
© -2 (-0 x-2 x-1[
So that Sy OO0A (x 0D OO0 (x TJ2)

Equating the coefficients of x and constant terms on both sides, we get A T[] 1]
and CAA 0J200 (0T Solving these equations, we get A (1] and [J [J 1]

x40 O [
Thus, - 0= +
x —[k+L x—2 x-L
2
x° 4[]
Therefore, ———dx O |dx-0O
sz—[x+[ '[ J‘x—
Ox OOlog x 02 M [Mlog [x OOMIC.
(x-2
Example 13 Find jz—dx
(x+D"(x+D

Solution The integrand is of the type as given in Table 7.2 (). [J e write

(x-2 A 0 C
2 u + 2t
x+D"(x+0D  x+0 x+0D)° x+L
So that MR OAEDDEODDOIOEODOC (xO0D?
DA O 0D 00 00D OC (2 02x 00)

Comparing coefficient of x2, x and constant term on both sides, we get
AOCUOOMADOODO2C OOand CA O[T OC 002, Solving these equations, we get

A= E[ = - and C= L Thus the integrand is given by
2 C

x—2 (1] 3 ] 3 [T
(x+[)2(x+[) S et D) 2(x+E)2 Tt D)

Therefore,

[
'[(x+[) (x+[) J‘x+[ 2 (x+[) __'[x+[

[E[[log|x[[|+ —E[[log|x+[|+c

U
2(x 00
U

= + [1C
2(x 00

—1lo
[[ g

x U0
x 00
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2

x
Example 14 Find Imdx

2

Solution Consider # and put x* [y.
(x*+Dx"+0)
2
Then 3 . 3 0 -
@ +DE"+D  +D0@+D
[ rit J U A + =
o E+DE+0)  y+ el
So that yOA@ODOOWEOD

Comparing coefficients of y and constant terms on both sides, we get A (11 [ [
and CA 000 O] which give

g C
All—— and [=—
g C

™ x? . 0 . 0
us, @+ +0) @ +D O6E+0)
2
d O¢ dc O d
Therefore, I% [——j 5 +—j 2x
@ +DE"+D O x?+0 DY x*+0

O g 0O
] ——tan Xx+—x—tan_ [£+ C
O o 2 2

o - 2
[]——tan~ Xx+— tan Zic
O O 2

In the above example, the substitution was made only for the partial fraction part
and not for the integration part. Now, we consider an example, where the integration
involves a combination of the substitution method and the partial fraction method.

(Csin ¢ —2) cos ¢ J
[—cos’¢— Lsin ¢

Example 15 Find I

Solution Let y [sin¢
Then dy Ocosd do
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Therefore, .[ (Dsin(]) _ 2) cos¢ do 1 jM

- cos*p — [Isind (= yH) =Ly
y—-2
—d
['[yz—[y+[ Y
y—-2
[jy—zzl(say)
(v-2)
N it yo2 AL b by Table 7.2 (2)1
ow, we write y Table 7.
(y-2) »=2 (-2
Therefore, 02 0A(y 02) 00

Comparing the coefficients of y and constant term, we get A [J Cand [0 [12A (172,
which gives A [0 Jand 0 0]

Therefore, the required integral is given by

0 0 dy dy
—0O0——I[d 0 o
TR P (e
[Dlog|y—2|+[[— - ]+C

y—=2
[[log|sin¢—2|+—[+c
2—sin ¢
U

U Clog (2 —sin ¢) + 2—¢ [1C (since, 2 Osin ¢ is always positive)
—sin

x2 + x+ldx

Example 16 Find .[—2
(x+2)(x"+D

Solution The integrand is a proper rational function. Decompose the rational function
into partial fraction [Table 2.2( D) rite

X2 +x+0 A  xOC
2 O T
E*+DE+2)  x+2 (x"+D

Therefore, X Ox DODA @ OD O(Ex OC) (x 12)
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Equating the coefficients of x?, x and of constant term of both sides, we get
ADOD0O0 20 0C O0Oand A J2C O Solving these equations, we get

A=—[, [=%andC=£
l 0 L

Thus, the integrand is given by

0
X x+l o0 +EX+E o0 +[[2x+[}
G+ (x+2)  Ox+2) ¥ +0 Cx+2) C\x?+0
2
x +x+U [
Theref: _ —
eretore, '[(xzDD)(x+2) J‘x+2 09 x? +[ '[x +[

0 0 ) o,
[—[log| x+2|+—[10g‘x +[‘+Etan x+C

EXERCISE 7.5 |
Integrate the rational functions in Exercises [to 2]
X C Lk -0
1. —————= 2. = 3.
x+D(x+2) x*—LC x-DEx-2)(x-D
X 2x - x?
4. 5. 3 6. ———
x-D(x-2)(x-0D X +k+2 x (C+2x)
X X [k+ 0
P S — 8. /= 9. T2 -
(" +0 (x L0 (=07 (x+2) ¥ —xt-x+l
10 2x -1 " L > x x4l
TP =D @x+D) " @+DE*-D XL
2 x—-_ C
13. (=x) () 14. (x+2) 15. 0L
U

16. (" +D) Mint: multiply numerator and denominator by x * " and put x” (¢ [J

COS x

. - - (Mint : Cut sin x D¢
17 (O0sin x) (2 Osin x) mt: Lutsim.x 7
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T+ ET+D) DT +D Tx(x-D
C
21. @ —0) (Mint : Cut e* ¢
Choose the correct answer in each of the Exercises 22 and 2]
2 2 qual
ey equals
(x=0)’ (x-2)°
(A) log +C (D) log +C
X — x—U
x—U :
(C) log (E) +C (D) 10g|(x—[)(x—2)|+C
23. j* equals
x(x=+D
(A) 10g|x|—5[10g () oc (D) 10g|x|+5[10g Cunale

0
(C) —log |x|+5[10g * D) OC (D) 510g|x|+10g (* D) 0C

7.6 Integration by Parts

In this section, we describe one more method of integration, that is found quite useful in
integrating products of functions.

If u and v are any two differentiable functions of a single variable x (say). Then, by
the product rule of differentiation, we have

d dv  du
— W) Ju—+v—
dx dx

Integrating both sides, we get
uv [ J‘uﬂ dx + J‘v@ dx
dx dx
dv du
or J‘uadx ] uv—jvgdx .. (D

d
Let u T f(x) and av g (x). Then

% [f"(x) and v [J _[g(x) dx



@O MATCEMATICS

Therefore, expression (0) can be rewritten as

[£00) gty ax 1 £ (o[ ) dx— 1] ) derf(x) dx
ie., [reg@dx 0 f@)[g @) de—[rf () [gx) dxl dx

If we take f'as the first function and g as the second function, then this formula
may be stated as follows:

“The integral of the product of two functions = (first function) x (integral
of the second function) — Integral of [(differential coefficient of the first function)
x (integral of the second function)]”

Example 17 Find jx cos x dx

Solution [Cut f'(x) Dx (first function) and g (x) Ccos x (second function).
Then, integration by parts gives

jx cosxdx T xjcosxdx—j[%(x) jcosxdx[dx

0 xsinx—jsinxdx Lxsinx [cosx [IC

Suppose, we take f(x) Ocos x and g(x) Ox. Then

jx cos x dx [] cos xjx dx — j[%(cos X) jx dxldx

2 2
7 (cos x) X, jsin o
2 2
Thus, it shows that the integral jx cos x dx is reduced to the comparatively more

complicated integral having more power of x. Therefore, the proper choice of the first
function and the second function is significant.

Remarks
(1) It is worth mentioning that integration by parts is not applicable to product of
functions in all cases. For instance, the method does not work for j\/; sin x dx .
The reason is that there does not exist any function whose derivative is

\/; sin x.

(i) Observe that while finding the integral of the second function, we did not add
any constant of integration. If we write the integral of the second function cos x
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as sin x [Jk, where k is any constant, then

jxcosxdx O x(sinx+k)—j(sinx+k)dx
7 x (sin x+ k) — [ (sin x dv — [ k dx

T x(sin x+k)—cos x — kx+C [ xsinx+cos x+C

This shows that adding a constant to the integral of the second function is
superfluous so far as the final result is concerned while applying the method of
integration by parts.

(ii)) [sually, if any function is a power of x or a polynomial in x, then we take it as the
first function. Jowever, in cases where other function is inverse trigonometric
function or logarithmic function, then we take them as first function.

Example 18 Find jlog x dx

Solution To start with, we are unable to guess a function whose derivative is log x. (e
take log x as the first function and the constant function [Jas the second function. Then,
the integral of the second function is x.

d
O logx.0) dx [ log x |Cdx — | 3— (log x) | Cdx[ dx
ence, j(ong x g j jdx( g )j
U
[(10gx)~x[j—xdxleogx—x+C.
X
Example 19 Find jx e“dx

Solution Take first function as x and second function as e*. The integral of the second
function is .

Therefore, jx e'dx [1xe" - j[' e'dx [xe e [IC.

xsin~x

Example 20 Find J\/[—z dx
X

Solution Let first function be sin '"x and second function be >
[x

First we find the integral of the second function, i.e., j =
(x

Cut ¢ (X2 Then df 01 [12x dx



@O MATCEMATICS

x dx

_xdx _ Uradt NN
Therefore, J‘E O 2.[\/; 0 [\/_ [—x

-
Uence, jf/s[n_l_x:dx 0 (sin*Ex)(_ \/[—xz)—j [_[xz (=~ xz)dx

N —~N=x?sin" x+x+C 0 x—~-x"sin" x+C
Alternatively, this integral can also be worked out by making substitution sin""x 16 and
then integrating by parts.

Example 21 Find jex sin x dx

Solution Take e* as the first function and sin x as second function. Then, integrating
by parts, we have

I= jex sin x dx =e"(—cos x) +jexcos X dx

O0e" cos x 01 (say) .. (D
Taking e*and cos x as the first and second functions, respectively, in I , we get

[ De'sinx— jexsin x dx
Substituting the value of I in (), we get
I 00e cosx Jersinx O or 21 Te* (sin x [lcos x)

X

[Jence, IO Ie" sinxdx=%(sin x—cosx) [1C

Alternatively, above integral can also be determined by taking sin x as the first function
and e* the second function.

7.6.1 Integral of the type jex Of (x) f" (x)Ldx
e have 10 [ 0fe) 0/ @) dx 0 [e f(x)dr D] e £/ dx
01+ [ @) dx, where I 0 [e* f (x) dx (D
Taking f(x) and e* as the first function and second function, respectively, in I and
integrating it by parts, we have I [1f(x) e*— j f'(x)e*dx+C

Substituting I _in (0), we get
10 /@)= [f'x)e'dr+[e*f(x)dx+C e f(x) 1C
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Thus, [e £+ Fedx = & fx)+C
Example 22 Find (i) jex (tan™ x + ) dx (ii) I(x( EDD))e dx
Solution

(i) e havel [jex (tan” x+ > ) dx

[ x

Consider f(x) Jtan

Thus, the given integrand is of the form e* [f (x) O/ '(x) ™

U
Therefore, 1= jex (tan™ x + >)dx [etan''x [IC
[+ x

(i) e have 1= '[(xxEDD))e =I %Eﬂ

- [
= Ie E x” = j [dx
(x UD)? x[[) x[[ (x[[)
x—[] 4 2
Consid x) =——, then Sx)=
onsider f(x) L (+ )
Thus, the given integrand is of the form e* If (x) Of'(x)™
2
+ [ U
Therefore, J ol Sedx= 1”4 C
(x+D X e
| EXERCISE 7.6
Integrate the functions in Exercises [Jto 22.
1. xsinx 2. xsin [k 3. X2 e 4. xlogx
5. xlog2x 6. x*logx 7. xsin'x 8. x tan"x
. xcos  x
9. xcos' x 10. (sin''x)? 11. > 12. x sec’x
L=x

13. tan"x 14. x (log x)? 15. (x> D logx
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xe* o CHsin x
: e ———
16. e* (sinx [cosx) 17. (Crx)’ 18. It cos x
19 X(EE [J 2, &D€ 21, e i
R w-He
. ¥ xz . ()C—Du . e smx

22. sin[( 2sz
[ x

Choose the correct answer in Exercises 2[Jand 2[]

23. .[xze" dx equals
0,
(A) _[ex +C (D) —e +C
C C
O 0
—e* +C —e* +C
© 5 (D) e

24, jex secx (CHtan x) dx equals

(A) efcosx OC (0O) e*secx OC
(C) ersinx OC (D) etanx 0OC

7.6.2 Integrals of some more types
Cere, we discuss some special types of standard integrals based on the technique of
integration by parts :

® j\/xz —a? dx (ii) j\/xz +a* dx (iii) j\/az —x? dx
() Let I=[Vx’—a’ dr

Taking constant function [Jas the second function and integrating by parts, we
have

0o 2
[0 xvVx?—a® — E—Xxdx

2 2
X —da

2 2 2
/ X —a +a
dx [x xz_az_j

OxANxt—a? - ﬁdx

2
J‘ X
/ 2 2
X —da



INTEGRALS 0O

0 )C\/)C2 —-a* —j\/)c2 —a* dx—azj%

dx
X xz—az —I—GZJW
or 21[x\/x2—a2—a2j%
2

or I=j x*—a? dx=§\/x2—a2 —a?log x+x*—a?

Similarly, integrating other two integrals by parts, taking constant function Tas the
second function, we get

2
(ii) I\/xz +azdx=%x\/x2 +a’ +a7log‘ x+vVxt+a?
2
(111) .[Vaz—xzdx=§x\]a2—x2 +a?sin‘1£+C
a

Alternatively, integrals (i), (ii) and (iii) can also be found by making trigonometric
substitution x [(Ja sec in (i), x [a tan® in (ii) and x Ja sin0 in (iii) respectively.

Example 23 Find j\/xz +2x+ L dx

Solution Note that

j\/xz +2x+Odx O j\/(x+E)2 + Odx

Cut x 000y, so that dx Ody. Then

j\/x2+2x+[dx O J‘\/y2+22 dy

0 5 0
0—= +0+—1lo
2y y > g

+C

+C

y+\/y2+E‘+C rusing 7.012 (i)
[EE(x+[)\/x2+2x+ O+ 2 log | x +CH~/x* +2x + [‘+C

Example 24 Find j [ 2x—x” dx

Solution Note that j -2x—x" dx= J\/ - (x+0)? dx
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Cut x OO0y so that dx Ody.

Thus j\/ -2x—x" dx [ J‘\/ -yt dy

0 0. .
Ny e sin [§+C ising 7.012 (iii)

[E[(x+[)\/[—2x—x2 +2sin[[xT+[J+C

|EXERCISE 7.7 |
Integrate the functions in Exercises (to ]

Lo Jo-x? 2. - w? 3o X+ x+ 0
4. NP+ x+l S NI-x-x* 6. x?+ k-1

’ 2
X
7o T x—x2 8. Jx?T+1x 9. D-I-?

Choose the correct answer in Exercises [ 1to [

10. j\/ “H x” dx is equal to

O
(A) %vaxz +510g(x+\/[+x2) +C

2 = 2 2
() E([+x2)2+c (C) Ex([+x2)2+c

2

(D) %\/[+x2 +5[x2 log | x +~/[H x?
11. ij2—8x+7 dx is equal to
(A) E[(x—[)\/xz—Sx+7+[log x—[+\/x2—8x+7‘+C

(D) E[(x+[)\/x2—8x+7+tlog X+ [+\/x2—8x+7‘+c

(o)) E[(x—[)\/xz—Sx+7—[\/510g x—[+\/x2—8x+7‘+C
U U

(D) E(x—[)\/xz—Sx+ —Elog x—[+\/x2—8x+7‘+C

+C
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7.7 Definite Integral

In the previous sections, we have studied about the indefinite integrals and discussed
few methods of finding them including integrals of some special functions. In this
section, we shall study what is called definite integral of a function. The definite integral

has a unique value. A definite integral is denoted by j ’ f(x) dx , where a is called the

lower limit of the integral and b is called the upper limit of the integral. The definite
integral is introduced either as the limit of a sum or if it has an anti derivative F in the
interval [4, bL) then its value is the difference between the values of F at the end
points, i.e., F(b) OF(a). Dere, we shall consider these two cases separately as discussed
below:

7.7.1 Definite integral as the limit of a sum

Let f be a continuous function defined on close interval [a, b[] Assume that all the
values taken by the function are non negative, so the graph of the function is a curve
above the xTaxis.

The definite integral j ’ f(x) dx is the area bounded by the curve y [0f{(x), the

ordinates x [a, x [1b and the xT@xis. To evaluate this area, consider the region TRS1]
between this curve, x[dxis and the ordinates x [Na and x 0b (Fig 7.2).

Y

/

XV/

Fig 7.2

Divide the interval La, bl into n equal subintervals denoted by [x , x [, x , x,[1...,
x  ,xLl.,x ,x[Jwherex [a,x Uallh,x, a2k, ..,x a Urhand

I3

b—a
x b a Linhor n=7- Oe note that as n — oo, h — [
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The region RS under consideration is the sum of n subregions, where each
subregion is defined on subintervals [x  ,x Lr 052, [0, 7.

From Fig 7.2, we have

area of the rectangle (ACILC) [area of the region (ATIDCA) [area of the rectangle
(ADM) (D

OO X, — x, — [ i.e., h — [lall the three areas shown in (') become
nearly equal to each other. Now we form the following sums.

s Oh fx) 00 Of(x, )00 hZ:lf(xr) (2
and S, Q)+ f (o) + .t fo) =R () NG

ere,s and S denote the sum of areas of all lower rectangles and upper rectangles
raised over subintervals [x , x [for » [1[]2, [] [], n, respectively.

In view of the inequality () for an arbitrary subinterval [x_, x [,;we have

s [larea of the region LRS[LILILIS .. (D

As n — oo strips become narrower and narrower, it is assumed that the limiting
values of (2) and (0) are the same in both cases and the common limiting value is the
required area under the curve.

Symbolically, we write

. . b
lim§S, llggosn [larea of the region [RS[1[1[] jaf(x)dx (D

n—»0

It follows that this area is also the limiting value of any area which is between that
of the rectangles below the curve and that of the rectangles above the curve. For
the sake of convenience, we shall take rectangles with height equal to that of the
curve at the left hand edge of each subinterval. Thus, we rewrite (0) as

[ feoax lim b f @)+ f(a+h)+..+ fla+(n ) Al

o [ fdx 0k o) iiilgo;[g(a)+f(a+h)+...+f(a+(n ORT (D)

b Ua

n

— lasn—> w

where h [
The above expression ([) is known as the definition of definite integral as the /imit
of sum.

Remark The value of the definite integral of a function over any particular interval
depends on the function and the interval, but not on the variable of integration that we
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choose to represent the independent variable. If the independent variable is denoted by

b
tor u instead of x, we simply write the integral as j ’ f(t)dt or j f (1) du instead of

b
_[a S (x)dx . Cence, the variable of integration is called a dummy variable.

2
Example 25 Find j[ (x* +0) dx as the limit of a sum.

Solution [y definition

j”f(x)dx (b D) lim = (f(a)+ f(a+h)+ .t f(a+(n O)VAL
a n—)oon

bla
where, h O
n
. 200 2
In this example, a [11] b (12, f(x) Ux* ([} h= =—
non

Therefore,

(n "D

JR6 40 0 2lim = O+ fC 4 fO) bt fEE

5 20m S04 (G0 +(_(2n—52)2+t}

n—o n n

0
7 2 lim — E([+[+ +[)+ QP+ +..+(2n 2%
S —

0 2 lim — Ez+—([2+22+ A(n 0D

n~)oon n

0 21im Zm 4 2=0n @D,
n—wo p n ]
n—wo n [ n

Hn—>0

L[
0 2lm I+= ([——[) (2[—) 02 [[+E [?
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2
Example 26 Evaluate I[ex dx as the limit of a sum.

Solution Ty definition

R 0 20 22
I[ex de 0QRODlm —|e +e"+e" +...+e "

n—»0 n

2
Osing the sum to n terms of a G.[J, where a (I [] r=¢e” , we have

12

2n
) C Denll _ O] e
J‘exde2hm—L2 [ 21lim ¢
O ol

n—o n n—»00 n =
e"—L el
2(e* h_
0—2 M penp msing lim ¥—=2 —r
2 =0 h
. e" [
aml 2|2
n
|EXERCISE 7.8 |
Evaluate the following definite integrals as limit of sums.
b o o
1. I X dx 2. I[(x+Ddx 3. szzdx
O O X O X
4. I[(xz—x)dx 5. I_[e dx 6. I[(x+ez ) dx

7.8 Fundamental Theorem of Calculus

7.8.1 Area function
[e have defined Ib f(x)dx as the area of

the region bounded by the curve y [ f(x),
the ordinates x [la and x [1b and x[axis. Let x

be a given point in [a, o] Then Ix f(x)dx X<
a (0)

N
represents the area of the light shaded region Y’ Fig 7.3
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in Fig 7.0[Mere it is assumed that f(x) T Jfor x € [a, b[Jthe assertion made below is
equally true for other functions as well[J The area of this shaded region depends upon
the value of x.

In other words, the area of this shaded region is a function of x. [l e denote this
function of x by A(x). (e call the function A(x) as Area function and is given by

A= [ fx)dx NG

[ased on this definition, the two basic fundamental theorems have been given.
Cowever, we only state them as their proofs are beyond the scope of this text book.
7.8.2 First fundamental theorem of integral calculus
Theorem 1 Let f'be a continuous function on the closed interval [a, b[and let A (x) be
the area function. Then A'(x) = f(x), for all x € [a, b].

7.8.3 Second fundamental theorem of integral calculus

[Je state below an important theorem which enables us to evaluate definite integrals
by making use of anti derivative.

Theorem 2 Let f be continuous function defined on the closed interval (a4, bCand F be
b
an anti derivative of /. Then ja f(x)dx O[F(x)]2= F (b) - F(a).

Remarks

b
(i) Inwords, the Theorem 2 tells us that ja f(x) dx C(value of the anti derivative F
of fat the upper limit » [value of the same anti derivative at the lower limit a).

(i) This theorem is very useful, because it gives us a method of calculating the
definite integral more easily, without calculating the limit of a sum.

(iii) The crucial operation in evaluating a definite integral is that of finding a function
whose derivative is equal to the integrand. This strengthens the relationship
between differentiation and integration.

(iv) In j ’ f(x) dx , the function fneeds to be well defined and continuous in (@, b

O
. . . . u S
For instance, the consideration of definite integral J , x(x* ()2 dx iserroneous

O
since the function f expressed by f(x) [ x(x* )2 is not defined in a portion

U0 0x O Oof the closed interval (102, [T
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b
Steps for calculating j f(x)dx.

(i) Find the indefinite integral j S (x) dx . Let this be F(x). There is no need to keep
integration constant C because if we consider F(x) [IC instead of F(x), we get
b
[ f(x) dx =(F (x)+ CL} = F(b) + CLTIF(a) + CL=F(b) TF(a).

Thus, the arbitrary constant disappears in evaluating the value of the definite
integral.

(i) Evaluate F(b) [1F(a) [1 [F (x)E'; , which is the value of j ’ f(x)dx.

[Je now consider some examples

Example 27 Evaluate the following integrals:

Q) [, de P e L
((0x2)?
2 xdx ) o n
(iii) j[m (iv) j[[SIIl 2tcos2tdt
Solution

)
(@) Let I=j2[x2 dx . Since sz dx=x—[=F(x)a

Therefore, by the second fundamental theorem, we get

27 8 [T
IDF()OF(Q2Q)=—[-=—
OFF@=—=0==7

Jx

@) LetI= j [[—[ dx . [1 e first find the anti derivative of the integrand.
((00x2)?

O

= 2
[ut [(00x2 =¢. Then [Etx/zdx=dt or \/de: [_[dt

Jx 2jdt E[E}[z [ _F (x)

! s ) s [
(FMx?)
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Therefore, by the second fundamental theorem of calculus, we have

i

[

ul

((0x2) ||

(2[00 afo o]
0| (d27) M08 oo 22 [T

I0FD [F(ng[

2 xdx

(iii) Letlzj[z;:E5Z;I§3

X B [[+ 2
(x+D(x+2) x+0 x+2

Osing partial fraction, we get

j xdx

S0 (x+0) (x+2)

O [10g| x+[|+2log|x+2|=F(x)

Therefore, by the second fundamental theorem of calculus, we have
I OF(2) OF(D OMlog 002 log MNMlog 2 (02 log [T]

2
J00log O0log 2 12 log [0 log (2—7J

(iv) Let I= j [Esin[2t cos2t dt . Consider jsin[2t cos2tdt

C
Cut sin 2¢ Clu so that 2 cos 2¢ dt Uldu or cos 2t dt [ 5 du
So jsin[2t cos2tdt ] —[ju[du
2

0 0.
O 3 Ht[[zgsm[2t=F () say

Therefore, by the second fundamental theorem of integral calculus

I [F(E[) F (1) =§[Bin[g [sin[[[zé
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|EXERCISE 7.9
Evaluate the definite integrals in Exercises [Jto 2]
1. J_[[(x+E)dx 2. Jztgdx 3. Jé([x[[Dcz+[x+[)dx
4. J:usin2xdx 5. jgcos2xdx 6. J‘Eexdx 7. jz[tanxdx
8. J%cosecxdx 9. ji\/% 10. J‘E[j_b;z 11. _[ztxzd)i[
12. choszxdx J-ztxxchc[ _[[[éz;tr[[dx 15. _[[[xexzdx

2 [xz EE 2 0 T, . 2X 2 X
16. J[m 17. J[(2sec X+x +2)dx 18. J[(sm 2[005 2)dx

20k +1[ 0. L Tmx
19. J[x2+[dx 20. j[(xe +sm—[)dx

Choose the correct answer in Exercises 2[]land 22.

21. JHF[ dx equals

2

U hx
A F 2 o = oy
() = () = (© - ™ -
22 -[uumfzxz equals
T T T T
(a) = ) 5 ©) 5 (D) —

7.9 Evaluation of Definite Integrals by Substitution

In the previous sections, we have discussed several methods for finding the indefinite
integral. [ne of the important methods for finding the indefinite integral is the method
of substitution.
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b
To evaluate j f(x) dx , by substitution, the steps could be as follows:

[1 Consider the integral without limits and substitute, y [Jf(x) or x [g(y) to reduce
the given integral to a known form.

2. Integrate the new integrand with respect to the new variable without mentioning
the constant of integration.

[1 Resubstitute for the new variable and write the answer in terms of the original

variable.

[1 Find the values of answers obtained in ([) at the given limits of integral and find
the difference of the values at the upper and lower limits.

In order to quicken this method, we can proceed as follows: After
performing steps [] and 2, there is no need of step [ Cere, the integral will be kept
in the new variable itself, and the limits of the integral will accordingly be changed,
so that we can perform the last step.

Let us illustrate this by examples.

E O _of. 0
xample 28 Evaluate j{[x x +Ldx.

Solution Cut ¢ Cx" O then df U [x" dx.

Therefore,

[lence,

O D
[ N+ mdx O [Vedt [%tz [%(xE+D2

0 2
j_[[x[\/x[+ Odx [ _D
2

[ —

g

2

[ —

g

(xu+[)2}

i

aa

([E+[)5[ S(ERE [)21

oo
22 _r2

L

}[%(2\/5#[—\/5

Alternatively, first we transform the integral and then evaluate the transformed integral

with new limits.
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Let t Ux" [ Then dt [ x" dx.

Note that, when x 000 ¢ OUand whenx O ¢ 2
Thus, as x varies from [I[to [] ¢ varies from [Ito 2

2
Therefore ji[xtxfx[+[dx 0 j[\/; dt
2

200 215 | 2 )

S| =522 0| 2y =—=

dx

Otanx
2
U x

Example 29 Evaluate j

Solution Let ¢ (tan "'k, then dt = dx . The new limits are, when x [J[] ¢ [l [and

T x?

b . . T
when x [J[] tzE. Thus, as x varies from [to [] # varies from [Ito =

T

Ctan'x E[ |- Of w2 n’
Therefore j[ g dXEjEtd{E [ [5 [_E[[ =y
|EXERCISE 7.10 |
Evaluate the integrals in Exercises [Jto 8 using substitution.
0ox z O oo 2x
d. 2 [si - . d.
-[Ex2+[ x 2. j[,/smd)cos bdd 3 j[sm [Drsz x
2 o4
a0 [ Txdx+2 (utx c200) 5. [P
- U [ cos” x
2 dx O d 20 O N
_[ O — 7. J 2—x 8. j [—[—zJez dx
Ox+0OCx X"+ 2x+C \lx 2x
Choose the correct answer in Exercises [Jand [T]
L
— O
9. The value of the integral j E w dx is
- X
O
(A) O () O (©) O (D) O

10. Iff() 0 [ tsintdr, then f'(x) is

(A) cosx Oxsinx (0) xsinx
(C) x cosx (D) sinx Cx cosx
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7.10 Some Properties of Definite Integrals

e list below some important properties of definite integrals. These will be useful in
evaluating the definite integrals more easily.

P [ fde=[" 1@ di
P : j:f(x)dxz [j:f(x)dx.lnparticular, j:f(x)dxz[
P ['r@dv=["f@dc+ [ fx)dx
b b
P, : jaf(x)dxzjaf(a+b—x)dx
P,: jzf(x)dx=j;f(a—x)dx

(Note that [ is a particular case of [1)
P: [ rde=[" fde+ [ f(2a-x)dx
P : jiaf(x)dx=2jzf(x)dx,iff(2a—x)=f(x) and
Oif f(2a Ox) O Of(x)
P () | feyde=2] [ f(x)dx, if fis an even function, i.e., if £("Ix) Cf (x).

(i1) j_aaf(x) dx =1, if fis an odd function, i.e., if f(Cx) OCf (x).

e give the proofs of these properties one by one.
Proof of P It follows directly by making the substitution x [ /7.
Proof of P, Let F be anti derivative of /. Then, by the second fundamental theorem of

calculus, we have j:f(x)dsz(b) F(a)= OF ()~ F () =~ " f(x)dx

[Jere, we observe that, if a (15, then j: f(x)de=10,
Proof of P, Let F be anti derivative of /. Then

j:f(x) dx (F(b) [F(a) (0
[“reydx oF@©) 0 Q)

and jb f(x)dx DF(b) OF(c) (D



om MATCEMATICS

Adding (2) and (), we get [ f(0)dx+ [ f(x)dx=F(B) F(@)= [ f(x)dx
This proves the property L.

Proof of P, Lets[la [1b [Ix. Then dt [1[dx. [Thenx [la, ¢t b and whenx [1b, ¢ [a.
Therefore

[Preyax o -[ " fla+brnar
O ftavn nyde oy )

b
[jaf(a+b[x)dxby[

Proof of P, [ut# [a [x. Then df [1[dx. [T henx L[] # [la and when x [a, ¢ [J[1 Now
proceed as in [,

Proof of P_ [ising [, we have jiaf(x) dx =jzf(x) dx+jjaf(x) dx.

Let t = 2a —x in the second integral on the right hand side. Then
dt [ Odx. D henx Ua, t Ua and when x [2a, ¢t (1] Also x [2a [t.
Therefore, the second integral becomes

jj“f (x)dv 00 a[ fQaCoydi 0 [ fQatnde [ fQax)dx

cence [ f@dx o [ peyde+ [ f2a-) dx

Proof of P, Using [, we have jiaf(x) dx = j zf(x) dx +j zf(2a —x)dx ..(D
Now, if f(2a Tx) Of(x), then (0) becomes

ji f(x)dx [ j[ S(x)dx+] [ S(x)dy=2] [ £(x) dx,
and if f(2a Ox) O0Of(x), then (0) becomes

[“reyax o [ reyd-[ reax=1
Proof of P, [ising [], we have
[ reoyae 0] fede+|” f(x)dx. Then

Let ¢ [0 Ox in the first integral on the right hand side.
dt 0 0dx. Ohen x [0 Oa, t [Ja and when
x 00 ¢ 0O0Alsox O0¢
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Therefore j F(x)dx [0 Eja[ f(Cyde+] [ £(x) dx

D[ dc [T fedr by ) (O
(i) Now, if fis an even function, then (k) [ f(x) and so ([) becomes

j_aaf(x)dx =j[“f(x)dx+j[“f(x)dx= 2f zf(x)dx
(i) If fis an odd function, then f([k) CJCIf(x) and so () becomes

[ rdv=—[ " fdv+ [ frdx=1

Example 30 Evaluate ji‘ x Ox ‘dx

Solution [Je note that x” Llx > Con [} [Tland x" Ox < Oon [ [TJand that
x" x> Uon [1] 211 So by [| we write

j_zt‘ x Ox ‘dx O j_[[(x[ [x) dx+j[[[(x[ [x) dx+j[2(x[ Ox) dx

2
S td [ oo [T Dy d
)C[ )C2 : )C2 )C[ : )C[ )C2 ’
] e IS [y VIS [y o Rl
02 2 O |02
oo O O

0 [(—E [EEJJF(E[ [—9+([[2) [(—E [%J

Example 31 Evaluate I sin® x dx

=il
O

Solution [Je observe that sin® x is an even function. Therefore, by [L (i), we get

T

L n
J © sin’xdx O 2.[ “sin? x dx
[n 0

0
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2.[ ([ cos2x) dx O j E([— cos 2x)dx
O 2 0

O xD—Dsian u[[ [—[sm j[[——[E
2 . o 2 2 02

n xsin
Example 32 Evaluate J‘[[x—;cdx
Hcos” x

. © xsinx
Solution Let I [ j[D—z dx . Then, by [], we have
cos” x

(m—x)sin (m—x) dx
- '[ "4 cos? (1 — x)

j (m— x)smxdx [njn sin x dx O

THcos? x " Hcos®x

S107 j sin x dx
o " Hcos’x

n smxdx
or o prencdr
" Hcos®x

[t cos x (¢ so that sin x dx [dt. D hen x 0] ¢ U Oand when x O, ¢ OO0
Therefore, (by [) we get

O -0 dt el dt
10— : —j ;
2 Y0 [t 290t

L
7 is even function)
S Ht

O [tan[Et]E =7 [tan[[[[tan_[ [] =7 {E[ [[} =7T—[2

0.0 O
Example 33 Evaluate j sin xcos x dx

o . .
Solution Let I [ j_[sm[xcos[x dx . Let f{x) [Isin" x cos" x. Then

f(Ox) Osin" (Ox) cos ' (Cx) O Osin" x cos 'x [ 0f (x), i.e., fis an odd function.
Therefore, by [, (ii), I L[]
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kd .
Example 34 Evaluate j # dx
sin x +coS x
sin' x
Solution Let I [J j —dx .. (D
“sin x+cos x
Then, by [
. T
L sin~ (-~ —x) 0
103 - 2 ——dx [j[—cos L& ..
sin U(E _ x) +COS U(E _ x) COS x+Smn x

Adding (D) and (2), we get

5 sin x+cos x

r—\V_rb\u

21[] dx = jdx

wl;l

" sin" x+cos x

[Cence 1 [E[

T dx
Example 35 Evaluate jn[ ——
- [(H++/tan x

TE

cos x dx
Solution LetI O I

dx E
D+\/tanx '[ \/cosx+\/s1nx -0

coS E+E—x dx
I
T T b
cos| —+——x|+,[sin +——x

j sm X

dx . (2

* sinx +\/cosx @

Adding (0) and (2), we get
210 j;[dX=[x]Tf =

u] O

ola

Then, by [ I j

—la

[E]

r—\l;l

. Oence I=

!_\|F1
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Example 36 Evaluate jglog sin x dx

T

Solution Let I [ jg log sin x dx
Then, by (]
FEEN G S
0 j[ log sm(2 dex—j[ log cos x dx
Adding the two values of I, we get

T

211 jg(log sin x +logcos x ) dx

Y

0 j E(log sin x cos x +log2 —log 2) dx (by adding and subtracting log 2)

0 J‘Ezlog sin 2x dx—J‘Ezlog2 dx (O hy?)

Cut 2x ¢ in the first integral. Then 2 dx Cdt, when x 0] ¢ [0 Jand when x = g ,

t Um.

emn .
Therefore 210 —j log sint dt _z log2
240 2
2 % . T ) .
0 EJE log smtdt—510g2 by [ as sin (r [17) [Isin 7)
0 JE log sin x dx —g log 2 (by changing variable ¢ to x)

T
nl-—log?2
> g

T 0
Tence jglog sin x dx [%logl
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| EXERCISE 7.11 |

Oy using the properties of definite integrals, evaluate the integrals in Exercises [to [T]

10.

12.

15.

18.

19.

[}
N Y « A
5 J-g +/sin x dx 3 J'g sin? x dx
. N . O [}
U {/sinx ++/cosx C

sin? x +cos? x

Hola

2
cos” x dx

J

I 0 3
2 X s [ ke 6. [ |x—Clax

7 sin x+cos x - 2

O r 2
j[x([—x)ndx 8. J‘Etlog (CHtanx)dx 9. j[x\/2—xdx
JE(2 log sin x — log sin 2x) dx 11. J En sin® x dx

2

b3 z 2n
| xdx 13. [ 2 sin’xdx 14. [ Tcos xdx

U Hsin x Oz 0

2

Jx

dx 16. j;log([+cosx)dx 17. jz\/_Jr—xdx
x+vNa—x

Y .
jg sin x — cos x
U [+sinx cos x

j [[|x - [I dx
Show that [ [ f()g(x)dv=2] [ £(x) dx, if fand g are defined as f(x) |f(a "x)

and g(x) Og(a Ox) 00O

Choose the correct answer in Exercises 2[Jand 2[]

20.

21.

T

The value of an (x +xcosx+tan x+0)dx is
2

A) O (o) 2 (O (D) O
The value of J Elog [mJ dx is
= U+ Ocosx

C
(A) 2 (0 = © o« (D) 2
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Example 37 Find JC

Miscellaneous Examples

0S [ +/[+sin [k dx

Solution Cut ¢ O sin Lk, so that df [ Ucos Lk dx

Therefore jcos

Example 38 Find .[(

xu—x)D

O
- I~
[xA/[Hsin [k dszjtzdt

O

02 = 0 >
1=x=(#)? +C 0 —(C#sin [x)? +C
0 o L

i

dx

i
X

Sy

Solution [Je have J(xu——ux)u dx = I—x dx
x

0
Cut [——[z[[x[[=
X

O
t, so that —[dx =dt
X

0

L
Therefore JM

]
x
Example 39 Find J(

Solution []e have

Now express

o b
s=Cfa 0 5l el
0 O O (1] by
x"dx
x—[)(x2+[)
x" O
— O (x+D——
(x-D(*+0D) 4D x'—x*+x-L
O
Jx+D)+—m—
(D) (x-D(x*+D
O A [(x+C

0 +
(x=DE*+D  (x-D (*+D

O

0
j+C

O

- (0

)
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So OOA @200 O(fTx OC) (x 0D
(A D) 2 O(C D) x DADC
Equating coefficients on both sides, we get A 00 C OO0 O 0Dand A OC 0OT]

which give A = = ,[=C= [£ . Substituting values of A, TJand C in (2), we get
2 2
U U 0 x U

G-0(2+) 26-D 2(P+) 22+
Again, substituting (0) in (0), we have

-

x" G0+ 0O 0 x O
(x=D) (x* +x+0D) 2(x-0) 2(*+D 2(x*+D)

Therefore

i

2
U U U

.[ xz dx=X—+x+—log|x—[| C—log (x* +) U—tan" 'x+C
(x=Dx"+x+0D) 2 2 g 2

U
Example 40 Find j {log (logx) +W} dx

Solution Let I= J‘{log (logx) +ﬁ} dx
ogx

[

(log x)*
In the first integral, let us take [Jas the second function. Then integrating it by
parts, we get

) [log (log.x) dx + | dx

1[xlog(logx)—j - xdx+j

xlogx (log x)*
dx dx
O xlog (logx)_'[logx+'[(logx)2 . (D

dx . . .
, take [Jas the second function and integrate it by parts,

Again, consider -[1
ogx

dx X O O
we have I@_Logx DJX{D(logx)z (;j} dx} )
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Cutting (2) in (D), we get

X dx dx X
I=xlog (logx)— — + [ xlog (logx) ————+C
g (log) log x J‘(logx)z J‘(logx)2 g (logx) log x

Example 41 Find j [\/COUC + tanx] dx

Solution []e have

10 j [\/cotx +\/tanx} dx = J\/tanx([+ cotx) dx

Cut tan x [1#, so that sec®x dx [12¢ dt

2
or dx [ tdi
[Ht
O 2t
t| [(H—
Then I[I [ tzJ([+tE)
2o [[+ Ej dt [[+ EJ dt
D2 [ g [ p L
t +10 t2+£ U
tz f—; +2

C U
Cut t—; Oy, so that [["' t_zJ dt Tdy. Then

(-]
t_,
1C 2f%=«/5tanuul+c N

» +(+2) V2 V2

2
[\/Etan[[ il +C O~2 tan " tanx— +C
2t n/2tan x

sin 2xcos 2x dx
N [cos (2x)

Solution Let 1= j w dx

N cos 2x

Example 42 Find j
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[t cos? (2x) [1¢ so that [sin 2x cos 2x dx [1[dt

O O
Therefore I=0— = D— sin [ t)+ C=- —Dsm u{—Dcos2 Zx} +C

f@

Example 43 Evaluate j 2 | x sin (7 x) |dx
-0

xsinm x for —[Kx <[

Solution Cere f(x) 0 [x sin mx [T . C
—xsmnxfor[SxSE

O O
= - C .
Therefore j 2[ Xsinmx dx [ j xsinmx dx +j [2— X sinT x dx

[ . ~ .
[] j x smnxdx—jéx sinT x dx

Integrating both integrals on righthand side, we get

O . | . —
5. Jxcosmx sinm —Xcosmx sinmx |2
J‘chsmnxde{ al L zx} _[x o zx}
- o o -0 b T 0
2 0 O L
n=-|-5-=|==+=
n o n] mon
x dx

Example 44 Evaluate "
P j[azcoszx+bzsin2x

Solution Let1 1 [ X =[" (r—) & (using 1)
olution Le = ; usin
Tatcostx+b*sinx Y U a? cos?(m—x)+ b sin?(n—x) g
dx n x dx
[TCJ[ ) 2 _,[[ 2 2 2 2
cos® x +b?sin’ x a“cos” x+b"sin” x
dx
[nj[ 2 -1

cos® x +b*sin’ x

dx

a’cos’ x +b*sin® x

Thus  210%[ —
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T

A dx s 3 dx
or 10— ==.202 using []
2'[Uazcos2x+b2sin2x 2 Iuazcos2x+b2sin2x( et
T n
- j 0 dx N j 2 dx
O © a* cos® x +b*sin® x = a® cos® x +b*sin® x
O
rn 2 z 2
n J- O secxdx J- 5 cosec xdx
- S a’+b*tan*x Y x a’cot’ x+b?
- O
ooodt -d
mE - puttanx =tand cotx =u
j[a2+b2t2 '[[ 2 2+b2:|( )
bt O O 2
0 l{tanm—} O l{tanmﬂ} o= tanIé +tan 2| o
ab al|, ab b, ab a bl 2ab
Miscellaneous Exercise on Chapter 7
Integrate the functions in Exercises [to 2[]
. — 2 - 3 L Winemutr020
. . . — 77— Wint:[utx [ —
x—x Nx+a+x+b e ax — 2 t
D D , D 0 |
4. — =T 5. T O [Jint: T o0- & —~ ,putx L1
X (x"+0)" x2 +x" x2 +x" x[£[+x[J
X sin x eElogx _e[logx
6. ——>—— 7. —— < 8. ————
(x+D(x*+0) sin (x—a) gllogx _ p2logx
0 cos x 10 sin® — cos® x 1 U
" J=sin?x " [-2sin® x cos® x © cos(x+a)cos (x+b)
x e’ O
12. 13. —————— 14, —5—————
0 x° ((+e)(2+e7) (x"+D " +0)
15. cos'x elogsin 16. e'loe (x" 10) 17.  f' (ax Ob) f(ax O D)™
U sin” vx —cos™"x
18 x e [ [1J

’ \/sin[xsin(x+oc) ©sin”x +cosTWx
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20 ~/x 21 2+sin2xex 55 X 4x+L
© o\ © [Hcos2x T x+DT(x+2)
[2 2
- x”+0log(x*+D—-2logx
23. tan" ? 24, Llos : )-2logx]
+x

Evaluate the definite integrals in Exercises 2[to [T]

n . —sinx o =z 2
’5. J‘ e[ de 26. Iu sinx cosx 5o _[[2 cos” x dx

T . .
= [-cosx Y cos x+sinx cos® x+ [sin® x

Y .
J-E sinx +cosx

I T % sinx+cosx
U [+ [1Jsin 2x

mdngj*/_*/_ 30.

Y

31. j Esin 2xtan” (sinx) dx 32.

J‘n X tan x dc

Usecx+tanx
O
[ - -2 -y
[rove the following (Exercises [Tlto [T)

2 2 O x
34. j 2—=—+10g— 35. j xe'de=L
Cxf(x+D) O C -
0 =
36. j x ' cos xdx=1] 37. jzsinuxdx=g
_ 0 L
r O
38. j[[2tan[xdx=[—log2 39. j[sin_[xdng—[

40. Evaluate j [ez‘D‘dx as a limit of a sum.
[}

Choose the correct answers in Exercises [[to [1]

41. j is equal to
et +e
(A) tan' (e¥) OC (0) tan'"(e*) OC
(C) log (er Te™ OC (D) log(er Oe™) OC

2
42. J‘sz dx is equal to
(sinx +cosx)

L1l .
A ———+C () loglsinx+cosx [+ C
sin x +cos x
(C) logEinx—cosx F+C (D) -

(sin x + cos x)*

[N
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I£f(a 0b Cx) Of @), then [ x f(x) dx is equal to

a+b
2

a+b
2

b—a
2

b b
(A) j CSb-x)dx (1) j S (b+x)d

a+b

b b
(© —= [, f(x)dx (D) —=[ f(x)dx

2x -0

The value of j[[tan[( > j dx 1s

[(Hx—x

(A) [ () [ (C) [T (D) —

Summary

¢ Integration is the inverse process of differentiation. In the differential calculus,

we are given a function and we have to find the derivative or differential of
this function, but in the integral calculus, we are to find a function whose
differential is given. Thus, integration is a process which is the inverse of
differentiation.

d
Let i F(x) = f(x). Then we write Jf(X) dx=F (x) +C . These integrals
X

are called indefinite integrals or general integrals, C is called constant of
integration. All these integrals differ by a constant.

From the geometric point of view, an indefinite integral is collection of family
of curves, each of which is obtained by translating one of the curves parallel
to itself upwards or downwards along the ylaxis.

Some properties of indefinite integrals are as follows:

0 @)+ g e = [ £ () dr+ g (x) dx

2. For any real number £, _[k S (x)dx = k.[f(x) dx

More generally, if f, f,, f, ... , f, are functions and k , k,, ... ,k are real
numbers. Then

[T £+l fy () + o e f, () dx
Tk [ £ detky [ f(0 dx+ ok, [ f (0 dx
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€ Some standard integrals

n+0l

@) ["dx="——+C 000 Carticularly, [dv=x+C
(i) jcosxdx=sinx+C (iif) jsinxdx=Dcosx+C
(iv) jseczxdx=tanx+C (v) Jcoseczxdxchotx+C

(vi) jsec xtanx dx =secx+C

i) | ¢ dr = O LG \(vii) j—”b“—sin-[“c
Vil COSeC X Cotx ax = LICOseC X Vil D -
VI=x

dx -0 dx
i = =-c0s x+C =tan  x+C
i | o ® J—
dx _
(xi) JDHZ =—cot” x+C (xii) jexdx=ex+C
X a* dx _
(s [a'dv=g-—+C (i) [ —sec x4 C
084 xvx? =0
U
(xv) JL =—cosec” x+C (xvi) _[— dx=log [x [+C
xvx* -0 X
€ Integration by partial fractions
Recall that a rational function is ratio of two polynomials of the form _[((x)) ,
L(x

where [(x) and [J(x) are polynomials in x and [ (x) # [] If degree of the
polynomial [(x) is greater than the degree of the polynomial [J (x), then we

may divide [(x) by [ (x) so that ) =T (x)+@, where T(x) is a
O(x) O(x)

polynomial in x and degree of [ (x) is less than the degree of [I(x). T (x)

X)

O(x

being polynomial can be easily integrated. can be integrated by
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x
expressing o ) as the sum of partial fractions of the following type:
x
_ pxtq 0 2 asp
(x—a) (x—b) x—a x-b
px+q A O
P 0 + 7
(x—a) x—a (x—a)
2
px +gx+r A O C
0 + +
C G G-hG-0 T x—a x-b x-c
2
px +2qx+r . A U 4 C
(x—a)” (x-b) x—a (x—a)” x-b
px’ gt o A, xOC
(x—a) (x* +bx+c) x—a x*+bx+c

where x2 [1bx []c can not be factorised further.

€ Integration by substitution
A change in the variable of integration often reduces an integral to one of the
fundamental integrals. The method in which we change the variable to some
other variable is called the method of substitution. [ hen the integrand involves
some trigonometric functions, we use some well known identities to find the
integrals. [sing substitution technique, we obtain the following standard
integrals.

@) Itanxdx=10g|secx|+C (i) Icotxdx=10g|sinx|+C
(iif) Isecxdx=10g|secx+tanx|+c

(iv) jcosecx dx =log | cosecx —cotx | +C

€ Integrals of some special functions

dx O x—a
i =—1Io +C
@® J‘xz—az 2a 2 x+a
dx O a+x dx O _gx
5 | ——=—1 +C =—tan  =+C
(i) J‘az—xz 2a M a—x i) J‘x2+az a n a
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=sin [—+C

X+\/X —Cl

(iv) j — =log +C (V) .[\/7

dx _ 2 2
(vi) J‘W—IOgDC-F x“+a +C

€ Integration by parts
For given functions /" and f, we have

jf[<x>~f2<x>dx=f[<x>jﬁ(x)dx—j[%fax)-jmmdx}dx, ie., the

integral of the product of two functions [ first function []integral of the
second function Cintegral of [differential coefficient of the first function [J
integral of the second function] Care must be taken in choosing the first
function and the second function. [bviously, we must take that function as
the second function whose integral is well known to us.

¢ [ )+ () =[e f(x) dr+C
€ Some special types of integrals
2

6] .[ X’ —a’ dx=§\/x2 ~a’ —%log

2

x+Nx’ —a’
(ii) .[ X’ +a’ dx=§\/x2+a2 +a710g x+Vx* +a’
2

0 [T eI T

a

+C

+C

dx dx
iv) Integrals of the types | —————or | ——=———————=can be
) s P '[ax2+bx+c '[\/ax2+bx+c

transformed into standard form by expressing

2 2

ax* Obx Oc O a{xz +2x+£}=c{[x+i) J{E_b_zJ]
a a 2a a 7]
px+qdx ,[ px+q dx

ax +bx+c Nax® +bx +c can be

(v) Integrals of the types ,[
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transformed into standard form by expressing

px+q =A%(ax2 +bx+c)+1=A (2ax+b)+ [ ,where Aand [Jare
determined by comparing coefficients on both sides.

¢ [le have defined I: f(x) dx as the area of the region bounded by the curve

v Of(x), a <x < b, the x[axis and the ordinates x [Ja and x [1b. Let x be a

given point in [a, 5[] Then I: f(x) dx represents the Area function A (x).

This concept of area function leads to the Fundamental Theorems of Integral
Calculus.
€ First fundamental theorem of integral calculus

Let the area function be defined by A(x) [ j : f(x)dx for all x > a, where

the function fis assumed to be continuous on [&, b[LJThen A’ (x) CIf (x) for all
x € la, b[]

€ Second fundamental theorem of integral calculus
Let f'be a continuous function of x defined on the closed interval [a, bTand

. d . .
let F be another function such that a F(x)= f(x) for all x in the domain of

b b
f, then jaf(x)dx=[F(x)+c]a =F(b)—F(a).

This is called the definite integral of f over the range (4, b[Jwhere a and b
are called the limits of integration, a being the lower limit and b the
upper limit.

J
0‘0



Chapter

(APPLICATION OF INTEGRALS)

% One should study Mathematics because it is only through Mathematics that

nature can be conceived in harmonious form. — BIRKHOFF +»

8.1 Introduction

In geometry, we have learnt formulae to calculate areas
of various geometrical figures including triangles,
rectangles, trapezias and circles. Such formulae are
fundamental in the applications of mathematics to many
real life problems. The formulae of elementary geometry
allow us to calculate areas of many simple figures.
However, they are inadequate for calculating the areas
enclosed by curves. For that we shall need some concepts
of Integral Calculus.

In the previous chapter, we have studied to find the
area bounded by the curve y = f'(x), the ordinates x = a,
x = b and x-axis, while calculating definite integral as the
limit of a sum. Here, in this chapter, we shall study a specific
application of integrals to find the area under simple curves, A.L. Cauchy
area between lines and arcs of circles, parabolas and (1789-1857)
ellipses (standard forms only). We shall also deal with finding
the area bounded by the above said curves.

8.2 Area under Simple Curves

In the previous chapter, we have studied
definite integral as the limit of a sum and y
how to evaluate definite integral using y=F 0
Fundamental Theorem of Calculus. Now, -
we consider the easy and intuitive way of /
finding the area bounded by the curve §

y =f(x), x-axis and the ordinates x = g and
x = b. From Fig 8.1, we can think of area y
under the curve as composed of large x=a
number of very thin vertical strips. Consider o
an arbitrary strip of height y and width dx,
then dA (area of the elementary strip)=ydx, X<g P e Q >X

where, y = f(x). L 4 Fig 8.1

/=
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This area is called the elementary area which is located at an arbitrary position
within the region which is specified by some value of x between a and b. We can think
of the total area A of the region between x-axis, ordinates x = a, x = b and the curve
y=f(x) as the result of adding up the elementary areas of thin strips across the region
PRSP. Symbolically, we express Y

b b b [ y= )

A= an=] yds=] 1) dy

The area A of the region bounded by 4 X
the curve x = g (y), y-axis and the lines y = ¢, Y \
y=dis given by x=gy)

d d
A= j xdy=jc g(y)dy y=c N
X/I N

Here, we consider horizontal strips as shown in o ,
the Fig 8. Y’ Fig 8.2

Remark If the position of the curve under consideration is below the x-axis, then since
f(x) from x=atox=>b,asshownin Fig 8.3, the area bounded by the curve, x-axis
and the ordinates x = a, x = b come out to be negative. ut, it is only the numerical

value of the area which is taken into consideration. Thus, if the area is negative, we

J. 1 dx

take its absolute value, 1.e.,

Y
\

X< >X
O x=p)
N X=a :

A2
9/3

N

Y’ Fig 8.3

Generally, it may happen that some portion of the curve is above x-axis and some is
below the x-axis as shown in the Fig 8.. Here, A | and A . Therefore, the arca

A bounded by the curve y = f (x), x-axis and the ordinates x = a and x = b is given
byA=A A
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Y
N
A,
x=b
X'« S) >X
x=a
A,
Y'
Fig 8.4
Example 1 Find the area enclosed by the circlex y =a.
Solution From Fig 8.5, the whole area enclosed Y
by the given circle B \(0, )
= (area of the region AOA bounded by
the curve, x-axis and the ordinates x = and »
X = a) as the circle is symmetrical about both \
x-axis and y-axis ‘e [ A4, 0)
y X< 8) o X
= j ydx (taking vertical strips)
= j ‘Va —x dx
Yl
Sincex y =a gives y=++/a —x Fig 8.5

Astheregion AOA lies in the first quadrant, y istaken as positive. Integrating, we get
the whole area enclosed by the given circle

| x a lxa
sinr—va —x +— =
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Alternatively, considering horizontal strips as shown in Fig 8., the whole area of the

region enclosed by circle Y
a a B (0’ a)
= ["xdy= ["Ja -y dv  (Why) \
X

a dy \
LY [ a - Y
S{I* a -y +— ;i| e \A(ﬂyO)X
O 7

_a m_ ,
= =Tna v
Fig 8.6

Example 2 Find the area enclosed by the ellipse S Z}—zl
a

Solution From Fig 8., the area of the region AA ' 'A bounded by the ellipse
[area of theregion AOBAin the first quadrant bounded J

by thecurve,x — axis and theordinatesx =, x=a

(as the ellipse is symmetrical about both x-axis and y-axis)

(t§kaiygwertical strips)

x b ———
Now — +Z— =1gives y=f—Va —x  butastheregion AOA lies in the first
a a

quadrant, y is taken as positive. So, the required area is
b Y
j —vVa —x dx
a
B|(0, b)

blx —— . ‘
, Al A
X ) X
bl(a . a (—a, 0) dx (@ 0)
b (_xsiH - J
a

B’|(0,- b)

= ———=mnab Y’
a Fig 8.7



Alternatively, considering horizontal strips as
shown in the Fig 8.8, the area of the ellipse is

, b
_ j xdy = %_Hb —y dy (Why)
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Y

B| (0, b)

X
dyi;
A / )

X

X/
- b
aly b .y
=—|=4/b —y +—sin =
b| g b} B[O )
- Y’
lfbests )]
= —ab—£=nab
b

8.2.1 The area of the region bounded by a curve and a line

In this subsection, we will find the area of the region bounded by a line and a circle,
aline and a parabola, a line and an ellipse. Equations of above mentioned curves will be
in their standard forms only as the cases in other forms go beyond the scope of this

textbook.

Example 3 Find the area of the region bounded
by the curve y =x and the line y=.

Solution Since the given curve represented by
the equation y = x is a parabola symmetrical
about y-axis only, therefore, from Fig 8.9, the
required area of the region AOA is given by

j xdy =

area of theregion ONbounded by curve,
andthelinesy=and 7

Y
xX'=y
N / y=4
A B
X
dy
§ X
X 0
Y/
Fig 8.9
XS

3
= 3
= [ vdy = xiy} =3%8=5 (Why)

Here, we have taken horizontal strips as indicat

ed in the Fig 8.9.
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S e
=~

Alternatively, we may consider the vertical > _ y
strips like P as shown in the Fig 8.1 to

obtain the area of the region AOA. To this A N B
end, we solve the equations x =y and y =

which givesx = and x=. =
Thus, the region AOA may be stated as

the region bounded by the curve y =x ,y= " . yi X
and the ordinates x = and x=.

Therefore, the area of the region AOA Y’
j_ ydx

y = (y-coordinate of') (y-coordinate of P) =  x

[ (=x)ax (why)

)[4

Remark From the above examples, it is inferred that we can consider either vertical
strips or horizontal strips for calculating the area of the region. Henceforth, we shall
consider either of these two, most preferably vertical strips.

dx

Example 4 Find the area of the region in the first quadrant enclosed by the x-axis,

the line y = x, and the circlex y =3. v

Solution The given equations are M
y=x .. (1) y=x
and x y =3.0 B(4’4)
Solving (1) and (), we find that the line

and the circle meet at (, ) in the first
quadrant (Fig 8.11). raw perpendicular A R
M to the x-axis. M X

(44/2,0)

Therefore, the required area = area of
the region OMO area of the region
MA.

Now, the area of the region OMO

=j ydxzj xdx .. (3) ‘;'

_ l[x ] _g Fig 8.11
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Again, the area of the region MA

=I\/_ydx=j\/_ 3 —x dx

g
= {lx\/%s-inx +le IL}
\/_
1 1 .1 1 1 I
:(—3sﬂxl +—x 3%3sin ]— - - 4+—%x X —j

=8n 8 mwmm= 7w 8 .. 0
Adding (3) and (), we get, the required area = .

X
Example 5 Find the area bounded by the ellipse —+£—=1 and the ordinates x =
a
and x = ae, where, b =a (1 e)ande 1.

Solution The required area (Fig 8.1) of the region O 'RFS is enclosed by the

ellipse and the lines x = and x = ae. %
N
Note that the area of the region O 'RFS
B S x=ae
ae b ae
= j ydx = _j qla -Xx dx K
a
. Xe o Flae 9 >X
- —bF\/a —x +Z sin lf} \J/
a a
R
b B’
= —[ae«/a —a e +a sin le} Y
a

= ab[ex/l—e +sin le}

EXERCISE 8.1
1. Find the area of the region bounded by the curve y = x and the lines x = 1,
x = and the x-axis in the first quadrant.

2. Find the area of the region bounded by y =9x,x=, x= andthe x-axis in the
first quadrant.
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3. Find the area of the region bounded by x = y,y=, y= andthe y-axisinthe
first quadrant.

4. Find the area of the region bounded by the ellipse % + 2o .

5. Find the area of the region bounded by the ellipse % +2 o .

6. Find the area of the region in the first quadrant enclosed by x-axis, line x =4/3 y
and the circlex y =.

7. Find the area of the smaller part of the circlex y =a cut off by the line x =% .

8. The area between x =y and x = is divided into two equal parts by the line
x = a, find the value of a.

9. Find the area of the region bounded by the parabola y = x and y = |x| .

10. Find the area bounded by the curve x = y and the linex= y
11. Find the area of the region bounded by the curve y = x and the line x = 3.

Choose the correct answer in the following Exercises 1 and 13.

12. Arealying in the first quadrant and bounded by the circlex y = andthe lines
x=and x=1is

T T T
(A) 0 - © 3 0 -

13. Area of the region bounded by the curve y = x, y-axis and the line y =3 is
9 9 9
(4 0 = © 3 0 -

8.3 Area between Two Curves

Intuitively, true in the sense of Leibnitz, integration is the act of calculating the area by
cutting the region into a large number of small strips of elementary area and then
adding up these elementary areas. Suppose we are given two curves represented by
y=f(x),y=g(x), where f(x) > g(x) in a, b as shown in Fig 8.13. Here the points of
intersection of these two curves are given by x = a and x = b obtained by taking
common values of y from the given equation of two curves.

For setting up a formula for the integral, it is convenient to take elementary area in
the form of vertical strips. As indicated in the Fig 8.13, elementary strip has height
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f(x) g(x) and width dx so that the elementary area

X y=f®
dx | _y=fx)-gx)
X =a y =8 (x)
x=b
X’<0 >X
Y’ Fig 8.13

dA= f(x) g(x) dx, and the total area A can be taken as

b
A=[ (x He)x dv
Alternatively,

A = area bounded by y = f(x), x-axis and the lines x=a,x=b

area bounded by y = g (x), x-axis and the linesx=a,x=>

b
a

b b
= | fyde=] "gx)dr =[ [f(x)-g(x)]dx, where f(x) 2 g () in a, b

Iff(x)2g(x)in a,cand f(x)<g(x)in ¢, b, where a ¢ b asshown in the
Fig 8.1, then the area of the regions bounded by curves can be written as

Total Area = Area of the region ACA Area of the region PR
c b
= [ [/ 0)-g@]dx+[ [2()—f(0)]dx

ry=gx)
P
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Example 6 Find the area of the region bounded by the two parabolas y=x andy =x.

Solution The point of intersection of these two Y ,
parabolas are O (, ) and A (1, 1) as shown in y=x
the Fig 8.15. x=y
Here, we can sety =xory=./x=f(x)and y =x @D
= g(x), where, f(x) > g (x) in, 1.

>X

Therefore, the required area of the shaded region X% 0

- [ /@) -g)]dx

= jl[\/;—x ]dx ={§x—%} v

Fig 8.15

1

3 3 3
Example 7 Find the area lying above x-axis and included between the circle
x ¥ = 8x and inside of the parabolay = x.

Solution The given equation of the circle x  y = 8x can be expressed as

x ) y = 1. Thus, the centre of the Y

circleis (, ) and radius is . Its intersection T P 4)

with the parabolay = x gives ’
X x=8x

or X X =

or x(x )= ,
or x=, x= X<o C4,0) Q@0 ~
Thus, the points of intersection of these
two curves are O(, ) and P(,) above the
X-axis.
From the Fig 8.1, the required area of

the region OPCO included between these v Fic 8.16
I , g8.
two curves above x-axis is Y

= (area of the region OCPO) (area of the region PCP)
8
= j ydx+j ydx

= ([Wrdx+[ | —x= dc (Why)
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3
=, |+ —t dt -
w%%;} | ;

=3—;+F\/sin—t +—x X ‘i}

t (Why)

:£+[—xsin—1x X l}=£+ 8§+ x—|=—+ 1 = —(8+3m)
3 3 3 3

Example 8 In Fig 8.1, AOA is the part of the ellipse 9 x y =3 in the first
quadrant such that OA = and O = . Find the area between the arc A and the

chord A.
Solution Given equation of the ellipse 9x  y =3 can be expressed as x? + 2o or
Y
T v tand hence, its shape is as given in Fig 8.17. B0, 6)
Accordingly, the equation of the chord A is
vy o= — &) X’ A0
O
or y= 3x )
or y= 3x
Area of the shaded region as shown in the Fig 8.1.
=3[ NGy ax-[ - xdx (Why)
Y/
Fig 8.17

N EN el lz} { _}

=3_lxsim 1 ! 1}—{ ——}=3>< X—— =3rn
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Example 9 sing integration find the area of region bounded by the triangle whose
vertices are (1, ), (, ) and (3, 1). Y

A
Solution Let A(1,), (,)and C(3, 1) be
the vertices of a triangle AC (Fig 8.18).
Area of AAC

= Area of AA Area of trapezium
EC Area of AAEC : :
Now equation of the sides A, C and X o A1, 0) D E
CA are given by

B(2,2)

N
. Y Fig 8.18
y=(x 1),y= x,y=— (x 1), respectively.

Hence, area of A AC = jf( xH dx+'f(l) —-X dx—j x—_ldx

[ ]
COIEPRRIE F R

3

Example 10 Find the area of the region enclosed between the two circles x y =
and (x ) y =.

Solution Equations of the given circles are

x y=.(0 Y
and x ) y=..0

Equation (1) is a circle with centre O at the A(1N3)
origin and radius . Equation () is a circle with <
centre C (, ) and radius . Solving equations 3%

(1) and (), we have Xe Di |C2,0 SX

«x) y=x y \\0
or X x y=x y
+/3

Thus, the points of intersection of the given

circles are A(1, 4/3) and A'(1, /3 ) as shown in Fig 8.19
the Fig 8.19. 8 S

A’(1,\3)

or x =1 which gives y

YI
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Required area of the enclosed region O ACA'O between circles
= area of the region OCAO(Why)
area of the region OAQO area of the region CA

= _I:ydx+j ydx}

:(:WTM J—d} (Why)
=<:1) TR ﬂ
siEl x4 _}
::(x—) { x—sin + (Lﬂsm[x\/——x R lﬁl
(e (P e o s ]

[ 2]

(~a-Femm)ol v )

3

|[EXERCISE 8.2

1. Find the area of thecircle x  y =9 which is interior to the parabolax = y.

2. Find the area bounded by curves (x 1) y =land x y =1.

3. Find the area of the region bounded by the curves y=x , y=x,x= and
x=3.

4. singintegration find the area of region bounded by the triangle whose vertices
are ( 1,),(1,3)and (3,).

5. sing integration find the area of the triangular region whose sides have the
equationsy= x 1, y=3x land x=.
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Choose the correct answer in the following exercises and .

6. Smaller area enclosed by the circlex y = andtheline x y= is

A (n ) 0O = (© n 1

7. Area lying between the curves y = xandy= xis
o 1 o 1
(A) 3 0 3 (©)

Miscellaneous Examples

0 C m)

| v

0

Example 11 Find the area of the parabola y = ax bounded by its latus rectum.

Solution From Fig 8., the vertex of the parabola Y
y = ax is at origin (, ). The equation of the
latus rectum LSL' is x = a. Also, parabola is
symmetrical about the x-axis.
The required area of the region OLL'O

= (area of the region OLSO)

jaydxz J‘a\/de * 0
X \/;ja\/;dx

[l
=
X
w |
1
R\
| I |
Q
,_</

Example 12 Find the area of the region bounded
bytheliney =3x , the x-axis and the ordinates
x= landx=1.

Solution As shown in the Fig 8.1, the line X'<
y=3x meets x-axisatx= _? and its graph

lies below x-axis forx e(—l, _?) and above

x-axis for x e(%, lj .

/ L
|~
4,0
S X
[~~~
LV
Fig 8.20
Y 7
D
x=1
E
Yl
Fig 8.21
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The required area = Area of the region ACA Area of the region AEA

YRS dxf+[ 3 x dx
3
{3x }3 {3x T 15 13
— | =+ x| |+|—/—+ x| =—+—=—
_ T3
71 _
Example 13 Find the area bounded by )(

the curve y = cosx between x = and

X= T \

Solution Fromthe Fig 8., the required . | B D, 21
& o L 3n F =

area = area of the region OAO area E\’i/T

of the region C area of the region . k

EF. X

Thus, we have the required area

3
=j cosxdx + j cosxdx +j3 cosxdx
n 3n
= [sinx] + [sinx]n +[sinx]3:
-1 1=

Example 13 Prove that the curves y = xand x =
divide the area of the square bounded by x =, x
y= and y= into three equal parts.

Solution Note that the point of intersection of the Y’
parabolas y = xandx = yare (,)and (, ) as Fig 8.23
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shown in the Fig 8.3.
Now, the area of the region OAO bounded by curves y = xandx = y.

1

- { \/;—x—}dx :{ ng_x_j

o |
=3 33 .. (1)

Again, the area of the region OPAO bounded by the curves x = y,x=, x=
and x-axis

= xT3dx=i[x3J =1— w0

Similarly, the area of the region ORO bounded by the curve  y = x, y-axis,
y=and y=

oy . y_dy=i[y1 L e

From (1), () and (3), it is concluded that the area of the region OAQO = area of
the region OPAO = area of the region ORO, i.e., area bounded by parabolas
y = xandx = y divides the area of the square in three equal parts.

Example 14 Find the area of the region Y V
(x,y) <y<x 1, <y<x1, <=x<

Solution Let us first sketch the region whose area is to
be found out. This region is the intersection of the
following regions.

A=(xy <y<x 1, X"/

(0]
A=(xy) =<ysxl ;{'
= <x<
and A= (xy)  sx< Fig 8.24

The points of intersection of y=x 1and y=x 1 are points P(, 1) and (1, ).
From the Fig 8., the required region is the shaded region OPRSTO whose area
= area of the region OTPO area of the region TSRT

:jl‘(x #1)dv+ [ (x+1)dx (Why)
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11.
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o be )2

Miscellaneous Exercise on Chapter 8

Find the area under the given curves and given lines
(i y=x,x=1,x= and x-axis
() y=x,x=1,x=>5 and x-axis

Find the area between the curves y = x and y = x .

Find the area of the region lying in the first quadrant and bounded by y = x,
x=, y=landy=.

Sketch the graph of y = |x + 3| and evaluate j_ | x+ 3| dx .

Find the area bounded by the curve y = sin x between x = and x= 7.
Find the area enclosed between the parabola y = ax and the line y = mx.

Find the area enclosed by the parabola y = 3x and the line y=3x 1.

Find the area of the smaller region bounded by the ellipse %4_}/_ =1 and the

. X y
line —+—=1.
1ne 3

X
Find the area of the smaller region bounded by the ellipse — +Z—= 1 and the
a

Lo X Y
line —+==1.
ine —+%
Find the area of the region enclosed by the parabola x =y, the line y=x and
the x-axis.

sing the method of integration find the area bounded by the curve |x| +| y| =1.

Hint The required region is bounded by lines x y=1,x y=1, x y=1and
x y=1
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12.
13.

14.

15.

Find the area bounded by curves ( x,y) y>x andy= x.

sing the method of integration find the area of the triangle AC, coordinates of
whose vertices are A(, ), (, 5) and C (, 3).

sing the method of integration find the area of the region bounded by lines
x y=,3x y=and x 3y 5=
Find the area of the region ( x,y) y < x, x y <9

Choose the correct answer in the following Exercises from 1 to .

16.

17.

18.

19.

Area bounded by the curve y = x%, the x-axis and the ordinates x= and x=11s

-15 15 1
A) 9 0O — © — 0O —
The area bounded by the curve y =x x, x-axis and the ordinates x = 1 and
x=1is given by
() 0 3 (© 3 0 3

Hint y=x ifx and y= x ifx .

The area of the circle x  y = 1 exterior to the parabola y = xis

(A) 5(37:—\/— 0 5(37:+\/_ (©) 5(871—\/5) 0 5(8n+\/§)

T
The area bounded by the y-axis, y = cos x and y =sinx when <x=<-— is

A (4 - 0 Ji- ©) Ji+ 0

Summary

@ The area of the region bounded by the curve y = f (x), x-axis and the lines

b b
x=aandx=b(b a)isgivenby the formula Area=[ ydv=| f(x)dx.

@ The area of the region bounded by the curve x = ¢ (), y-axis and the lines

d d
y=c,y=dis given by the formula Area= j xdy = j o (y)dy .
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@ The area of the region enclosed between two curves y = f(x), y = g (x) and
the lines x = a, x = b is given by the formula,
Area= j b[f(x)—g(x)]dx , where, f(x) > g (x)in a, b

®Iff(x) >2g((x)in a,cand f(x) < g((x)in ¢, b, a ¢ b, then

Area=j:[f(x)—g(x)]dx+jcb[g(x)—f(x)]dx .

Historical Note

The origin of the Integral Calculus goes back to the early period of development
of Mathematics and it is related to the method of exhaustion developed by the
mathematicians of ancient Greece. This method arose in the solution of problems
on calculating areas of plane figures, surface areas and volumes of solid bodies
etc. In this sense, the method of exhaustion can be regarded as an early method
of integration. The greatest development of method of exhaustion in the early
period was obtained in the works of Eudoxus ( .C.) and Archimedes
3.C)

Systematic approach to the theory of Calculus began in the 1th century.
In 15, Newton began his work on the Calculus described by him as the theory
of fluxions and used his theory in finding the tangent and radius of curvature at
any point on a curve. Newton introduced the basic notion of inverse function
called the anti derivative (indefinite integral) or the inverse method of tangents.

uring 18-8, Leibnitz published an article in the Acta Eruditorum
which he called Calculas summatorius, since it was connected with the summation
of a number of infinitely small areas, whose sum, he indicated by the symbol | .
In 19, he followed a suggestion made by . ernoulli and changed this article to
Calculus integrali. This corresponded to Newton s inverse method of tangents.

oth Newton and Leibnitz adopted quite independent lines of approach which
was radically different. However, respective theories accomplished results that
were practically identical. Leibnitz used the notion of definite integral and what is
quite certain is that he first clearly appreciated tie up between the antiderivative
and the definite integral.

Conclusively, the fundamental concepts and theory of Integral Calculus
and primarily its relationships with ifferential Calculus were developed in the
work of P.de Fermat, I. Newton and G. Leibnitz at the end of 1th century.
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However, this ustification by the concept of limit was only developed in the
works of A.L. Cauchy in the early 19th century. Lastly, it is worth mentioning the
following quotation by Lie Sophie s

It may be said that the conceptions of differential quotient and integral which
in their origin certainly go back to Archimedes were introduced in Science by the
investigations of epler, escartes, Cavalieri, Fermat and Wallis .... The discovery
that differentiation and integration are inverse operations belongs to Newton
and Leibnitz .

J
0‘0






Chapter

(DIFFERENTIAL EQUATIONS )

% He who seeks for methods without having a definite problem in mind
seeks for the most part in vain. — D. HILBERT +*

9.1 Introduction

In Class XI and in Chapter 5 of the present book, we
discussed how to differentiate a given function fwith respect
to an independent variable, i.e., how to find /' (x) for a given
function fat each x in its domain of definition. Further, in
the chapter on Integral Calculus, we discussed how to find
a function fwhose derivative is the function g, which may
also be formulated as follows:

For a given function g, find a function f'such that

dy
i = g(x), where y = f(x) . (D)
x
An equation of the form (1) is known as a differential Henri Poincare

equation. A formal definition will be given later. (1854-1912)

These equations arise in a variety of applications, may it be in Physics, Chemistry,
Biology, Anthropology, Geology, Economics etc. Hence, an indepth study of differential
equations has assumed prime importance in all modern scientific investigations.

In this chapter, we will study some basic concepts related to differential equation,
general and particular solutions of a differential equation, formation of differential

equations, some methods to solve a first order - first degree differential equation and
some applications of differential equations in different areas.

9.2 Basic Concepts

We are already familiar with the equations of the type:

xX*-3x+3=0 .. (D)
sinx+cosx=0 -2
x+ty=17 .. (3
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Let us consider the equation:

dy
Xx—+y =0 - (D
dx
We see that equations (1), (2) and (3) involve independent and[or dependent variable
(variables) only but equation ([) involves variables as well as derivative of the dependent
variable y with respect to the independent variable x. Such an equation is called a
differential equation.

In general, an equation involving derivative (derivatives) of the dependent variable
with respect to independent variable (variables) is called a differential equation.

A differential equation involving derivatives of the dependent variable with respect
to only one independent variable is called an ordinary differential equation, e.g.,

2 d—zy + (ﬂ
dx*  \dx
Of course, there are differential equations involving derivatives with respect to
more than one independent variables, called partial differential equations but at this
stage we shall confine ourselves to the study of ordinary differential equations only.

Now onward, we will use the term [differential equationfor [ordinary differential
equation]

1. We shall prefer to use the following notations for derivatives:

3
j = 0 is an ordinary differential equation )

b_, d’y _ dy
dc T d’ T T ad’
2. For derivatives of higher order, it will be inconvenient to use so many dashes

n
as supersuffil therefore, we use the notation y_for nth order derivative d—f .
dx

9.2.1. Order of a differential equation

Order of a differential equation is defined as the order of the highest order derivative of
the dependent variable with respect to the independent variable involved in the given
differential equation.

Consider the following differential equations:

— = .. (D
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d’y _

&) L(dy)
% +X E =0 (D

The equations (), (7) and ([) involve the highest derivative of first, second and
third order respectively. Therefore, the order of these equations are 1, 2 and 3 respectively.

9.2.2 Degree of a differential equation

To study the degree of a differential equation, the key point is that the differential

"nr

equation must be a polynomial equation in derivatives, i.e., ', y", "' etc. Consider the

following differential equations:

2
d’y [(d’y| dy
42 = | =4y =0 .. (9
dx® (a’x2 dx 7 ©)
dy 2 dy
4 = |-sin’y =0 .. (10
(dx} (dx} Sy (10)
dy . dy}
—4sin| — | =
e (dx 0 .. (11)

We observe that equation (9) is a polynomial equation in y"', 3" and)’, equation (10)
is a polynomial equation in y' (not a polynomial in y though). Degree of such differential
equations can be defined. But equation (11) is not a polynomial equation in )’ and
degree of such a differential equation can not be defined.

By the degree of a differential equation, when it is a polynomial equation in
derivatives, we mean the highest power (positive integral inde) of the highest order
derivative involved in the given differential equation.

In view of the above definition, one may observe that differential equations (), (7),
(D) and (9) each are of degree one, equation (10) is of degree two while the degree of
differential equation (11) is not defined.

Order and degree (if defined) of a differential equation are always
positive integers.
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Example 1 Find the order and degree, if defined, of each of the following differential
equations:

L dy o dPy (dyjz dy
(1) dx co8 (11) 7 dxz dx 7 dx
@) y"+)* e =0

Solution

d
(i) The highest order derivative present in the differential equation is d_y , SO its
X

d
order is one. It is a polynomial equation in )" and the highest power raised to Ey

is one, so its degree is one.

2
(i) The highest order derivative present in the given differential equation is Ef , SO

d>
its order is two. It is a polynomial equation in d_i} and d_y and the highest
X X

2

power raised to _dx2 is one, so its degree is one.

(ii)) The highest order derivative present in the differential equation is y", so its

order is three. The given differential equation is not a polynomial equation in its
derivatives and so its degree is not defined.

|EXERCISE 9.1|

Determine order and degree (if defined) of differential equations given in Elercises
1 to 10.

dy . (dsj[ d*s
1. +sin(y")=0 2. y' +5y=0 3. | —| +3s—=0
dx[ (y ) y Y dt S dtz
2 \? 2
4. (d_fJ +C05(ﬂj=0 5. d—fzcos3x+sin3x
dx dx dx

6. (V) O F )+ =0 7. "2 4y =0
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8. yy+y=e¢ 9. Y+ () +2y=0 10. y"+ 2y +siny=0
11. The degree of the differential equation

2.)? 2
(53] () wse() =0
X X

(A) 3 (B) 2 (O)! (D) notdefined
12. The order of the differential equation

2
2x2%—3%+y=0 is
X

(A) 2 B) 1 © 0 (D) notdefined
9.3. General and Particular Solutions of a Differential Equation
In earlier Classes, we have solved the equations of the type:
xX*+1=0 .. (1)
sin?x —cos x =0 .. 2)
Solution of equations (1) and (2) are numbers, real or comple[] that will satisfy the

given equation i.e., when that number is substituted for the unknown x in the given
equation, L.H.S. becomes equal to the R.H.S..

d2
Now consider the differential equation d—f +y=0 .. 3)
X

In contrast to the first two equations, the solution of this differential equation is a
function ¢ that will satisfy iti.e., when the function ¢ is substituted for the unknown y
(dependent variable) in the given differential equation, L.H.S. becomes equal to R.H.S..

The curve y = ¢ (x) is called the solution curve (integral curve) of the given
differential equation. Consider the function given by

y=0(x)=asin(x+b), .. (D
where a, b € R. When this function and its derivative are substituted in equation (3),
L.H.S. =R.H.S.. So it is a solution of the differential equation (3).

Let a and b be given some particular values say a =2 and b :E[ , then we get a

function y=0)= 2sin(x +£[j .. (5)

When this function and its derivative are substituted in equation (3) again
L.H.S. = R.H.S.. Therefore ¢, is also a solution of equation (3).
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Function ¢ consists of two arbitrary constants (parameters) a, b and it is called
general solution of the given differential equation. Whereas function ¢, contains no
arbitrary constants but only the particular values of the parameters a and b and hence
is called a particular solution of the given differential equation.

The solution which contains arbitrary constants is called the general solution
(primitive) of the differential equation.
The solution free from arbitrary constants i.e., the solution obtained from the general

solution by giving particular values to the arbitrary constants is called a particular
solution of the differential equation.

Example 2 Cerify that the function y = e * is a solution of the differential equation

d’y d

—f + &2 y=0

dx” dx
Solution Given function is y = ¢ *. Differentiating both sides of equation with respect
to x , we get

dy -3
= =-3¢" .. (1)
dx
Now, differentiating (1) with respect to x, we have
2
—d f =0e
dx

d
Substituting the values of Xf’d_y and y in the given differential equation, we get
X
LHS. =9 e¢¥+ (3e¥®) - lle®*=9e¢3*-9¢3=0=RH.S..
Therefore, the given function is a solution of the given differential equation.

Example 3 Cerify that the function y = a cos x + b sin x, where, a, b € R is a solution

2
of the differential equation day +y=0
dx?
Solution The given function is
y=acosx+bsinx .. (1)
Differentiating both sides of equation (1) with respect to x, successively, we get
dy ,
—— =—asinx + b cosx
dx
dy

> =—acosx — b sinx
dx
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2
Substituting the values of d—f and y in the given differential equation, we get
X

LH.S.=(—acosx—bsinx)+ (acosx+bsinx)=0=RH.S.
Therefore, the given function is a solution of the given differential equation.

| EXERCISE 9.2 |

In each of the ETercises 1 to 10 verify that the given functions (eplicit or implicit) is a
solution of'the corresponding differential equation:

1. y=e+1 o Yy'=y'=0

2. y=x*+2x+C DYy =2x-2=0

3. y=cosx+C : Y +sinx=0
Xy

4. = 2 : I =

Y= Al+x Y 1+ 12

5. y=Ax Dox)=yx=0)

6. y=xsinx D Xy =y+xafxt—y* (x#0andx Uyorx[1—y)
2

7. xy=logy+C : y=g(xy¢l)

8. y—cosy=x : (ysinytcosy+x)y =y

9. x +y=tan'y Do yYHy+1=0

d
10, y=4ag2—x*xe€(-a,a): x+yd—i=0(y¢0)

11. The number of arbitrary constants in the general solution of a differential equation
of fourth order are:

(A) 0 (B) 2 ©) 3 (D) O

12. Thenumber of arbitrary constants in the particular solution of a differential equation
of third order are:
(A) 3 (B) 2 ©) 1 (D) 0

9.4 Formation of a Differential Equation whose General Solution is given
We know that the equation
X+ +2x— 3+ 0=0 - (D)

represents a circle having centre at (—1, 2) and radius 1 unit.
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Differentiating equation (1) with respect to x, we get

dy x+1

— = (y#2 -2

T2y 0 @
which is a differential equation. Cou will find later on [See (eCample 9 section 9.5.1.)0
that this equation represents the family of circles and one member of the family is the
circle given in equation (1).
Let us consider the equation

X2+ 2 =r? .. 3)

By giving different values to », we get different members of the family e.g.
xX2+yr=1,x*+y*=[]x*+y*=9 etc. (see Fig 9.1).
Thus, equation (3) represents a family of concentric A
circles centered at the origin and having different radii.

We are interested in finding a differential equation
that is satisfied by each member of the family. The
differential equation must be free from r because ris X"
different for different members of the family. This
equation is obtained by differentiating equation (3) with
respect to x, i.e.,

dy dy
2x+2y =— =0 or x+ya=0 - (D Fig 9.1

which represents the family of concentric circles given by equation (3).
Again, let us consider the equation
y=mx-+c .. (5)

By giving different values to the parameters m and ¢, we get different members of
the family, e.g.,

y=x (m=1, ¢=0)

y=Vix (=13, c=0)

y=x+1 (m=1, c=1)

y=—x (m=-1, ¢=0)

y=—-x-1 (m=-1, c=-1)etc. ('see Fig 9.2).

Thus, equation (5) represents the family of straight lines, where m, ¢ are parameters.

We are now interested in finding a differential equation that is satisfied by each
member of the family. Further, the equation must be free from m and ¢ because m and
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c are different for different members of the family. v /@* x>
This is obtained by differentiating equation (5) with e r N ﬂ// %
respect to x, successively we get » - ”
N\
N\
+
dy d*y %
—=m, and —5 =0 B
dx dx’ Ox< 0 >X
The equation ([) represents the family of straight
lines given by equation (5).
Note that equations (3) and (5) are the general ‘{{,
solutions of equations () and () respectively. Fig9.2

9.4.1 Procedure to form a differential equation that will represent a given
family of curves

(a) If the given family F, of curves depends on only one parameter then it is

represented by an equation of the form
F (x,y,a)=0

. (1)

For e[ample, the family of parabolas y* = ax can be represented by an equation

of the form f(x, y, a) : y* = ax.

Differentiating equation (1) with respect to x, we get an equation involving

Y,y x,and g, i.e.,
g(xayay'g a) =0

. (2)

The required differential equation is then obtained by eliminating a from equations

(1) and (2) as
F(x,y,»)=0

- (3)

(b) If the given family F, of curves depends on the parameters a, b (say) then it is

represented by an equation of the from
F,(x,y,a,0)=0

- ()

Differentiating equation ([) with respect to x, we get an equation involving

Vv, x,y, a,b,ie.,
g,y ),a,0)=0

. (5)

Butit is not possible to eliminate two parameters a and b from the two equations
and so, we need a third equation. This equation is obtained by differentiating

equation (5), with respect to x, to obtain a relation of the form

h(,y,y,y",a,b)=0

- ()
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The required differential equation is then obtained by eliminating @ and b from
equations (), (5) and (0) as

Fx,v,,y)=0 .. (7)

The order of a differential equation representing a family of curves is

same as the number of arbitrary constants present in the equation corresponding to
the family of curves.

Example 4 Form the differential equation representing the family of curves y = mx,
where, m is arbitrary constant.

Solution We have

y=mx . (1)
Differentiating both sides of equation (1) with respect to x, we get
dy
o
o . . dy
Substituting the value of m in equation (1) we get y = i X
or X Ll -y=0

which is free from the parameter m and hence this is the required differential equation.

Example 5 Form the differential equation representing the family of curves
y=asin (x + b), where a, b are arbitrary constants.

Solution We have

y=asin(x + b) .. (1)
Differentiating both sides of equation (1) with respect to x, successively we get
b +b 2
gy 9008 (x+b) .. (2)
d’y .
—5 =—asin(x + b) .. (3)
dx
Eliminating a and b from equations (1), (2) and (3), we get
d*y
?Jr y =0 .. (D

which is free from the arbitrary constants a@ and b and hence this the required differential
equation.
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Example 6 Form the differential equation
representing the family of ellipses having foci on
x-a[is and centre at the origin.

Solution We know that the equation of said family X<
of ellipses (see Fig 9.3) is

2 2
X y ’
—t 5 =1 .. (1) Y
a b Fig 9.3
Differentiating equation (1) with respect to x, we get 2—)26 + i—f % =0
a X
2
y dyj b
=== - (2
or X (dx a’ @
Differentiating both sides of equation (2) with respect to x, we get
()
R e
x/ \ dx? x’ dx
d*y ( dy] ? dy
Xy —>5+x|— — =0 - @
o Var N 3)
which is the required differential equation.
Example 7 Form the differential equation of the family Y
of circles touching the x-aTis at origin.
Solution Let C denote the family of circles touching
x-alis at origin. Let (0, a) be the coordinates of the
centre of any member of the family (see Fig 9.0).
Therefore, equation of family C is
X2+ (y—a)*=a* orx* +y*=2ay (D) wr R
X ~ O /X
where, a is an arbitrary constant. Differentiating both
sides of equation (1) with respect to x,we get
N
dy dy Y
2x+2yaz2aa Fig 9.4
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xy?
or NN ™
dx dx dy
dx
Substituting the value of @ from equation (2) in equation (1), we get
)
X+ = 2y dx
dy
dx
dy 2. 2 dy
—(x"+ = 2xy+2y"—
or YD) = 22y
dy 2xy
or I O

This is the required differential equation of the given family of circles.

- (2)

Example 8 Form the differential equation representing the family of parabolas having

verte[Jat origin and alis along positive direction of x-alis.

Solution Let P denote the family of above said parabolas (see Fig9.5) and let (a, 0) be the
focus of amember of the given family, where a is an arbitrary constant. Therefore, equation

of family Pis
V= lax . (D)
Differentiating both sides of equation (1) with respect to x, we get
d
2y - ye)
dx v
Substituting the value of [ from equation (2) A
in equation (1), we get
d
y= (Zy d_yj (x) X'¢ . >X
§ . @9)
d
or -y o
dx
which is the differential equation of the given family v’

of parabolas. Fig 9.5
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EXERCISE 9.3

In each of the Elercises 1 to 5, form a differential equation representing the given
family of curves by eliminating arbitrary constants a and b.

1.

4.
6.

10.

11.

12.

Xy

_+Z:1 2.y =a (b*—x?) 3. y=ae¥tbhe?™
a

y=e* (a+ bx) 5. y=e*(acosx+ b sin x)

Form the differential equation of the family of circles touching the y-aTis at
origin.

Form the differential equation of the family of parabolas having verteJat origin
and alis along positive y-alis.

Form the differential equation of the family of ellipses having foci on y-alis and
centre at origin.

Form the differential equation of the family of hyperbolas having foci on x-alis
and centre at origin.

Form the differential equation of the family of circles having centre on y-alis
and radius 3 units.

Which of the following differential equations has y = ¢ e+ ¢, e*as the general
solution[|

d*y d*y d*y d*y
(A) dx® 7 (B) dx® 7 © dx’ (D) dx’

Which of the following differential equations has y = x as one of its particular
solution[|

1=0

d’y  ,dy d’y _dy

(A) ?_xzﬁﬂy:x (B) Jat oy
d? d d? d

(© “ 53 rw=0 (D) — 5 +x T +w=0

9.5. Methods of Solving First Order, First Degree Differential Equations

In this section we shall discuss three methods of solving first order first degree differential
equations.

9.5.1 Differential equations with variables separable

A first order-first degree differential equation is of the form

d
d—i ~F(x, ) ()
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If F (x, y) can be e[pressed as a product g (x) A(y), where, g(x) is a function of x
and A(y) is a function of y, then the differential equation (1) is said to be of variable
separable type. The differential equation (1) then has the form

d
—=h) . g )

If h(y) # 0, separating the variables, (2) can be rewritten as

1
—— dy=g(x) dx .. (3
oy Y8 ) )
Integrating both sides of (3), we get
1
——dy=|g(x)dx o (
TR )
Thus, (0) provides the solutions of given differential equation in the form
H@y)=Gx)+C

1
Here, H (y) and G (x) are the anti derivatives of ") and g (x) respectively and

C is the arbitrary constant.

Example 9 Find the general solution of the differential equation % = ; *l ,(v#£2)
X 2=y

Solution We have

dy  x+1

- = . (D)

dx 2-y
Separating the variables in equation (1), we get

Q-ydy=x+1)dx .. (2)

Integrating both sides of equation (2), we get
[@=ydv=[(x+1)dx

2 2
Y
2y—+—="—+x+C
or y 5 5 |
or ¥+y+2x-3+2C =0
or x*+y*+2x - [+ C=0, where C = 2C,

which is the general solution of equation (1).
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. . . . 1+y?
Example 10 Find the general solution of the differential equation Y 1y

dx 1+x>

Solution Since 1 + y* # 0, therefore separating the variables, the given differential
equation can be written as

dy dx
2 = 2 -~ (1)
I+y I+x
Integrating both sides of equation (1), we get
dy dx
,[ 2 - .[ 2
I+y I+x
or tan”!' y =tan"'x + C
which is the general solution of equation (1).
Example 11 Find the particular solution of the differential equation % = —xy? given
X
that y =1, when x = 0.
Solution If y # 0, the given differential equation can be written as
d
%z—aw (D)
Integrating both sides of equation (1), we get
jd—Jz} = - [jx dx
y
1
or -—==-2¥+C
y
1
or Y=oo-c . (2)

Substituting y = 1 and x = 0 in equation (2), we get, C=—1.

Now substituting the value of C in equation (2), we get the particular solution of the

given differential equationas y = —
2x°+1

Example 12 Find the equation of the curve passing through the point (1, 1) whose
differential equation is x dy = (2x* + 1) dx (x # 0).



390 MATHEMATICS

Solution The given differential equation can be e pressed as

2
P (2x Hde[
X

or dy = (2x+ljdx . (1)

X

Integrating both sides of equation (1), we get

jdy = j(2x+§jdx

or y=x*+log X[+ C .. (2)
Equation (2) represents the family of solution curves of the given differential equation
but we are interested in finding the equation of a particular member of the family which
passes through the point (1, 1). Therefore substituting x =1, y =1 in equation (2), we
get C=0.
Now substituting the value of C in equation (2) we get the equation of the required
curve as y = x* + log ¥ L]

Example 13 Find the equation of a curve passing through the point (-2, 3), given that

the slope of the tangent to the curve at any point (x, y) is 2—); .

Solution We know that the slope of the tangent to a curve is given by Q
dx

@ 2x

I = ? .. (1)

S0,
Separating the variables, equation (1) can be written as
Vrdy =2x dx .. (2)

Integrating both sides of equation (2), we get
j yidy = j2x dx

3
or y? =x*+C .. (3)

dy
[ The notation — due to Leibnit[lis eltremely flelible and useful in many calculation and formal
transformations, where, we can deal with symbols dy and dx elactly as if they were ordinary numbers. By
treating dx and dy like separate entities, we can give neater e[ pressions to many calculations.

Refer: Introduction to Calculus and Analysis, volume-I page 172, By Richard Courant,
Frit[Jlohn Spinger — Cerlog New [ork.
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Substituting x =—2, y =3 in equation (3), we get C = 5.
Substituting the value of C in equation (3), we get the equation of the required curve as

3 1
y?=x2+5 or y=(3x>+15)3

Example 14 In a bank, principal increases continuously at the rate of 501 per year. In
how many years Rs 1000 double itselfl]

Solution Let P be the principal at any time ¢. According to the given problem,

a _ (i) P
dt 100
dp P
- = . (1
or dt 20 W
separating the variables in equation (1), we get
dp dt
— == .2
P 20 @
Integrating both sides of equation (2), we get
t
logP=—+C
T
or p=e2 "
-
or P= Ce? (where ¢ =C) .. (3)
Now P=1000, whent=0

Substituting the values of P and ¢ in (3), we get C = 1000. Therefore, equation (3),
gives
i
P =1000 e
Let ¢ years be the time required to double the principal. Then

t
2000 =1000¢20 = r=20log?2

EXERCISE 9.4/

For each of the differential equations in ECercises 1 to 10, find the general solution:

dy 1—cosx dy 2
“r 2. = =al- 2<y<2
dx 1+cosx dx Vo y<2)
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dy

—+y=1(y=1) 4. sec?xtan ydx +sec’ytanx dy =10
X

d
(e+eydy—(e—e)dx=0 6. d—;vc=(1+x2)(1+y2)

dy 5
.yl —xdy= 8. x—=-
ylogydx—xdy=0 I Y
dy_ - -1 ¢ ¢ 2 _
a—sm X 10. etanyde+(1—¢e)sec?ydy=0

For each of the differential equations in Elercises 11 to 1] find a particular solution
satisfying the given condition:

11.

12.

13.

14.

15.

16.

17.

18.

19.

d
(X3+X2+X+1)d—y =2x*+x[y=1whenx=0
X
d
x(xz—l)d—i=1[y=0whenx=2

cos(%}=a (ae R)[y=2whenx=0
X

@zytanx [¥=1whenx=0
dx

Find the equation of a curve passing through the point (0, 0) and whose differential
equation is y' = e* sin x.

For the differential equation xy % =(x+2)(y+2), find the solution curve
X

passing through the point (1, —1).

Find the equation of a curve passing through the point (0, —2) given that at any
point (x, y) on the curve, the product of the slope of its tangent and y coordinate
of the point is equal to the x coordinate of the point.

At any point (x, y) of a curve, the slope of the tangent is twice the slope of the
line segment [0ining the point of contact to the point (— []—3). Find the equation
of the curve given that it passes through (-2, 1).

The volume of spherical balloon being inflated changes at a constant rate. If
initially its radius is 3 units and after 3 seconds it is Cunits. Find the radius of
balloon after ¢ seconds.
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20. In a bank, principal increases continuously at the rate of [0 per year. Find the
value of 7 if Rs 100 double itself in 10 years (log 2 = 0.[931).

21. Inabank, principal increases continuously at the rate of 5] per year. An amount
of Rs 1000 is deposited with this bank, how much will it worth after 10 years
(e’ =1.[11).

22. Ina culture, the bacteria count is 1,00,000. The number is increased by 1007 in 2
hours. In how many hours will the count reach 2,00,000, if the rate of growth of
bacteria is proportional to the number present(]

23. The general solution of the differential equation % =™ is
X
(A) eeter=C B) ee+e=C
(C) ex+e=C (D) ex+ev=C

9.5.2 Homogeneous differential equations
Consider the following functions in x and y
F (6, y) =)+ 2x, F, (x,y) =2x -3y,

F, (x,y) = cos (%j , F (x,y)=sinx+ cos y

If we replace x and y by Ax and Ay respectively in the above functions, for any nonleéro
constant A, we get

F, (hx, ) = 22 (02 + 2x9) = M F (x, )
F, O, ) = (2x = 3y) = A F, (x, )

A
F, (Ax, hy) = cos (—yJ =cos (XJ =1 F,(x,y)
AX X
F (Ax, Ay)=sin Ax + cos Ay # A" F_(x, y), forany n € N
Here, we observe that the functions F, F,, F, can be written in the form
F(Ax, Ay)=A"F(x,y)but F cannot be written in this form. This leads to the following
definition:

A function F(x, y) is said to be homogeneous function of degree n if
F(\x, Ay) = A" F(x, ) for any nonléro constant A.

We note that in the above eLamples, F, F,, F, are homogeneous functions of
degree 2, 1, 0 respectively but Fis not a homogeneous function.
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We also observe that

X X X
2 2x 2 X
or F(,y)=Y (14‘7}—)’ hz(;}
Fz(x, y) = xl (2 —3—yJ = x1h3 (zj
x X
or F(x, ) = ) (21 - 3} = ylh[(iJ
Yy Yy

F.(x,y)= x° cos X} =x" h, (XJ
X X
ny [V
F @, y)#x hu(—J ,foranyn e N
X

" x
or F (x,y)=Y h7; ,foranyn e N

Therefore, a function F (x, y) is a homogeneous function of degree » if

F<x,y)=x"g(f) or y"h@

d
A differential equation of the form 2 F (x, y) is said to be homogenous if

dx
F(x, y) is a homogenous function of degree [ero.

To solve a homogeneous differential equation of the type

& r(ay) - o2

We make the substitution y=v.x
Differentiating equation (2) with respect to x, we get

dy dv
= = V+x—
dx dx

&

i from equation (3) in equation (1), we get

Substituting the value of

- (1)
- (2)

. (3)
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v+x@ = (
I g(v)

dv
or X—=g()-v .. (D
dx
Separating the variables in equation ([), we get
dv dx
=— .. (5)
gv)y—v X

Integrating both sides of equation (5), we get
| v _ jldx+C - (D
gv)-v “x

Equation () gives general solution (primitive) of the differential equation (1) when

we replace v by .
X

If the homogeneous differential equation is in the form % =F(x,y)
'y
where, F (x, y) is homogenous function of degree [éro, then we make substitution

—=v i.e., x = vy and we proceed further to find the general solution as discussed
Y

above by writing 3 =F(x,y) = h(zj.
dy y

d
Example 15 Show that the differential equation (x —y) d_y =x+ 2y is homogeneous
X
and solve it.

Solution The given differential equation can be e pressed as

& _x+2y )
dx x—y
+2

Let F(x,y)= ey

xX—y

Alx+2
Now F(he ) = 2252 50, p(, )

A(x—y)
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Therefore, F (x, y) is a homogenous function of degree [ero. So, the given differential
equation is a homogenous differential equation.

Alternatively,

SR
o el - (2)

R.H.S. of differential equation (2) is of the form g (Xj and so it is a homogeneous
X

function of degree [ero. Therefore, equation (1) is a homogeneous differential equation.

To solve it we make the substitution

y=vx .. 3)
Differentiating equation (3) with respect to, x we get
dy dv
— =Vv+x—
dx dx - (0

d
Substituting the value of y and Ey in equation (1) we get

1+2v
V+x — =
dx 1-v
dv  1+2v
or x— = -
dx 1-v
dv VvV +v+l
or X— = ——
dx |
v—1 —dx
or > dv =
vi+v+1 X

Integrating both sides of equation (5), we get

'[v +v+1 - _-[_

2v+1-3
or _[ V——logBt[+C

vV +v+l
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2v+1

— -— dv=—1
o '[v +v+1 '[v +v+1 0g|x|+C

1 3 1
or Elog|v2+v+l|—aj \/_\ ——10g|x|+C

(V+ ] +L J

or %10g|v2+v+1|—%.%tan_l(%j=—log|x|+Cl
or l10g|v2 +v+1|+llogx2 =3 tan™ (Mj +C (WhyD)

2 2 3T

Replacing v by L , we get
X

l10 y_2+1+1 +llo x> =3 tan _I(Mj G,
or 2 ng X 2 g \/_x
1 y y+x
—log|| —+= +C,
o e ()
or 10g|(y2+xy+x2)|=2\/§tan_l(2y+xJ+2Cl
f3x
or log|(x2 +xy+y° )| =23 tan (Mj +C
\3x

which is the general solution of the differential equation (1)

Example 16 Show that the differential equation xcos (lj%=ycos(l)+x is
x ) dx X

homogeneous and solve it.

Solution The given differential equation can be written as

dy ~ ycos(ij'Fx
e —_— = .. (1)
X Cos(yj

X
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It is a differential equation of the form %:F(x, y) .
x

ycos (yj +x
Here F(x,y)= —
X COS (yj
X
Replacing x by Ax and y by Ay, we get
ADycos (yj +x0
F (o, hy) = =10 F(x,y)!
A (x cosyJ
X

Thus, F (x, y) is a homogeneous function of degree [ero.
Therefore, the given differential equation is a homogeneous differential equation.
To solve it we make the substitution
y=vX .. (2)
Differentiating equation (2) with respect to x, we get
dy dv

— = + —_
dx ’ xdx - (3)

d
Substituting the value of y and Ey in equation (1), we get

dv  vcosv+l

Cosv

dv  vcosv+1

X— = ——"——v
of dx cosv
N
or dx  cosv
dx
or cosvdv=—
x
1
Therefore jcosv dv = j— dx
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or sinv=log X3 log [C ]
or sinv=log [Cx [

Replacing v by e , we get
X

sin (Zj = log [Cx [
x

which is the general solution of the differential equation (1).

Example 17 Show that the differential equation 2y eV dx+ (y -2x eyjdy =0is
homogeneous and find its particular solution, given that, x =0 when y = 1.

Solution The given differential equation can be written as

X

dx _ 2xe;—y

= . (1
o - ()
2ye’
Ixel —
Let F(x,y) = e - J
2ye”
| 2xe” —yJ
Then F(hx, Ay) = =1 F(x,p)

7{2yeyj

Thus, F(x, y) is a homogeneous function of degree [éro. Therefore, the given
differential equation is a homogeneous differential equation.

To solve it, we make the substitution

x=vy .. (2)
Differentiating equation (2) with respect to y, we get
dx dv
— =v+ty—

dy dy
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o dx . .
Substituting the value of x and d—x in equation (1), we get
'y

dv  2ve' -1
dy 2é"

dv 2ve’ -1
—_— =V

or — =
ydy 2¢"
dv 1
of ydy 2
—-d
or 2e’ dv = v
Yy
d
or j2ev -dv = —j—y
y
or 2e'=—log = C
X
and replacing v by ; , we get
2e” +logy[=C .. (3)

Substituting x =0 and y = 1 in equation (3), we get
2¢"+1log=C=>C=2
Substituting the value of C in equation (3), we get
2 e; +log =2
which is the particular solution of the given differential equation.

Example 18 Show that the family of curves for which the slope of the tangent at any

2, 2
point (x, y) onitis * FY s given by x> —)* = cx.
2xy
: . . dy
Solution We know that the slope of the tangent at any point on a curve is I

dy x*+ y2
Therefore, - =
dx 2xy
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2

i
dy 1+ 2 0
or —_— = .
dx 2y
X

Clearly, (1) is a homogenous differential equation. To solve it we make substitution
y=vx

Differentiating y = vx with respect to x, we get

Q = v+x—v
dx dx
v+xdv 1+12
r .
? dx 2v
xﬂ— 1-?
o dx 2y
2 d
v2 dv = ad
1-v X
2 dx
or 2v dv = —
v —1 X
Therefore j v dv = —jldx
vi-1 X
or log 0 — 1 —log (X [+ log [C, [
or log [(v* - 1) (x) =1log €,
or (V-1Dx=0C,

Replacing v by 2 , we get
X

2

Yy
[—2—1})6 = [Cl

X

or 0?=x)=0C xorx’—y"=Cx
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EXERCISE 9.5

In each of the ECercises 1 to 10, show that the given differential equation is homogeneous
and solve each of them.

Xty
1. (2+xp)dy=@*+)*)dx 2. y= ,
3. x=y»)dyv—(x+y)de=0 4. (=) de+2xydy=0
dy [2. 2
24V _ 2 4 2 _
5, xa—x 2y° +xy 6. xdy—ydx=\x*+y* dx
. {xcos(z)+ysin(zj}ydxz{ysin(z)—xcos(z)}xdy
X X X X
8. xﬂ—y+xsin(l)=0 9. ydx+xlog(l)dy—2xdy=0
dx X X

T
10. L1+edex+ey 1—; dy=0

For each of the differential equations in Eercises from 11 to 15, find the particular
solution satisfying the given condition:

11. x+y)dy+(x—py)dx=00y=1whenx=1
12. x*dy+ (xy+y)de=0y=1whenx=1

13. {xsmz(zj —y}dx+xdy=0[y=% when x = 1
X
d
14. —y—l+cosec(z)=0[y=0whenx=1
dx x X

d
15. 2xy+y2—2x2d—y=0 Oy=2whenx=1
x

dx X
16. A homogeneous differential equation of the from d_y =h (;J can be solved by

making the substitution.
(A) y=wx (B) v=yx C) x=wy (D) x=v
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17. Which ofthe following is a homogeneous differential equationl’]
A) (x+D+5dy-CBy+2x+Dde=0
(B) () dx —(x* +y) dy=0
©C) P+ de+2xydy=0
(D) ydx+ (*—xy—y)dy=0
9.5.3 Linear differential equations

A differential equation of the from

dy

— 4+ Py =

P =Q
where, P and Q are constants or functions of x only, is known as a first order linear
differential equation. Some e amples of the first order linear differential equation are

_y+y =sinx

dx

Another form of first order linear differential equation is

ax +Px =Q,

dy
where, P, and Q, are constants or functions of y only. Some el amples of this type of
differential equation are

dx+x
—+X=cos
d Y

Ly

dx —2x 5

—_—t— = y eV

dy

To solve the first order linear differential equation of the type

dy
—+Py = ..
n=Q (M

Multiply both sides of the equation by a function of x say g (x) to get

d
g — +P.(g() ¥ =Q.g(x) e
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Choose g(x) in such a way that R.H.S. becomes a derivative of y . g (x).

. dy d
ie. g(x) i +P.gx)y= o .g (x)0O
dy dy
or g(x) o P.g(x)y=g(x) e ty g (x)
= P.g(x) =g (x)
o y-4C)
g(x)

Integrating both sides with respect to x, we get
dex = IM dx
g(x)

or [P-dx = log(g(v)

or g0 = Jr

On multiplying the equation (1) by g(x) = eI ra , the L.H.S. becomes the derivative

of some function of x and y. This function g(x) = eI P4 s called Integrating Factor
(LF.) ofthe given differential equation.

Substituting the value of g (x) in equation (2), we get

ejpdx Q+Pejpdxy _ Q‘eIde
X

or %(yejpdx)=erde

Integrating both sides with respect to x, we get
po el = et ax

or y= e_Ide~j(Q~eJde)dx+C

which is the general solution of the differential equation.
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Steps involved to solve first order linear differential equation:

(i) Write the given differential equation in the form % +Py=Q where P, Q are
constants or functions of x only.
(i) Find the Integrating Factor (LF) = , fpas
(i) Write the solution of the given differential equation as

y (LF) = [(QULF)dx+C

dx
In case, the first order linear differential equation is in the form d_y +Px=Q

where, P and Q, are constants or functions of y only. Then LF = ej B and the

solution of the differential equation is given by

x. (LF) = [(Q LF)dy+C

Example 19 Find the general solution of the differential equation %— Yy =CosX.
X
Solution Given differential equation is of the form
dy
— +Py=Q,whereP=-1and Q = cosx
dx
j—l dx —x
Therefore [.LF=e =e
Multiplying both sides of equation by L.F, we get
dy
e’ —-—e'y=e*cosx
dx 4
or @(ye_x)=eﬂ’ COS X
dx
On integrating both sides with respect to x, we get
yer = je‘xcosxdx+C . (1)
Let I= je_x cos x dx

_ cosx(e__:j—j(—sinx) (—e ™) dx
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= —cosxe " —jsinx e dx

—cosxe " —[sin x(—e ) - jcosx (—e™) dx}

= —cosxe * +sinxe” —jcosx e " dx
or I=—e*cosx+sinxe*—1
or 2l =(sin x — cos x) e™

X

_ (sinx—cosx)e”
2
Substituting the value of I in equation (1), we get

Jes = (smx;cosx)ex LC

or 1

sin x —cos x N
or y = (#j+Ce

which is the general solution of the given differential equation.

d
Example 20 Find the general solution of the differential equation x d_y +2y=x" (x#0)
X

Solution The given differential equation is

d
xay+2y = x? . (D)
Dividing both sides of equation (1) by x, we get
dy 2
—+—y =x
dx x 4

. : : . dy 2
which is a linear differential equation of the type I +Py=Q, where P=—andQ=x.
X x

So LF= Ji&= e = &% =% las /0= f ()]
Therefore, solution of the given equation is given by
y.xt= j(x) (x})dx+C = jx3dx+c

2
X _
or y=—E+CX2

which is the general solution of the given differential equation.
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Example 21 Find the general solution of the differential equation y dx — (x +2)?) dy = 0.
Solution The given differential equation can be written as
dx x

- :2y
dy 'y

1
This is a linear differential equation of the type % +Px=Q,,where P, =—— and

L | ot 1
Q, = 2y. Therefore LF=¢ 7 =¢ ' =0 =—
y
Hence, the solution of the given differential equation is
1
L = [@y) (—dew
y y
or = = [@dy)+C
Y
= —oy+cC
or — =
y -V
or x=2y2+Cy

which is a general solution of the given differential equation.

Example 22 Find the particular solution of the differential equation

%+ycotx =2x +x? cotx (x #0)

given that y = 0 when x =g .

d
Solution The given equation is a linear differential equation of the type d_y +Py=Q,
X

where P = cot x and Q = 2x + x2 cot x. Therefore

cot x dx 1 i .
ILF = ej =e ®"'=ginx

Hence, the solution of the differential equation is given by
y.sinx=J(2x + x2 cot x) sin x dx + C
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or ysinx = J2x sin x dx + [x? cos x dx + C
. 2x* 2x* 2
or ysinx = sinx| — —jcosx —_— dx+jx cosxdx+C
2 2
or ysinx = xzsinx—jx2 cosxdx+jx2cosxdx+C
or ysinx=x?sinx +C .. (1)

T
Substituting y =0 and x = B in equation (1), we get

=[5 (3)-e

2
-7
L

Substituting the value of C in equation (1), we get

or C=

2
. 2 . T
ysmx= X smx——E

2

or y=x>- (sinx #0)

Osinx
which is the particular solution of the given differential equation.
Example 23 Find the equation of a curve passing through the point (0, 1). If the slope

of the tangent to the curve at any point (x, ) is equal to the sum of the x coordinate
(abscissa) and the product of the x coordinate and y coordinate (ordinate) of that point.

d
Solution We know that the slope of the tangent to the curve is Ey
Theref: o _ +
erefore, o X T
d
or oW =x ()

d
This is a linear differential equation of the type d_y +Py=Q, where P=-xand Q =x.
X

j—xdx ;Xz

Therefore, I.LF=e¢ =e
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Hence, the solution of equation is given by

Let 1= j (X) e 2 dx

2
Let %=t,then—x dx =dt or x dx = — dt.

2
—X

Therefore, 1= —jet dt=—e'=—¢ 2
Substituting the value of I in equation (2), we get

2
—X

_e2 +C

-
2

Ye

2
X

—1+Ce?

or v

3

- (2)

. (3)

Now (3) represents the equation of family of curves. But we are interested in
finding a particular member of the family passing through (0, 1). Substituting x =0 and

y=11n equation (3) we get
l=—1+C.e" or C=2
Substituting the value of C in equation (3), we get

y=-142e?
which is the equation of the required curve.

EXERCISE 9.6
For each of the differential equations given in Elercises 1 to 12, find the general solution:
dy : dy 2 dy y_ >
1. —+2y=sinx 2. —+3y=e 3. S+ =x
dx 4 dx 4 dx x

"y pex<3) s eotxevmums [osx<3)
4. —+(secx)y=tanx| 0<x<— 5. cos"x—+y=tanx | 0<x<—
g ey 2 ax 2

dy 2 dy 2
6. x—+2y=x"logx 7. xlogx—+y=—logx
i y g g i y . g
8. (1+x?)dy+2xydx=-cotxdx(x=0)
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dy dy

9, x—+y—x+xycotx=0 (xz0) 10. (x+y)—=1
b xy (x#0) ( y)abC

d
11. ydx+(x—-3»>)dy=0 12. (x+3y2)d—i=y (y>0).

For each of the differential equations given in Elercises 13 to 15, find a particular
solution satisfying the given condition:

13. Q+2ytanx=sinx[y=0 when ng
X

14. (1+x2)ﬂ+2xy= 12[y=0 when x =1
dx 1+x

dy . e
15. —-3ycotx=sin2x[y=2 when x=—
ax Y 2

16. Find the equation of a curve passing through the origin given that the slope of the
tangent to the curve at any point (x, y) is equal to the sum of the coordinates of
the point.

17. Find the equation of a curve passing through the point (0, 2) given that the sum of
the coordinates of any point on the curve e[ceeds the magnitude of the slope of
the tangent to the curve at that point by 5.

d
18. The Integrating Factor of the differential equation x Ey —y=2x"is
1
(A) e (B) e © ~ (D) x
19. The Integrating Factor of the differential equation
(l—yz)@+yx =ay(-l<y<] is
dy
1 1

1 1
W Fg B g Oy O s

Miscellaneous Examples

Example 24 [erify that the function y = ¢, e* cos bx + ¢, e sin bx, where ¢, c, are
arbitrary constants is a solution of the differential equation

dzy dy 2 2
2 20 (> +b?)y=0
dx® dx 7
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Solution The given function is
y=e” l¢, cosbx + ¢, sinbx[]
Differentiating both sides of equation (1) with respect to x, we get

Q _ ax . : ax
o€ [—bc1 sinbx+bc, cosbx] + [cl cosbx +c, s1nbx]e -a
dy .
or o e“lbc, +ac))cosbx+(ac, —bc,)sinbx!
Differentiating both sides of equation (2) with respect to x, we get
d’y . .
el e“l(lbc, +ac)) (=bsinbx)+(ac, —bc,) (bcosbx)!
x

+ [(bc, +acy)cosbx +(ac, —bc))sinbxe™.a

ars

. (1)

- (2)

= ¢™[(a’ c, —2abc, —b’c,) sinbx + (a* ¢, + 2abc, —b’c,) cosbx!

2

Substituting the values of d_é}’d_y and y in the given differential equation, we get
X

x
LHS. = ¢“la*c,—2abc, —b*c,)sinbx+(a’c, +2abc, —b*c,) cos bx|
—2ae™ [{bc, +ac, )cosbx +(ac, —bc, ) sin bx|

+(a* + b*)e™ [¢,cos bx+ ¢, sinbx|

(azc2 —2abe¢, —b*c, —2a’c, + 2abe, +a’c, +b’c, )sin bx
IX

+(a’c, +2abc, —b*c,—2abc, —2a’c, +a’c,+b’c, ) cos bx

= e™[0xsinbx +0coshx| =e* [10=0 =R.H.S.
Hence, the given function is a solution of the given differential equation.

Example 25 Form the differential equation of the family of circles in the second

quadrant and touching the coordinate ales.

Solution Let C denote the family of circles in the second quadrant and touching the
coordinate ales. Let (—a, a) be the coordinate of the centre of any member of

this family (see Fig 9.0).
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Equation representing the family C is

(x+ap+(y—a)=a (1) X
or x*+ 32+ 2ax—2ay+a*=0 ..(2)
Differentiating equation (2) with respect to x, we get (-a 9
2x+2yﬂ+2a—2aﬂ =0 X< o >X
dx dx
dy (dy j
x+y— =a|—-1
or ydx dx v
! Y’
or g Yy Fig 9.6
y' -1
Substituting the value of @ in equation (1), we get
x+yy' T x+yy T x+yy' T
Y+ ,yy +y- ,yy _ ,yy
y' -1 y' =1 y' -1
or Wy —xtxtyy Bty —y-x-yyE=kx+yy>=
or (x+yyP)y?+x+yE=x+y)y>3
or (x+yP )+ 1= x+yy3

which is the differential equation representing the given family of circles.

Example 26 Find the particular solution of the differential equation log (%J =3x+1Ly
X

given that y = 0 when x = 0.

Solution The given differential equation can be written as

dy

— — ,(Bx+ )

e

dy
or — =e¥. eV . (1

" M
Separating the variables, we get

d

Ty= e* dx

e y

Therefore j e Ydy= je3 Tdx
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e*Uy e3x
or L " 3 +C
or & +3e 7 +12C=0 . (2)

Substituting x =0 and y =0 in (2), we get
-7
+3+12C=00rC= —
or T
Substituting the value of C in equation (2), we get
(¥ +3ev -7 =0,
which is a particular solution of the given differential equation.

Example 27 Solve the differential equation

(xdy —y dx) y sin (%j =(ydx+xdy)xcos (%j

Solution The given differential equation can be written as

[l eeol o Lol el

Y 2l Y
xycos| = |+ y“sin| =
a7 U ’ U
or o
xysin (yj —x” cos (yj
X X

Dividing numerator and denominator on RHS by x?, we get

2
eos[2 )7 Vsin (2
Q_ xcos(xj+(x2Jsln(xj

= . (1)
d Ysin (yj — CoS (yj
X X X
. . . . . dy  (y
Clearly, equation (1) is a homogeneous differential equation of the form e g <)
To solve it, we make the substitution
y=vX .. (2)
dy dv
or =v+x—
dx X



0 MATHEMATICS

dv  vcosv+visiny

or v+xa = T Simv—cosy (using (1) and (2))
dv 2v cosv
or X—=—"—"
dx  vsinv-—cosv
(vsinv—cosv] 2 dx
or —|dv ="
VCoS v x
ysiny —cosv 1
Therefore j(—)dv = 2.[ —dx
VCoSV x
or jtanvdv—jldv = 2jldx
y x
or log|secvl —log (v (= 2log [k [+log [C,
log secv log [C
or e og [C [
secv
or > =LC, .. (3)
VX

Replacing v by % in equation (3), we get

oE

or sec (l] =Cxy
X

which is the general solution of the given differential equation.

= C where, C = [IC,

Example 28 Solve the differential equation
(tan''y —x) dy =(1 +)7?) dx.

Solution The given differential equation can be written as

dx x tan”'y

5= Ty o (1)

dy l1+y
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Now (1) is a linear differential equation of the form % +Px=Q,
y

1 tan”'y
where, P, = and Q, = .
! 1+ y2 ! 1+ yz
1
Therefore, I.LF= e W @ — etan’] y

Thus, the solution of the given differential equation is

tan_ly tan’]y
xetany:j(ﬁ}@ dy+C

-1
Let 1= j (_tlan J; Jeta“y dy
t+y

|
Substituting tan™ y = ¢ so that [1 5 de =dt , we get
Ty

I= jtetdt=te‘—h.etdt=tet—ef=ef(t—l)

or [= pan'y(tan'y —1)

Substituting the value of I in equation (2), we get
x. eV =t Y(tan"'y —1)+ C

or x = (tan"'y—=1)+C ey

which is the general solution of the given differential equation.

Miscellaneous Exercise on Chapter 9

t19

- (2)

1. For each of the differential equations given below, indicate its order and degree

(if defined).

2 2 3 2
W ¢ y+5x(%j —y=logx (i) (%) —E(@j +7y = sinx
X

a’

O 3
(i y—sin[QJ=o

dx
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2. Foreach of the elercises given below, verify that the given function (implicit or
eplicit) is a solution of the corresponding differential equation.

d’y . d
(i) xy=ae +be*+x? : Xd—f+2d—i—xy+x2—2=0
X
d’y . dy
i) y=e + b si : —5—2—+2y=0
(i) y=e*(acosx+ bsinx) 0 It ¥
d*y
(i) y=xsin 3x : ?+9y—Ecos3x=0
X
d
(iv) x*=2y*logy : (X2+y2)d—i—xy=0

3. Form the differential equation representing the family of curves given by
(x — a)* + 2y* = @*, where a is an arbitrary constant.

4. Prove that x> — y* = ¢ (x* + y*)? is the general solution of differential equation
(x* = 3x y») dx = () — 3x%) dy, where c is a parameter.

5. Form the differential equation of the family of circles in the first quadrant which
touch the coordinate ales.

d
6. Find the general solution of the differential equation d_y + 0 =0,
X -Xx

. o dy Yyl
7. Show that the general solution of the differential equation —+-—5———=0is
dx x"+x+1

given by (x + y+ 1) =A (1 — x — y — 2xy), where A is parameter.

T
8. Find the equation of the curve passing through the point (0’ —[j whose differential

equation is sin x cos y dx + cos x sin y dy = 0.
9. Find the particular solution of the differential equation
(1+e*)dy+(1+)>) e dx=0,given that y=1 when x = 0.

10. Solve the differential equation y e;dx = ( X e; + y2 j dy (y#0).

11. Find a particular solution of the differential equation (x—y) (dx+dy)=dx—dy,
given that y = —1, when x = 0. (Hint: put x — y = ¢)
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13.

14.

15.

16.

17.

18.
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e y |dx
Solve the differential equation = |—=1(x#0).

x Ax]dy
, , , , . . dy
Find a particular solution of the differential equation I + ycotx = [k cosec x
X

i
(x #0), given that y =0 when X =5~

d
Find a particular solution of the differential equation (x+ 1) Ey =2e>—1, given

that y = 0 when x = 0.

The population of a village increases continuously at the rate proportional to the
number of its inhabitants present at any time. If the population of the village was
20, 000 in 1999 and 25000 in the year 200] what will be the population of the
village in 200900

ydx—xdy

y

(A) xy=C (B) x =0 (€) y==Cx (D) y=0Cx

The general solution of the differential equation 0 is

dx
The general solution of a differential equation of the type o +Px=Q is
'y

(A) yeJP' dy:j(QleJP' dy)dy+C
(B) y.ejp'dxzj(QleJP'dx)dx+C
© wed™ =flQuel"* ) ay+c

xel = Qe x+C
@) xd"* = [(Qel"*)a

The general solution of the differential equation e* dy + (y ¢+ 2x) dx =0 is
(A) xer+x*=C (B) xer+)y?=C
©C) ye+txt=C (D) yer+x*=C
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Summary

An equation involving derivatives of the dependent variable with respect to
independent variable (variables) is known as a differential equation.

Order of a differential equation is the order of the highest order derivative
occurring in the differential equation.

Degree of a differential equation is defined if it is a polynomial equation in its
derivatives.

Degree (when defined) of a differential equation is the highest power (positive
integer only) of the highest order derivative in it.

A function which satisfies the given differential equation is called its solution.
The solution which contains as many arbitrary constants as the order of the
differential equation is called a general solution and the solution free from
arbitrary constants is called particular solution.

To form a differential equation from a given function we differentiate the
function successively as many times as the number of arbitrary constants in
the given function and then eliminate the arbitrary constants.

Cariable separable method is used to solve such an equation in which variables
can be separated completely i.e. terms containing y should remain with dy
and terms containing x should remain with dx.

A differential equation which can be elpressed in the form
@y _
dx
functions of degree [ero is called a homogeneous differential equation.

d
f(x,y) or d_x = g(x, y) where, f'(x, y) and g(x, ) are homogenous
Yy

A differential equation of the form % +Py =Q ,where P and Q are constants
X

or functions of x only is called a first order linear differential equation.

Historical Note

One of the principal languages of Science is that of differential equations.

Interestingly, the date of birth of differential equations is taken to be November,
11,175, when Gottfried Wilthelm Freiherr Leibnit™(1TT)- 1710) first put in black

and white the identity j ydy= % y* , thereby introducing both the symbols [and dy.
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Leibnit[was actually interested in the problem of finding a curve whose tangents
were prescribed. This led him to discover the [Znethod of separation of variablesT]
1091. A year later he formulated the [method of solving the homogeneous
differential equations of the first order’] He went further in a very short time
to the discovery of the [method of solving a linear differential equation of the

first-order’]JHow surprising is it that all these methods came from a single man
and that too within 25 years of the birth of differential equations[’

In the old days, what we now call the [Solutionllof a differential equation,
was used to be referred to as fintegralClof the differential equation, the word
being coined by [ames Bernoulli (1C50- 1705) in 1790. The word [Solution was
first used by [oseph Louis Lagrange (1730- 1113) in 1770} which was almost
hundred years since the birth of differential equations. It was Miles Henri Poincare
(1050- 1912) who strongly advocated the use of the word [Solutionand thus the
word [SolutionThas found its deserved place in modern terminology. The name of
the [fhethod of separation of variablesCis due to Lohn Bernoulli (177 - 17[1),
a younger brother of fames Bernoulli.

Application to geometric problems were also considered. It was again [ohn
Bernoulli who first brought into light the intricate nature of differential equations.
In a letter to Leibnit[] dated May 20, 1715, he revealed the solutions of the
differential equation

2

Xy = 2y s

which led to three types of curves, vill, parabolas, hyperbolas and a class of
cubic curves. This shows how varied the solutions of such innocent looking
differential equation can be. From the second half of the twentieth century attention
has been drawn to the investigation of this complicated nature of the solutions of
differential equations, under the heading [qualitative analysis of differential
equations[] Now-a-days, this has acquired prime importance being absolutely
necessary in almost all investigations.

\/
—_— Q‘Q_



Chapter 1 0

(VECTOR ALGEBRA )

% In most sciences one generation tears down what another has built and what
one has established another undoes. In Mathematics alone each generation
builds a new story to the old structure. — HERMAN HANKEL <

10.1 Introduction

In our day to day life, we come across many queries such
as — What is your height? How should a football player hit
the ball to give a pass to another player of his team? Observe
that a possible answer to the first query may be 1.6 meters,
a quantity that involves only one value (magnitude) which
is a real number. Such quantities are called scalars.
However, an answer to the second query is a quantity (called
force) which involves muscular strength (magnitude) and
direction (in which another player is positioned). Such
quantities are called vecfors. In mathematics, physics and

engineering, we frequently come across with both types of

W.R. Hamilton
(1805-1865)

quantities, namely, scalar quantities such as length, mass,
time, distance, speed, area, volume, temperature, work,
money, voltage, density, resistance etc. and vector quantities like displacement, velocity,
acceleration, force, weight, momentum, electric field intensity etc.

In this chapter, we will study some of the basic concepts about vectors, various
operations on vectors, and their algebraic and geometric properties. These two type of
properties, when considered together give a full realisation to the concept of vectors,
and lead to their vital applicability in various areas as mentioned above.

10.2 Some Basic Concepts

Let ‘I’ be any straight line in plane or three dimensional space. This line can be given
two directions by means of arrowheads. A line with one of these directions prescribed
is called a directed line (Fig 10.1 (i), (ii)).
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I L !
B
A
A
() (i) (i)
Fig 10.1

ow observe that if we restrict the line  /to the line segment A, then a magnitude
is prescribed on the line / with one of the two directions, so that we obtain a directed
line segment (Fig 10.1(iii)). Thus, a directed line segment has magnitude as well as
direction.

Definition 1 A quantity that has magnitude as well as direction is called a vector.
otice that a directed line segment is a vector (Fig 10.1(iii)), denoted as A or
simply as &, and read as ‘vector A’ or ‘vector g .
The point A from where the vector A starts is called its initial point, and the

point where it ends is called its ferminal point. The distance between initial and
terminal points of a vector is called the magnitude (or length) of the vector, denoted as

A ,or g,or a. The arrow indicates the direction of the vector.

Since the length is never negative, the notation g 0 has no meaning.

Position Vector
From Class I, recall the three dimensional right handed rectangular coordinate
system (Fig 10.2(i)). Consider a point in space, having coordinates ( x, y, z) with

respect to the origin O (0, 0, 0). Then, the vector o having O and as its initial and
terminal points, respectively, is called the position vector of the point with respect

to O. sing distance formula (from Class I), the magnitude of O (or 7 )is given by

o \/xz +y + 22
In practice, the position vectors of points A, , C, etc., with respect to the origin O

are denoted by &, b, ¢ , etc., respectively (Fig 10.2 (ii)).
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VA Z

9
r

0(0,0,0)

X (i) X (ii)
Fig 10.2
Direction Cosines

Consider the position vector F(or r ) ofapoint ( x,y,z)asinFig 10.. The angles a,
[, y made by the vector # with the positive directions of x, y and zaes respectively, ,
are called its direction angles. The cosine values of these angles, i.e., cos a, cos § and
cosy are called direction cosines of the vector 7, and usually denoted by /, m and n,
respectively. v/

Clooi ;
,"\'I.h. ‘o'
. ..
d“ .~ r" '
AERRRR NS
: r Pie Lt :
' ,’
. 0 .’ y
. e
. 7.
by ~
L) L4
. %
' .
Al-a --------------------------
X
. a
Fig 10.3 X

From Fig 10., one may note that the triangle OA is right angled, and in it, we

have cosa = (r stands for 7 ) . Similarly, from the right angled triangles O and
r

OC, we may write cos = 2 and cos Y= Z . Thus, the coordinates of the point may

r r
also be epressed as ( Ir, mr,nr). The numbers /r, mr and nr, proportional to the direction
cosines are called as direction ratios of vector 7 , and denoted as a, b and ¢, respectively.
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One may note that > m*> n*> 1but a*> b* c# 1,in general.

10.3 Types of Vectors

Zero Vector A vector whose initial and terminal points coincide, is called a ero
vector (or null vector), and denoted as 0. ero vector can not be assigned a definite
direction as it has ero magnitude. Or, alternatively otherwise, it may be regarded as
having any direction. The vectors AA, represent the ero vector, ,

Unit Vector A vector whose magnitude is unity (i.e., 1 unit) is called a unit vector. The
unit vector in the direction of a given vector @ is denoted by a .

Coinitial Vectors Two or more vectors having the same initial point are called coinitial

vectors.

Collinear Vectors Two or more vectors are said to be collinear if they are parallel to
the same line, irrespective of their magnitudes and directions.

Equal Vectors Two vectors g and b are said to be equal, if they have the same
magnitude and direction regardless of the positions of their initial points, and written

as a b.

Negative of a Vector A vector whose magnitude is the same as that of a given vector
(say, A ), butdirection is opposite to that of it, is called negative of the given vector.
For eample, vector A is negative of the vector A, and written as A =A .

Remark The vectors defined above are such that any of them may be subect to its
parallel displacement without changing its magnitude and direction. Such vectors are
called free vectors. Throughout this chapter, we will be dealing with free vectors only.

N
Example 1 epresent graphically a displacement A
of 40 km, 0 west of south. W< O g
Solution The vector O represents the required Scale
displacement (Fig 10.4). — 309

10 km
Example 2 Classify the following measures as
scalars and vectors.
(i) seconds

N
(ii) 1000 cm 4 S
Fig 10.4
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(ii)) 10 ewton (iv) 0kmhr (v) 10 gem
(vi) 20 ms towards north
Solution
(1) Timescalar (i) olumescalar (ii1) Forcevector
(iv) Speedscalar (v) ensityscalar (vi) elocityvector

Example 3 In Fig 10., which of the vectors are
(i) Collinear (i) Equal (ii)) Coinitial

Solution

(i) Collinear vectors g, ¢ and d .

Scale
(i) Equal vectors a and ¢. —
1 unit
(i) Coinitial vectors b, ¢ and d.
Fig 10.5
| EXERCISE 10.1|

epresent graphically a displacement of 40 km, 0 east of north.
2. Classify the following measures as scalars and vectors.
(i) 10kg (i) 2 meters northwest (i) 40
(iv) 40 watt (v) 10 coulomb (vi) 20 ms 2
3. Classify the following as scalar and vector quantities.
(i) timeperiod (i) distance (ii)) force
(iv) velocity (v) work done
4. InFig10.6 (asquare), identify the following vectors.
(i) Coinitial (i) Equal
(iii) Collinear but not equal

->
a

-
d

e

5. Answer the following as true or false.

(i) a and —a are collinear.

(i) Two collinear vectors are always equal in i

magnitude. Fig 10.6
(iii) Two vectors having same magnitude are collinear.

(iv) Two collinear vectors having the same magnitude are equal.
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10.4 Addition of Vectors C

A vector A simply means the displacement from a
point A to the point . ow consider a situation that a
girl moves from A to and then from to C
(Fig 10.). The net displacement made by the girl from

point A to the point C, is given by the vector AC and Fig 10.7
epressed as

AC AC+
This is known as the triangle law of vector addition.

In general, if we have two vectors G and b (Fig 10. (i)), then to add them, they
are positioned so that the initial point of one coincides with the terminal point of the
other (Fig 10.(i1)).

C
5 .
g >
<P b
-> A -> B
a a
@ (ii)
Fig 10.8

For eample, in Fig 10. (ii), we have shifted vector 5 without changing its magnitude
and direction, so that it’s initial point coincides with the terminal point of G . Then, the

vector G +b , represented by the third side AC of the triangle AC, gives us the sum
(or resultant) of the vectors @ and b i.e., in triangle AC (Fig 10. (ii)), we have
AC+  AC
oW again, since AC=-CA , from the above equation, we have
AC+CA+  AA=0
This means that when the sides of a triangle are taken in order, it leads to ero
resultant as the initial and terminal points get coincided (Fig 10.(iii)).
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!

ow, construct a vector C  so that its magnitude is same as the vector C ,but
the direction opposite to that of it (Fig 10. (iii)), i.e.,

c'’' -C
Then, on applying triangle law from the Fig 10. (iii), we have

AC=AC+ ' A(€)- =d-b

The vector AC' is said to represent the difference of G and b .

ow, consider a boat in a river going from one bank of the river to the other in a
direction perpendicular to the flow of the river. Then, it is acted upon by two velocity
vectors—one is the velocity imparted to the boat by its engine and other one is the
velocity of the flow of river water. nder the simultaneous influence of these two
velocities, the boat in actual starts travelling with a different velocity. To have a precise
idea about the effective speed and direction
(i.e., the resultant velocity) of the boat, we have
the following law of vector addition.

B L C

.-_.--.---___-______}.

If we have two vectors g and b represented

by the two adacent sides of a parallelogram in
magnitude and direction (Fig 10.), then their

sum a b is represented in magnitude and @

direction by the diagonal of the parallelogram
through their common point. This is known as
the parallelogram law of vector addition.

From Fig 10., using the triangle law, one may note that
OA+AC OC

a
Fig 10.9

or OA+0 OC (since AC=0 )

which is parallelogram law. Thus, we may say that the two laws of vector
addition are equivalent to each other.

Properties of vector addition

Property 1 For any two vectors g and b ,

i+b b+a (Commutative property)
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Proof Consider the parallelogram AC Fi
(Fig10.10). Let Aand & , =5 thenusing
the triangle law, from triangle AC, we have 2
. - g O
AC a b g ’z“
ow, since the opposite sides of a A=
parallelogram are equal and parallel, from )
Fig10.10, we have, AC b and zl= =
CA & . Again using triangle law, from Fig ‘110.10
triangle AC, we have
AC AC b a
Hence i+b b+a
Property 2 For any three vectors @, b and &
(@G+b)+¢ a+(b+7) (Associative property)
Proof Let the vectors @,b and ¢ be represented by | and S ~ 7, respectively,

as shown in Fig 10.11(i) and (ii).

Then

Qy
+
S

and

Sy
+
ol
w2
w2

So (@+b)+ ¢SS
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and i+(b+¢) SS
Hence (@G+b)+¢ a+(b+7)
Remark The associative property of vector addition enables us to write the sum of
three vectors @ ,b, ¢ as a+b +¢ without using brackets.
ote that for any vector g, we have

i+0 O+a=a
Here, the ero vector 0 is called the additive identity for the vector addition.

10.5 Multiplication of a Vector by a Scalar

Let a be a given vector and A a scalar. Then the product of the vector a by the scalar
A, denoted as A a , is called the multiplication of vector @ by the scalar A. ote that,
A d 1is also a vector, collinear to the vector a . The vector A d has the direction same
(or opposite) to that of vector @ according as the value of A is positive (or negative).
Also, the magnitude of vector Aa is A times the magnitude of the vector a, i.e.,
Ad A oa

A geometric visualisation of multiplication of a vector by a scalar is given

in Fig 10.12.

A Z‘I@
Y A /
/N / N
Fig 10.12

When A —1, then Ad =-d, which is a vector having magnitude equal to the

magnitude of @ and direction opposite to that of the direction of a . The vector —a is

called the negative (or additive inverse) of vector a and we always have

di+(-d) (-a)+a=0

Also, if A % ,provided @ #0, i.e. @ isnotanull vector, then
a
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So, Ld represents the unit vector in the direction of d . We write it as

a a

For any scalar k, k0 0.

10.5.1 Components of a vector

Let us take the points A(1, 0, 0), (0, 1, 0) and C(0, 0, 1) on the xais, yais and
zais, respectively. Then, clearly

-

OA10  1and OC1=

The vectors OA, Oand OC ,each having magnitude 1,

are called unit vectors along the axes O, O and O,

respectively, and denoted by i, j and k, respectively -

(Fig 10.1). Fig 10.13
ow, consider the position vector O ofa point ( x, y, z) as in Fig 10.14. Let .
be the foot of the perpendicular from on the plane O. We, thus, see that | s
7.
A
R
P (x):7)
A
zk 7“
A
h7j X
:{\ o S ==X
Q Ss
P,
X Fig 10.14

parallel to zais. As i, j and k are the unit vectors along the x, y and zaes,

respectively, and by the definition of the coordinates of , we have (T = =zk.

Similarly, 0S, = =yjand O =xi.
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Therefore, it follows that 0—1 0] | =Xi+ Y

and O O, | =xi+y+zk
Hence, the position vector of with reference to O is given by
Wor )3 xXi +yj+zk
This form of any vector is called its component form. Here, x, y and z are called

as the scalar components of ¥ ,and xi, )/ and zk are called the vector components

of 7 along the respective aes. Sometimes x, y and z are also termed as rectangular
components.

The length of any vector 7 =xi + yj + zk , is readily determined by applying the
ythagoras theorem twice. We note that in the right angle triangle O , (Fig 10.14)

O—l \/0—2 —lzz\/x2+y2’
and in the right angle triangle O , we have

0 \/O(—12+ T2=\/x2+y2 +z°

Hence, the length of any vector 7 = xi +yj zk is given by
r xXi +yj+zk \/m
If @ and b are any two vectors given in the component form ;i +a,j a k and
bi +b,j+b k ,respectively, then
(i) the sum (or resultant) of the vectors & and b is given by
d+b  (a,+b)i+(a,+b)j+(a +b)k
(i) the difference of the vector @ and b is given by
a-b (a,—b)i+(a,—b)j+(a —b)k

(iii) the vectors d@ and b are equal if and only if
a b,a, b, and a b

1 2

(iv) the multiplication of vector @ by any scalar A is given by

A ()i +(hay)j+ (ha )k
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The addition of vectors and the multiplication of a vector by a scalar together give
the following distributive laws

Let d and b be any two vectors, and k and m be any scalars. Then
() kd+mad=(k+m)a
(i) k(ma)=(km)a
(iii) k(d+b)= ki +kb
Remarks
(i) One may observe that whatever be the value of A, the vector Ag is always
collinear to the vector a. In fact, two vectors @ and b are collinear if and only
if there eists a nonero scalar A such that 5 =Xa . If the vectors @ and b are
given in the component form, i.e. @=aji +a,j+a k and b=bi+b,j+b k,

then the two vectors are collinear if and only if

bi+b,j+bk Mai+a,j+ak)

= bi+b,j+bk (ha))i+(hay)j+(ra )k
& b =Aa,, by=ka,, b =ha

b
PN _1=b_2=b_=x

@ a, a

(@) If d=aji+a,j+ak,thena,a, a arealso called direction ratios of 4.

(i) Incaseifitis giventhat /, m, nare direction cosines of a vector, then /i +mj + nk

(cosa)i +(cosP)j+(cosy)k is the unit vector in the direction of that vector,
where o, B and y are the angles which the vector makes with x, y and z aes
respectively.

Example 4 Find the values of x, y and z so that the vectors G =xi +2;+zk and
b=2i + yj + k are equal.

Solution ote that two vectors are equal if and only if their corresponding components

are equal. Thus, the given vectors d and b will be equal if and only if
x2, 2, z1
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Example 5 Let a=i+2j and p=2i+j.1s a = b 7 Are the vectors G and b
equal?

Solution We have 15 2y 2+ 2=+ and 2 =V 2+ 2=+

So, @ = b .ut,the two vectors are not equal since their corresponding components
are distinct.

Example 6 Find unit vector in the direction of vector G =2i + j+k
Solution The unit vector in the direction of a vector g is givenby a=—a.

ow a 22412+ 144

& -

1 2 1 .
= (2i+)i+k i+ + k
Therefore a \/ﬁ( i+)] 14 14 J N4

Example 7 Find a vector in the direction of vector =i -2, that has magnitude
units.
Solution The unit vector in the direction of the given vector 7 is
| PP 1. 2.
T(l -2)) =TZ _TJ

Therefore, the vector having magnitude equal to and in the direction of g is

1
a=——a
a

1A 24 14, ;
_l__ —— I

\/— \/—] \/_ \/_
Example 8 Find the unit vector in the direction of the sum of the vectors,

G=2i+2j— kand b=2i+j+ k.

A

Solution The sum of the given vectors is

d+b(=C,say)4 i2 j— k

JE+C2 - 2=

ol

and
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Thus, the required unit vector is

1 1 4 2
C=TE=—(4Z'+2.)— k = i+ j— k
c \2222 / N, N v
Example 9 Write the direction ratio’s of the vector G =i + j — 2k and hence calculate

its direction cosines.

Solution ote that the direction ratio ’s a, b, ¢ of a vector 7 =xi + yj+ zk are ust

the respective components x, y and z of the vector. So, for the given vector, we have
al, b 1and ¢ -2.Further, if /, m and n are the direction cosines of the given
vector, then

1 1 -2 ~
l:%:— m:@:— n:%:— as @ =
r r r

J6’ J6

1 1 2
Thus, the direction cosines are | —F=,—F—=,——F— |.
(JE NG J
10.5.2 Vector joining two points
If (x,y,z)and ,(x,,, z,) areany two points, then the vector oining , and
is the vector |, (Fig 10.1). Z

2

.. . . .. P2 (3,02, 2)
oining the points  and , with the origin

O, and applying triangle law, from the triangle i
O , ,, we have p ; "%
- £ . 7P .
O 1t 12 o 2 A "\_ l(x\l,il -
. . " A N —
sing the properties of vector addition, the i ¥°0 j
above equation becomes
X
- AN . Fig 10.15
12 09— g

ie. L, iy k)= (i + )+ zk)
(X =x)i+(y, —y)Jj+(z,—2)k

The magnitude of vector , , is given by

i \/(xz _xl)z +(, _J’1)2 +(z, _21)2
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Example 10 Find the vector oining the points (2, , 0) and ( —1,-2,—4) directed
from to .

Solution Since the vector is to be directed from to, clearly is the initial point

and is the terminal point. So, the required vector oining and is the vector o,

given by
-1-2)i+(2-) j4« 4 0k
ie. T di- -k
10.5.3 Section formula
Let and be two points represented by the position vectors  Oand O, respectively,
with respect to the origin O. Then the line segment Q

oining the points and may be divided by a third
point, say , in two ways — internally (Fig 10.16) 74
and eternally (Fig 10.1). Here, we intend to find

the position vector O for the point with respect ¢

to the origin O. We take the two cases one by one. >
Case I When divides internally (Fig 10.16). P
. T Fig 10.16
If divides such that m no
where m and n are positive scalars, we say that the point divides ~  internally in the
ratio of m n. ow from triangles O and O, we have
00~ =b-r
and 00~ =r-a
Therefore, we have mb-7) n(F-a) (Why?)
b +na
or 7 mrne (on simplification)
m+n

Hence, the position vector of the point which divides and internally in the
ratio of m n is given by

_ . mb+na
0]
m+n
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Case II When divides eternally (Fig 10.1).

We leave it to the reader as an eercise to verify
that the position vector of the point which divides
the line segment eternally in the ratio

m n (1.6. —=—J is given by

mb —na

Fig 10.17

o m—n
Remark If is the midpoint of , then m  n. And therefore, from Case I, the

midpoint of ~, will have its position vector as

Example 11 Consider two points and with position vectors 02 = G- b and
O =ad+b .Findthe position vector of a point which divides the line oining and
in the ratio 21, (i) internally, and (ii) eternally.

Solution

(i) The position vector of the point dividing the oin of and internally in the

ratio 21 is
. 2Aa+b)+Qay b _a
2+1
(i) The position vector of the point dividing the oin of and eternally in the
ratio 21 is
5 2(a+b)2—(12a)— b _4f—G

Example 12 Show that the points A(2i —j+k), ( i) G4 k4 ) i— j— k are
the vertices of a right angled triangle.

Solution We have
A (1-2i+(- fH)- — k=—i—-2j—6k
C (I {(#4)+ (4 + k=2i—j+k
and CA (2-)i4+4)j4 @)k =—i+ j+ k
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Further, note that

A ? 41=6+CCA 2+ 2

Hence, the triangle is a right angled triangle.

nh A W N

=)

10.
11.

12.
13.

14.
15.

EXERCISE 10.2|

Compute the magnitude of the following vectors

c= L L 1y
ST

Write two different vectors having same magnitude.

d=i+j+k2 b= i- j— k

Write two different vectors having same direction.

Find the values of x and y so that the vectors 2i + gnd  xi + ) are equal.

Find the scalar and vector components of the vector with initial point (2, 1) and
terminal point (—, ).

Find the sum ofthe vectors @ =i —2j +k, b=-2i +4j+ kandc=i-6j — k.
Find the unit vector in the direction of the vector g =i + j + 2k .

Find the unit vector in the direction of vector , ~ where and are the points
(1,2,)and (4, , 6), respectively.

For given vectors, G =2i — j + 2k and b =—i + j —k , find the unit vector in the
direction of the vector G +5 .

Find a vector in the direction of vector 2; — j + & which has magnitude units.
Show that the vectors 2i —4;j+anll 4 -6i+ j— k are collinear.

Find the direction cosines of the vector i +2+ k.

Find the direction cosines of the vector oining the points A (1, 2, —) and
( -1,-2, 1), directed from A to .

Show that the vector i + j + & is equally inclined to the aes O, O and O.
Find the position vector of a point which divides the line oining two points
and whose position vectors are i +2j —k and —i + j + k respectively, in the
ratio 2 1
(i) internally (i) eternally
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16. Find the position vector of the mid point of the vector oining the points (2, , 4)
and (4,1, -2).

17. Show that the points A, and C with position vectors, a=4i—4j+ k

b=2i—j+kandé=i— j— k,respectively form the vertices ofaright angled
triangle.
18. Intriangle AC (Fig 10.1), which of the following is not true

(A) ACCAG .

0 AC+AC-0 =

(C) AC+CA-0 = X >/B
- Fig 10.18

0 ACCA 9§ =
19. If G and b are two collinear vectors, then which of the following are incorrect

(A) b=\a, for some scalar A

Sy

0 a=+
(C) the respective components of 7 and b are not proportional

() both the vectors G and 5 have same direction, but different magnitudes.

10.6 Product of Two Vectors

So far we have studied about addition and subtraction of vectors. An other algebraic
operation which we intend to discuss regarding vectors is their product. We may
recall that product of two numbers is a number, product of two matrices is again a
matri. ut in case of functions, we may multiply them in two ways, namely,
multiplication of two functions pointwise and composition of two functions. Similarly,
multiplication of two vectors is also defined in two ways, namely, scalar (or dot)
product where the result is a scalar, and vector (or cross) product where the
result is a vector. ased upon these two types of products for vectors, they have
found various applications in geometry, mechanics and engineering. In this section,
we will discuss these two types of products.

10.6.1 Scalar (or dot) product of two vectors

Definition 2 The scalar product of two nonero vectors g and b, denoted by a - b,is
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defined as a-b cos b 0 <
where, 0 is the angle between & and b,0<0 <n (Fig 10.1). 0 "
9
If either 5=0 or b = 6’ then 0 is not defined, and in this case, . a
Fig 10.19

we define @-b =0

Observations

1. &G-b isareal number.

2. Let & and b be two nonero vectors, then & - b =0 if and only if g and b are
perpendicular to each other. i.e.

G-b=0< dlb
b=a b

Q

If 6 0,then
In particular, G-g=,a > as 0 in this case is 0.
4. If0 mtheng-b=—a b

In particular, G-(-d)=— a ?, as 0 in this case is 7.

In view of the Observations 2 and , for mutually perpendicular unit vectors

i, j and k, we have
ii=j-j k-k=1,
i-j=jk k-i=0

6. The angle between two nonero vectors ¢ and bis given by

cos0 = 'bﬁ ,or 0 =cos! a.b#
b b

The scalar product is commutative. i.e.
ai-b b-a (Why?)
Two important properties of scalar product

[

Property 1 (istributivity of scalar product over addition) Let &, b and ¢ be
any three vectors, then

5.(5+5) a-b +d-¢
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Property 2 Let & and b be any two vectors, and A be any scalar. Then
(\a)-b  (Aa)-b=Ma-b)=a-(rb)
If two vectors @ and b are given in component form as ai +a,j+a k and

bi +b,j+b k , then their scalar product is given as

b (ai+a,j+ak)(hi+b j+bk)

Q

aji -(bi+b,j+bk)+a j-bi+b j+bk) ak-(bi+b j+bk)
ab(-i)+ab,(i-j)+ab (G -k)y+ab(j-i)+ab,(j-j)+ab (j-k)
ab(k-i)+g b (k- j)+a b (k-k)(sing the above roperties 1 and 2)
ab —ab, ab (sing Observation )
Thus a-b  ab +ab,+ab
10.6.2 Projection of a vector on a line
Suppose a vector A makes an angle O with a given directed line / (say), in the
anticlockwise direction (Fig 10.20). Then the proection of A onlisa vector P
(say) with magnitude Acos 0, and the direction of P being the same (or opposite)

to that of the line /, depending upon whether cos 0 is positive or negative. The vector p

B
B .
z@ . . N
o ! : ®
> ->
A I’ C C 7 A
0°<06<90" (90'< 6 < 180"
® (iii)
- 0 0 -
cC P I P C [
. A A !
. Z@ N .
B B
(180°< 6 < 270" (270°< 6 < 360"
(i) (iv)

Fig 10.20
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is called the projection vector, and its magnitude p is simply called as the projection

of the vector A on the directed line /.
For eample, in each of the following figures (Fig 10.20 (i) to (iv)), proection vector

of A along the line / is vector AC.
Observations
1. If p isthe unit vector along a line /, then the proection of a vector & onthe line
lisgivenby a-p .

2. roection of a vector G on other vector 5 , is given by

a-b, or a- b , or é(a-E)
b b

If 0 0,thenthe proectionvectorof A  willbe A itselfandif® m, then the

proection vector of A willbe A .
n n , — .
4. If 0 5 or 0 BX then the proection vector of A will be ero vector. .

Remark If o, B and y are the direction angles of vector d =a,i +a,j+a k, then its
direction cosines may be given as

Ql

-1 a a a
cosoL = : =L cosBsz, and cosy=—
i a a

Ql

Also, notethat cos , aos aand @os a  y arerespectively the proections of
a along O, O and O. i.e., the scalar components a,a,and a of the vector a,
are precisely the proections of @ alongxais, yaisand zais, respectively. Further, ,
if a is a unit vector, then it may be epressed in terms of its direction cosines as

d =cosaui + cosPj +cosvk

Example 13 Find the angle between two vectors a and b with magnitudes 1 and 2

respectively and when d-b=1.

Solution iven G- =1, laand 2 b = .We have
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Example 14 Find angle ‘0’ between the vectors @ =i+ j—k and b=i—j+k .

Solution The angle 6 between two vectors @ and b is given by

- E
cosO il —
a
ow b (i+j—k)-(i—j+k)=1-1-1=-1,
-1
Therefore, we have cosO —
. . a1
hence the required angle is 6 cos | ——

Example 15 If = andj - & b=i+ j— k, then show that the vectors
d+band d—-b are perpendicular.

Solution We know that two nonero vectors are perpendicular if their scalar product
is ero.

Here i+b  Oidj-)k6 % j— k =i+ j— k

and i-b QOi€j-)k4 i j2k=i- j+ k

So (G+b)-(@-b)=(6i+2j-)k4 4 2-)k24 16 0. =
Hence d+b and a—b are perpendicular vectors.

Example 16 Find the proection of the vector d=2i+2j+ k on the vector

b=i+2j+k.
Solution The proection of vector & on the vector 5 is given by

~ 2x1+2x2+1)x 10
;(Ei-b) (2x14+2x 24+ 1)x O ___ %%

b Joyp @ vayp Voo

Example 17 Find a -b , if two vectors g and b are such that 2§ =

Sy
Il

and G-b=4.

Solution We have
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2%%-)ab+b?
2*-24+0°

Therefore a-b \/_
Example 18 If g is a unit vector and (X —a)-(X+a)= ,thenfind X .
Solution Since g is a unit vector, 1a = .Also,

(F—a)- (% +a)

or X-X+Xx-a—-a-X—a-a
-2 . -
or Ix = i.e. X ?
Therefore X (as magnitude of a vector is non negative).

Example 19 For any two vectors @ and b , we always have @ b<ab (Cauchy
Schwart inequality).

Solution The inequality holds trivially when either @ =0 or b =0 .Actually, insucha

situation we have (G-b = =4 b . So, let us assume that G = = b
Then, we have
ab
i i cos 6l <
Therefore ib<akb
Example 20 For any two vectors G and b, we always e C
have G+b < G + b (triangle inequality). g ’ g
Solution The inequality holds trivially in case either A Z B
G=0orb=0 (How?). So,let 0G # # b .Then,
G+B2 (G+BY =(a+b)-(a+h) Fig 10.21
G-a+d-b+b-a+b-b
2% %+ d-b+ b (scalar product is commutative)
<%’+ ab+b? (since x< x VxeR)
<%*+ ab+b? (from Eample 1)
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Hence i+b < a+ b
Remark If the equality holds in triangle inequality (in the above Eample 20), i.e.

Gi+b i+ b

b

then AC AC +
showing that the points A, and C are collinear.

Example 21 Show that the points A (-2i +),j+ k2 )i+ j+ k and C()i—k

are collinear.
Solution We have
A A+2)i+Q2-) j4) -2k=i—-j— k,
C (= 62y (H-)- G=2-4- k,
AC (2 @Or) - (jk y —6k=1i- j- k
A 14,C2 14 ahd AC14 =
Therefore |A—C| AC +

Hence the points A, and C are collinear.

In Eample 21, one may note that although AC+CA+ 0 = butthe
points A, and C do not form the vertices of a triangle.

| EXERCISE 10.3

1. Find the angle between two vectors a and b with magnitudes \/_ and2 ,
respectively having G.5 =+/6.

Find the angle between the vectors i —2j +3k and 3 —2j+k

Find the proection of the vector ; — ;j on the vector j + ;.

Find the proection of the vector ; + j+ k on the vector ; — j+ k-

n A W N

Show that each of the given three vectors is a unit vector
1 1
l(2z'+6j}t k(6— 2% j46k 2— )i+ j— k

Also, show that they are mutually perpendicular to each other.
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10.

11.

12.
13.

14.

15.

16.
17.

18.

MATHEMATICS

Find and b ,if (G+b)-(G—b)= and aG= b .
Evaluate the product (V@2 b) a+ b -

Find the magnitude of two vectors & and b , having the same magnitude and

such that the angle between them is 60° and their scalar product is % .

Find X ,if foraunitvector @, (x —a)-(Xx+a)=12.

If G=2i+2j+,k b=—i2 j+énd = i+ jare such that G+Ab is
perpendicular to ¢, then find the value of A.

Show that & b+ b a is perpendicularto 7 h— b &, for any two nonero
vectors G and b .

If G-a=0 and d-b =0, then what can be concluded about the vector 5 ?

If @b,¢ are unit vectors such that G+5+¢&=0, find the value of
a-b+b-¢+¢-a.

If either vector G=0 or b =0, then d-b =0. ut the converse need not be

true. ustify your answer with an eample.
If the vertices A, , C of a triangle AC are (1, 2, ), ( -1, 0, 0), (0, 1, 2),

respectively, then find ZAC. ZAC is the angle between the vectors A
and C .
Show that the points A(1, 2, ), (2, 6,) and C(, 10, —1) are collinear.

Show that the vectors 2i — j+k, i —agd4k 4 i— j— k formthe vertices
of a right angled triangle.

If @ is anonero vector of magnitude ‘a’and A anonero scalar, then A g is unit
vector if

(A) & 1 O % -1 (©a A0 al A

10.6.3 Vector (or cross) product of two vectors

In Section 10.2, we have discussed on the three dimensional right handed rectangular
coordinate system. In this system, when the positive xais is rotated counterclockwise
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into the positive yais, a right handed (standard) screw would advance in the direction
of the positive zais (Fig 10.22(1)).

In a right handed coordinate system, the thumb of the right hand points in the
direction of the positive zais when the fingers are curled in the direction away from
the positive xais toward the positive  yais (Fig 10.22(ii)).

V4

X X (i)
Fig 10.22 (i), (ii)
Definition 3 The vector product of two nonero vectors a and b ,is denoted by a x b
and defined as

sih b

Sy

ax

On,

>

where, 0 is the angle between a andb , 0<0<7 and 7 is

a unit vector perpendicular to both a and b, such that

@,b and n form a right handed system (Fig 10.2). i.e., the _A

4

right handed system rotated from & tohs moves in the Fig 10.23

direction of #n.
Ifeither G =0 ord = 0, then 0 is not defined and in this case, we define @x5 =0.
Observations

1. axb is a vector.

2. Let Gandb be two nonero vectors. Then dxb =0 if and only if G and b
are parallel (or collinear) to each other, i.e.,

ixh O0<alb
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In particular, dxa = 0 and dx(-d)= 0, since in the first situation, 0 0
and in the second one, 6 = m, making the value of sin 0 to be 0.

ab .

A
2 k
4. Inview of the Observations 2 and, for mutually perpendicular \S
unit vectors i, ;j and k (Fig 10.24), we have A
A A
. \>/ 4

ixi jxj=kxk=0

If 6=£ then d@xb

ixj k, jxk=i, kxi=j Fig 10.24
In terms of vector product, the angle between two vectors d and b may be
given as
) ixbh
sin© 77
6. Itisalways true that the vector product is not commutative, as @ x b —bxa.

Indeed, a xb =sitr b 0n, where g, b and n form a right handed system,
1.e., O1straversed from a to b ,Fig10.2 (i). While, b xd =sin b 0n,, where

b,dand n, form a right handed system i.e. 6 is traversed from 5 to a,

Fig 10.2(ii).
A
n
0
-
a ->
b
() (ii)

Fig 10.25 (i), (ii)
Thus, if we assume @andb to lie in the plane of the paper, then » and n, both

will be perpendicular to the plane of the paper. ut, 7 being directed above the

paper while 7, directed below the paper. i.e. n, =-n.
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Hence dxb sin b 0n
_sin b On =-bxd
In view of the Observations 4 and 6, we have

jxi=—k, kxj=—iand ixk=—j.

If Gandb represent the adacent sides of a triangle then its area is given as

5><l;, C

N | =

y definition of the area of a triangle, we have from 7,
Fig 10.26,

Al g I_' B
1 >
Area of triangle AC ~ —AC: b T
2 Fig 10.26

ut A =5 (asgiven),and C a sin®.

sin a 0 =—.dxbh

1
2

N | =

Thus, Area of triangle AC

If G and b represent the adacent sides of a parallelogram, then its area is

givenby daxb . C

From Fig 10.2, we have
Area of parallelogram AC A. E.

ut A =b (as given), and

C
E sini 0. = E > B
Thus, Fig 10.27
Area of parallelogram AC shh 0 =.axbh

We now state two important properties of vector product.

Property 3 (istributivity of vector product over addition) If &, 5 and &

are any three vectors and A be a scalar, then
() ax(b+¢) daxb+axé

() A@xb) (A@)xb=ax(\b)
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Let dandb be two vectors given in component form as a,i +a,j+a k and

bi +b,j+b k , respectively. Then their cross product may be given by

i j ok
axb a a, a
b b b

Explanation We have

axb (aji+ayj+ak)xehi+b j+bk)
ab (i xi)+ab,(ixj)+ab,(jxk)+ab (jxi)
ab, (jx j)+ayb (jxk)
ab (kxi)+a b (kxj)+ab (kxk) (by roperty 1)
ab,(ixj)—aby,(kxi)—a b (ixj)
ab (jxk)+ab (kxi)—ab (jxk)
(as ixi=jxj=kxk=0 and ixk=—kxi, jxi=—ixj and kx j=—jxk)
abk—ab,j—a bk+abi+abj—-abi
(as ixj=k, jxk=i and kxi=j)
(a,b,—a b )i—(ab —ab)j+(ab —ab)k

i j ok
a a, a
b b, b

Example 22 Find ,aifb 2 d= iani+ k2 b= i+ j— k
Solution We have
i j ok
axb |2 1
2 _

i(-2-1) 443 jA0 —)k=—Ili+ j+ k

Hence  axb (1) *41) 20 ey
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Example 23 Find a unit vector perpendicular to each of the vectors (i +b) and

(5—5),where a=i+j+k, l;=i+2j+ k.

Solution We have G+b =2i +4 and a-b=2j- k

A vector which is perpendicular to both @ +b and G5 is given by

i j ok
(@G+byx(a-b) 2 4 =—4i+2j k, sag)
0 -1 -2

ow ¢ Jat+16+4=+24=2V6

Therefore, the required unit vector is

Ql|<‘u

__li+ij_ik
NN AN

There are two perpendicular directions to any plane. Thus, another unit

— ~ 1 2 1
vector perpendicular to G +b and a —b will be %i —% Jj+ %k. ut that will

be a consequence of (G —b)x (d+b).

Example 24 Find the area of a triangle having the points A(1, 1, 1), (1, 2, )
and C(2,, 1) as its vertices.

Solution We have A2 =and AC =i+ j - The area of the given triangle

] — —
is —AAC
18 7 .
i j k
ow, A_.A@_. 0 1 2=—4i+2j—k
1 20

Therefore AAC J16+4+1=+21

1
Thus, the required area is E V21
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Example 25 Find the area of a parallelogram whose adacent sides are given

by the vectors g =4i +apd k b=i-j+k

Solution The area of a parallelogram with d@andb as its adacent sides is given

by axb .
i j k

ow axb |1 4 4=i+j- k
1 -1 1

Therefore axb 21+16 43/

and hence, the required area is /42 .

| EXERCISE 10.4|

1. Find ,aifh and— 2+ R b=i- j+ k.

2. Find a unit vector perpendicular to each of the vector @ +b and @ —b , where
G=2i+2jand  b2+2- k.

3. Ifaunit vector @ makes angles % with i, T with j and an acute angle 0 with
k , then find 6 and hence, the components of a.

4. Show that

(G@-b)yx(a+b) 2(axh)

5. FindAand pif (2i +6/+2) k(x i +Aj+k 0= .

6. iventhat G-b=0 and @xb =0. What can you conclude about the vectors
dandb ?

7. Let the vectors G, b,¢ be given as aji+a,j+ak, bj+b j+bk,
i +¢yj+c k. Then show that G x (b +&)=dxb +axc -

8. If either =0 or =0, then Gxb=0. Is the converse true? ustify your
answer with an eample.

9. Find the area of the triangle with vertices A(1, 1, 2), (2, , ) and C(1, , ).
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10. Find the area of the parallelogram whose adacent sides are determined by the
vectors =i —j+ k and b=2i — j+k.
B} - ; s Lo
11. Let the vectors ¢ and b be such that and b =——,then gGxb is a
unit vector, if the angle between g and b is
(A) 76 O w4 ©) n0) n2
12. Area of a rectangle having vertices A, , C and with position vectors
1 1
—i+—j+4k, i+—j+4k, i—lj+4k and —; —lj+4k,respectivelyis
2 2 2 2
1
(A) 5 01
©) 2 0 4

Miscellaneous Examples

Example 26 Write all the unit vectors in plane.

Solution Let 7 = x i+ y}\' be a unit vector in plane (Fig 10.2). Then, from the
figure, we have x cos Oandy sin 6 (since 7 1).So, we may write the vector 7 as

(=0 ) cos@i+sind j (D)
Clearly, 7 Jeos’0+sin?0 =1
Y
X P(cosb, sin0)
/ —
4\/ A OP’ = coso?
N 0 }:‘y —> A
X'¢ 5= l!" >X P'P=sin0j
Y’
Fig 10.28

Also, as 0 varies from 0 to 2m, the point (Fig 10.2) traces the circle x> )* 1
counterclockwise, and this covers all possible directions. So, (1) gives every unit vector
in the plane.
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Example 27 If i+ j+k, 2i+,2 i+4and— k6 i — j—k are the position

vectors of points A, , C and respectively, then find the angle between A and
C .educethat A and C are collinear.

Solution ote that if 0 is the angle between A and C, then 0 is also the angle

between A and C .

ow A osition vector of — osition vector of A
QRi+)j—i+jHk =ik j—k

Therefore A \/ )+ +(-1)* =2

Similarly C -2i-2j+and C6 2 =+
AC-

Thus cos 0 AC

I(=2)+4() « H2) _6
6 2y 6

Since 0 <0 <, it follows that © 7. This shows that A and C are collinear.

=-1

— l — o — —_— .
Alternatively, AC = ) which implies that Aand C are collinear vectors.

Example 28 Let @,b and ¢ be three vectors such that . 4= 5= &= and

each one of them being perpendicular to the sum of the other two, find g +l; +c .

ow d+b+¢? (G+b+0)=(G+b+0)-(G+b+7)

Therefore G+b+¢ \/O_ 2 \/_
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Example 29 Three vectors G, 5 and ¢ satisfy the condition @ +b + ¢ = 0. Evaluate
0.

the quantity u=a-b6+b-¢+¢-a, if ,#=and 2 = ¢ =

Sy
+
ol
Il
ol
=
(@]
=
o
<
o

Solution Since ad +

or G-i+a-b+a-c (
Therefore a-b+id-c -| 5|2 =— (1)
Again, b-(G+b+¢) 0

. ~ 2
or a-b+b-c  —|b| =16 e
Similarly i-éc+bé _a -0

Adding (1), (2) and (), we have
2(a-b+b-¢+a-¢) —2

. -2
or 2u —2,1e, W TN

Example 30 If with reference to the right handed system of mutually perpendicular
unit vectors i, jand k,6=,i—j2B= i+j— k, then epress B in the form

[3 = [31 + [32, where [31 is parallel to o, and [32 is perpendicular to a. .

Solution Let [31 =)o, A isascalar ie., Bl = M-V

ow B,=B-B Q@-ri+ Hrj- k.
ow, since Bz is to be perpendicular to ¢, we should have &'Bz =0.1e.,
2 9 Xl= H*r 0

1
or A=

2

_ 1. . =~ 1, .

Therefore B, Zi—=J and By=—i+-j— k

2 2 2 2
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Miscellaneous Exercise on Chapter 10

Write down a unit vector in plane, making an angle of 0 with the positive
direction of xais.

Find the scalar components and magnitude of the vector oining the points
( x,y,z)and ( x,,, 2,).

A girl walks 4 km towards west, then she walks km in a direction O east of
north and stops. etermine the girl ’s displacement from her initial point of
departure.

If G=b+¢,thenisittruethat G =5 + ¢ ? ustify your answer. .

Find the value of x for which x(i + j +4) is a unit vector.

Find a vector of magnitude units, and parallel to the resultant of the vectors
a=2i+ gndk R=i- j+k.

Ifd=i+j+k, b =2i — j+akd ¢ =2- j+k,find aunit vector parallel

to the vector 2d— b + ¢.
Show that the points A(1,-2,-),(, 0, —2)and C(11,,) are collinear, and
find the ratio in which divides AC.

Find the position vector of a point which divides the line oining two points

and whose position vectorsare (2 +b)and (@—)b eternally in the ratio
1 2. Also, show that is the mid point of the line segment .

The two adacent sides of a parallelogram are 2 —4j+ dnd 2~ j— k.

Find the unit vector parallel to its diagonal. Also, find its area.
Show that the direction cosines of a vector equally inclined to the aes O, O

I 1 1
and O are T,T,T.
Let G=i+4j+2k, b=2i— jadk 2 &= 4—j+ k. Find a vector d
which is perpendicular to both @ and b ,and ¢-d =1
The scalar product of the vector i + j+ & with a unit vector along the sum of
vectors 2j +4j— k and Ai +2j+ k isequal to one. Find the value of A.
If @, b, are mutually perpendicular vectors of equal magnitudes, show that

the vector G + b + ¢ is equally inclined to G, b and ¢.
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15. rovethat (G+b)-(G+b)=a >+ b *,ifandonlyif @ b are perpendicular,
given g #0,b#0.
Choose the correct answer in Eercises 16 to 1.

16. If O is the angle between two vectors 4 and b,then G-b>0 only when
T T
A) 0<B<— 0<6<—
(A) 5 0 5

©0 0 = )0 <0<n

17. Let G and b be two unit vectors and 0 is the angle between them. Then a + b
is a unit vector if

n _T _T _2n
(A) O—Z 0 0= ©) 9—2 O 6
18. Thevalue of i.(jxk)+ j-(i xk)+k-(i xj) is
(A) 0 0 -1 © 1 0

19. If 0 is the angle between any two vectors G and b ,then G.b = axb when
0 is equal to

(A) 0 0 © 3 0 =

13

Summary

@ osition vector of apoint(  x,y,z)is givenas O—( =¥ =xi+yj+zk,andits

magnitude by /x* + y* + 27 .

@ The scalar components of a vector are its direction ratios, and represent its
proections along the respective aes.

¢ The magnitude (»), direction ratios (a, b, ¢) and direction cosines (/, m, n) of
any vector are related as

@ The vector sum of the three sides of a triangle taken in order is (.
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The vector sum of two coinitial vectors is given by the diagonal of the
parallelogram whose adacent sides are the given vectors.

The multiplication of a given vector by a scalar A, changes the magnitude of
the vector by the multiple A, and keeps the direction same (or makes it
opposite) according as the value of A is positive (or negative).

For a given vector g, the vector a = gives the unit vector in the direction

e

of a.
The position vector of a point dividing a line segment oining the points

and whose position vectors are @ and b respectively, in the ratiom n

@ intemallyisigiveniby ook
m+n

(i) eternally, is given by mb—nd .
m-—n

The scalar product of two given vectors @ and 5 having angle 6 between
them is defined as

a-b=cosbh 0.

Also, when g -p is given, the angle ‘0’ between the vectors @ and b may be
determined by

Qy
Sy

cos 0

Q
Sy

If 6 is the angle between two vectors a and b , then their cross product is

given as

ixb sinb  On
where 7 is a unit vector perpendicular to the plane containing G and b . Such
that g, b, n form right handed system of coordinate aes.
If we have two vectors dandb , given in component form as

d=aji+a,j+ak and b=hi+b,j+bk and A any scalar,
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then G+b (aq+b)i+(ay+b,)j+(a +b)k
ra (Aa))i+(hay)j+(ha )k
b ab+ab +ab

i j ok
and axb |a b ¢l

a, b, ¢

Historical Note

The word vector has been derived from a Latin word vectus, which means

to carry . The germinal ideas of modern vector theory date from around 100
when Caspar Wessel (1411) and ean obert Argand (16122) described
that how a comple number a + ib could be given a geometric interpretation with
the help of a directed line segment in a coordinate plane. William owen Hamilton
(1016) an Irish mathematician was the first to use the term vector for a
directed line segment in his book Lectures on Quaternions (1). Hamilton s
method of quaternions (an ordered set of four real numbers given as

a+bi+cj+dk,i, j, k following certain algebraic rules) was a solution to the

problem of multiplying vectors in three dimensional space. Though, we must
mention here that in practice, the idea of vector concept and their addition was
known much earlier ever since the time of Aristotle (422 .C.), a reek
philosopher, and pupil of lato (424 .C.). That time it was supposed to be

known that the combined action of two or more forces could be seen by adding
them according to parallelogram law. The correct law for the composition of
forces, that forces add vectorially, had been discovered in the case of perpendicular
forces by StevinSimon (141620). In 16 A.., he analysed the principle of
geometric addition of forces in his treatise DeBeghinselen der Weeghconst
( rinciples of the Art of Weighing ), which caused a maor breakthrough in the
development of mechanics. ut it took another 200 years for the general concept
of vectors to form.

In the 10, osaih Willard ibbs (110), an American physicist
and mathematician, and Oliver Heaviside (1012), an English engineer, created
what we now know as vector analysis, essentially by separating the real (scalar)
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part of quaternion from its imaginary (vector) part. In 11 and 14, ibbs
printed a treatise entitled Element of Vector Analysis. This book gave a systematic
and concise account of vectors. However, much of the credit for demonstrating
the applications of vectors is due to the . Heaviside and .. Tait (11101)

who contributed significantly to this subect.

\/
—_— Q‘Q_



Chapter 1 1

(THREE DIMENSIONAL GEOMETRY )

% The moving power of mathematical invention is not
reasoning but imagination. — A. DEMORGAN %

11.1 Introduction

In Class XI, while studying Analytical Geometry in two
dimensions, and the introduction to three dimensional
geometry, we confined to the Cartesian methods only. In
the previous chapter of this book, we have studied some
basic concepts of vectors. We will now use vector algebra
to three dimensional geometry. The purpose of this
approach to 3-dimensional geometry is that it makes the
study simple and elegant*.

In this chapter, we shall study the direction cosines
and direction ratios of a line joining two points and also
discuss about the equations of lines and planes in space
under different conditions, angle between two lines, two

. . Leonhard Euler
planes, a line and a plane, shortest distance between two (1707-1783)

skew lines and distance of a point from a plane. Most of

the above results are obtained in vector form. Nevertheless, we shall also translate
these results in the Cartesian form which, at times, presents a more clear geometric
and analytic picture of the situation.

11.2 Direction Cosines and Direction Ratios of a Line

From Chapter 10, recall that if a directed line L passing through the origin makes
angles a, B and y with x, y and z-axes, respectively, called direction angles, then cosine
of these angles, namely, cos a, cos  and cos y are called direction cosines of the
directed line L.

Ifwereverse the direction of L, then the direction angles are replaced by their supplements,

ie., r—a, #— f and 7 —y. Thus, the signs of the direction cosines are reversed.

* For various activities in three dimensional geometry, one may refer to the Book

“A Hand Book for designing Mathematics Laboratory in Schools”, NCERT, 2005
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Z
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B I
] X »
X
Fig 11.1

Note that a given line in space can be extended in two opposite directions and so it
has two sets of direction cosines. In order to have a unique set of direction cosines for
a given line in space, we must take the given line as a directed line. These unique
direction cosines are denoted by /, m and n.

Remark If the given line in space does not pass through the origin, then, in order to find
its direction cosines, we draw a line through the origin and parallel to the given line.
Now take one of the directed lines from the origin and find its direction cosines as two
parallel line have same set of direction cosines.

Any three numbers which are proportional to the direction cosines of a line are
called the direction ratios of the line. If [, m, n are direction cosines and a, b, ¢ are
direction ratios of a line, then @ CJAl, b{Am and ¢ (JAn, for any non"éro A € R.

Some authors also call direction ratios as direction numbers.

Let a, b, ¢ be direction ratios of a line and let /, m and » be the direction cosines
[d.c[SCof the line. Then

/ m n .
— [0 — [ —=k [Say[] k being a constant.

a b c
Therefore [ Dak,m O bk, n U ck .o ag
But POm?>On? 01
Therefore a2 Ok 001
1
or k[ =x

«/az+b2+c2
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Hence, from [1L[)the d.c.(s of the line are
=+ a b c

t— m=% ,n=1
\/az +b% +c? \/a2 +b% +c? \/a2 +b%+c?

where, depending on the desired sign of £, either a positive or a negative sign is to be
taken for /, m and n.

For any line, if a, b, ¢ are direction ratios of a line, then ka, kb, kcCk # 0 is also a
set of direction ratios. So, any two sets of direction ratios of a line are also proportional.
Also, for any line there are infinitely many sets of direction ratios.

11.2.1 Relation between the direction cosines of a line

Consider a line RS with direction cosines /, m, n. Through
the origin draw a line parallel to the given line and take a
point [IX, y, z[on this line. From [CJdraw a perpendicular
[A on the x-axis [Fig. 11.27]

Let OO O r. Thencosaz% =2 This gives x [ lr.

r
Similarly, y Omrand z Onr

Thus Xy 02 07 P Om? On2l)

But X y2 0220

Hence P+m*+n*=1 Fig 11.2

11.2.2 Direction cosines of a line passing through two points

Since one and only one line passes through two given points, we can determine the
direction cosines of a line passing through the given points [x ,y,,z Land Ulx,,y,,z,[]
as follows [Fig 11.3 @[Tl

Z Z
A
Q
ink L
P N
Y Y
[) o
R S
- (a) X (b)

Fig 11.3
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Let /, m, n be the direction cosines of the line [T and let it makes angles o, B and y
with the x, y and z-axis, respectively.

Draw perpendiculars from [Jand [0 to XY-plane to meet at R and S. Draw a
perpendicular from Cto [JS to meet at N. Now, in right angle triangle TN, Z[TIN[]
vy [Fig 11.3 B0

NLO  z,—z
Therefore, cosy ] — = 2—L
L L
X, =X, _
Similarly cosa [1—>—L and cosB=M
L L

Hence, the direction cosines of the line segment joining the points [lx, y,, z,Land
Uix,, y,, z, lare

Yo =X =N A2 T4
b b

0 N N

where [[[\/Bz_xlﬁ +5’2_J’1ﬁ+(22_21)2

The direction ratios of the line segment joining [ 1x,, y,, z,[and [I[x,, y,, z,[]
may be taken as
x,Ux,y,0y,z 0z orx Ux, y Oy, z Uz,

Example 1 If a line makes angle (0[] 60 and 30 with the positive direction of x, y and
z-axis respectively, find its direction cosines.

1
Solution Let the d. c. fof the lines be [, m, n. Then / Ccos [0° 00, m Ccos 60° O Ix
3
n [Jcos 30° [ %

Example 2 If a line has direction ratios 2, (11, [12, determine its direction cosines.

Solution Direction cosines are

2 -1 2

V22 =0 =22 22 =18+ 328 22 4 (1) + 220
212
3303

Example 3 Find the direction cosines of the line passing through the two points
M2, 4, 05Cand 0, 2, 301
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Solution We know the direction cosines of the line passing through two points
x,y,,zand Lx,, y,, z,[lare given by

HTH N TN HTEH
9

B

L L L
where - [\/Dcz - xlE + 5’2‘)’1E+ (22_21)2
Here [is 102, 4, (05Cand Cis 1, 2, 30
So 0 0 y- 2203 + 2 - 43 + 3 2512 00
Thus, the direction cosines of the line joining two points is

3 2 ¢
NEERRN ER RN

Example 4 Find the direction cosines of x, y and z-axis.

Solution The x-axis makes angles 0[] [0Jand [0respectively with x, y and z-axis.
Therefore, the direction cosines of x-axis are cos 0L) cos (0[] cos [0ll.e., 1,0,0.
Similarly, direction cosines of y-axis and z-axis are 0, 1, 0 and 0, 0, 1 respectively.

Example 5 Show that the points A 2, 3, 04JB 0, 02, 30and C 3, [ J110are
collinear.
Solution Direction ratios of line joining A and B are

102,02 03,3 041e., 01,05, 0

The direction ratios of line joining B and C are

301, 002,011 03,1.e., 2, 10, 014,

Itis clear that direction ratios of AB and BC are proportional, hence, AB is parallel
to BC. But point B is common to both AB and BC. Therefore, A, B, C are
collinear points.

EXERCISE 11.1

1. Ifaline makes angles (0] 1350]45Cwith the x, y and z-axes respectively, find its
direction cosines.

2. Find the direction cosines of a line which makes equal angles with the coordinate
axes.

If a line has the direction ratios (1] 12, [4, then what are its direction cosines [
Show that the points 2, 3, 40) (1, (2, 10][3, [] [Tare collinear.

Find the direction cosines of the sides of the triangle whose vertices are
(3,5, 140111, 1, 2[and (115, 15, [12[]
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11.3 Equation of a Line in Space

We have studied equation of lines in two dimensions in Class XI, we shall now study
the vector and cartesian equations of a line in space.

A line is uniquely determined if
[iJ it passes through a given point and has given direction, or

filJ it passes through two given points.

11.3.1 Equation of a line through a given point and parallel to a given vector

Let g bethe position vector of the given point 7 N

A with respect to the origin O of the M /b/
rectangular coordinate system. Let / be the p >l
line which passes through the point A and is A

parallel to a given vector b . Let 7 be the «— |
position vector of an arbitrary point [Jon the
line [Fig 11.47] >Y

Ry
=y

Then AL is parallel to the vector b , Le.,
AL UMb, where A is some real number. X Fig 11.4
But AL 1 OCCO0A
ie. Ab O F—d

Conversely, for each value of the parameter A, this equation gives the position
vector of a point Ton the line. Hence, the vector equation of the line is given by

Fla+hb s la
RemarkIf b = ai b}; ck ,then a, b, ¢ are direction ratios of the line and conversely,
if a, b, ¢ are direction ratios of a line, then b =aik b}; ck will be the parallel to
the line. Here, b should not be confused with [ ]

Derivation of cartesian form from vector form

Let the coordinates of the given point A be [x, y,, z,"and the direction ratios of
the line be a, b, c. Consider the coordinates of any point [Jbe [, y, z[J Then

Fo=xt+ oyt zkDad = x4y oz k)
and 5=a£+bﬁ+clg

Substituting these values in [1and equating the coefficients of £ j and k) we get
xx, Uhally Oy DA bz Lz e .. 20
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These are parametric equations of the line. Eliminating the parameter A from [2[]
we get

0 = .. 30
a b c 3

This is the Cartesian equation of the line.

If /, m, n are the direction cosines of the line, the equation of the line is

Example 6 Find the vector and the Cartesian equations of the line through the point
5,2, 4T and which is parallel to the vector 3i'+ 2 - [ k.
Solution We have
d [15i4+2 j-4kand b=3i42 LTk
Therefore, the vector equation of the line is
FOSIH2 jakh ABi2 jl- 0kt
Now, 7 is the position vector of any point [1X, y, zTon the line.

Therefore, xtzkyﬁkzlg [5&2F4]g+7\. [31[%2};—[%[

0 [5+3k[f+ [2+2kD}'+ [—I—4—DLD’;
Eliminating A , we get
x-=5 -2 z+4
==
3 2 —C
which is the equation of the line in Cartesian form.

11.3.2 Equation of a line passing through two given points

Let g and 5 be the position vectors of two Z 0
0
points Alx, y,, z,lJand B(X,, y,, z,[J | (X yé’
respectively that are lying on a line (Fig 11.50] Y 2)
P

Let 7 be the position vector of an  (x,Yv 2
arbitrary point [1X, y, z[Jthen [Jis a point on A/

the line if and only if Al=F—a and

AB=b—a are collinear vectors. Therefore, >Y

Ois on the line if and only if

F_G=\Nb—al X Fig 11.5
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or F=d+h(b-d),\ € R. . a0
This is the vector equation of the line.
Derivation of cartesian form from vector form
We have

F=xt+y jhzkla=xi% y j+z kand b=xyiky, j+z,k,
Substituting these values in [1[Jwe get

xf+y}+zl€=x1§+y1}+zll€+k [x, —xlﬁ+ b, —yID}'+ (2, —ZIUCAD
Equating the like coefficients of £, 7, k, we get

x Ux, UM x, Ox, [0y Oy, DA p, Oy Mz Dz, O [z, Oz, [
On eliminating A, we obtain

X=X _ V"N 7%
H=% Namh LTy

which is the equation of the line in Cartesian form.

Example 7 Find the vector equation for the line passing through the points 1, 0, 2
and (3, 4, 6]

Solution Let @ and p bethe position vectors of the point A (111, 0, 2Cand B 3, 4, 61

Then d=—1+2k
and b=3i+ 4};6/@
Therefore b-a=4i+ 4 j+4k

Let 7 be the position vector of any point on the line. Then the vector equation of
the line is

F=— {42k 011+ 4 jh 4k

Example 8 The Cartesian equation of a line is
x+3 y-5 z+6

2 4 2
Find the vector equation for the line.

Solution Comparing the given equation with the standard form

X5 _Y-h_zZ73
a b c
We observe that x, 03,y U5,z D6La 12,b 14, c 2.
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Thus, the required line passes through the point M3, 5, J6and is parallel to the

vector 2i-+4 42k . Let 7 be the position vector of any point on the line, then the
vector equation of the line is given by

F= 23045 L6k 0N ik 4742k

11.4 Angle between Two Lines Z
Let L, and L, be two lines passing through the origin
and with direction ratios a, b, ¢, and a,, b,, c,,
respectively. Let [lbe a point on L and [] be a point

S
>

on L,. Consider the directed lines OlJand OL! as Q. 1,
given in Fig 11.6. Let 0 be the acute angle between 5 L,
Ol and O[l. Now recall that the directed line O P v
segments OJand O[] are vectors with components
a,b,c anda, b, c,respectively. Therefore, the
angle 0 between them is given by X Fig 11.6
B a,a, +bb, +c,c,
cose—\/2 22\/2 ) . Ao
a; +b; +c¢; \Ja; +b; +¢;
The angle between the lines in terms of sin 0 is given by
sin © [ \/1 - cos* 0
. laya, +bb, +cc,
(al2 +b! +clz)(az2 +b; +c§)
2,12, 2 2,32, 2 2
\/(al +b +¢ )(a2 +b; +c2)—(ala2 +bb, +clcz)
J(a2 +07 +) (3 +83 +3)
\/Bllbz—azblf+H7lcz—bzclf+ﬁla2—czal[2 a2

J @&+ i+ b+

In case the lines L and L, do not pass through the origin, we may take

lines L andL', which are parallel to L and L, respectively and pass through
the origin.
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If instead of direction ratios for the lines L and L,, direction cosines, namely,
l,m,n forL and/,m,n,for L are given, then [1[and [2[takes the following form[]

cos O 111, Tmm, Unn,[] [as 112+m12+n12=1 =122+m22+n22[ ... 30

and Sine[\/(llmz—lzml)z—ﬁnln2—m2n1f+ﬁ1112—n211[2 .. 40

Two lines with direction ratios @, b,, ¢, and a,, b,, c, are
[i] perpendiculari.e. if ® O T0Cby (100
aa,+bb, +cc,=0
A paralleli.e. if 6 (0 by 20

Now, we find the angle between two lines when their equations are given. If 6 is
acute the angle between the lines

7 U c71+k171 and 7 [ a,+ub,
b1 b

5,115
In Cartesian form, if 6 is the angle between the lines

then cosO [J

U = .

and O = .. 20

where, a,.b, ¢ and a, b,, c,are the direction ratios of the lines [1[and [2[,respectively,
then

a,a, +bb, +cc,

Jat +b7 + ¢ a3 b2+

cos 6 [

Example 9 Find the angle between the pair of lines given by

D342 jhdkbe a2 i 2kt
05012 4 uB3ik2 jh 6kt

Ny

and

Ny
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Solution Here b, [ /42 jk 2k and b, 03/ 42 jh 6k
The angle 0 between the two lines is given by

b -b, | | EW27H2k0 B2 6kt
cos O O |=77=7|=
5|5, Ji+4+40+4+36
‘3+4+12‘_1_[
3x [ 21
e 0 0ae (1)
€nce COS 21

Example 10 Find the angle between the pair of lines
x+3 y-1 z+3

0
3 5 4
x+1  y-4 z-5
[ =
and I I 5

Solution The direction ratios of the first line are 3, 5, 4 and the direction ratios of the
second line are 1, 1, 2. If 0 is the angle between them, then

16 16 3
V5046 526 15

31+5.144.2
V3245242 12 412 422

D\E]

Hence, the required angle is cos™’ [? .

cos 0 [

11.5 Shortest Distance between Two Lines

If two lines in space intersect at a point, then the shortest distance between them is
[ero. Also, if two lines in space are parallel, Z

then the shortest distance between them
will be the perpendicular distance, i.e. the
length of the perpendicular drawn from a

point on one line onto the other line. \\
D \

Further, in a space, there are lines which
are neither intersecting nor parallel. In fact, N
. . s}
such pair of lines are non coplanar and C >Y
are called skew lines. For example, let us A B
consider aroomof sile 1, 3, 2 units along
x, y and z-axes respectively Fig 11.7] Fig 11.7
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The line GE that goes diagonally across the ceiling and the line DB passes through
one corner of the ceiling directly above A and goes diagonally down the wall. These
lines are skew because they are not parallel and also never meet.

By the shortest distance between two lines we mean the join of a point in one line
with one point on the other line so that the length of the segment so obtained is the
smallest.

For skew lines, the line of the shortest distance will be perpendicular to both
the lines.

11.5.1 Distance between two skew lines

We now determine the shortest distance between two skew lines in the following way[]
Let / and /, be two skew lines with equations [Fig. 11.[1]

Food +Ab . a0
and F C_iz +Hl;2 ... 20

Take any point S on /, with position vector 4, and T on /,, with position vector d,.
Then the magnitude of the shortest distance vector T
will be equal to that of the projection of ST along the Q
direction of the line of shortest distance [See 10.6.2L L

If T is the shortest distance vector between

[ and /,, then it being perpendicular to both 51 and

52 , the unit vector ;jalong = would therefore be
l—)-l o Ez Fig 11.8
Y= = e B [
[h x b,
Then 0 Ud nl
where, d is the magnitude of the shortest distance vector. Let 6 be the angle between

ST and . Then

a0

(1] ST [cos O

-ST
But cos 0 [ T ST
dntld, — al ] —
O —d ST [Since ST = a, —a,!l
b, x by[1d, —a,l
0 — (From (31
ST |5, x b,|
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Hence, the required shortest distance is
d 010 OST [dos 60

(51 XEz)-(‘_iz_‘_io

or d= = =
| by x b,|
Cartesian form
The shortest distance between the lines
X— X - z—z
11 0 L Y-n _ 1
a b G

and I[x—xzty—yzzz—zz

a, b, %)

\/(b1cz —b,¢, )2 +(ca, —cay )2 +(a,b, — a2b1)2

11.5.2 Distance between parallel lines

If two lines /, and [ are parallel, then they are coplanar. Let the lines be given by

7 la +rb o in
and FOa, +pb 0 20
-
where, g, is the position vector of a point S on / and ];' (%) A
a, is the position vector of a point T on /, Fig 11.[]
As |, [ are coplanar, if the foot of the perpendicular
from T on the line /, is [ then the distance between the E) riP > 1,
lines / and /, [ [TLIC] S(a))
— - Fig 11.9
Let 0 be the angle between the vectors ST and b . '
Then
b x ST [l (1h [ISTsin Ol1 w30

where 7nlis the unit vector perpendicular to the plane of the lines /, and [,

But ST [ a, —q
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Therefore, from 37)we get
Exfdz—él[[ﬂ;[ﬂ“;ﬁ [since [T [IST sin O[]

ic. hx G, —a 1 (5 IT-1  las &0 10

Hence, the distance between the given parallel lines is

Example 11 Find the shortest distance between the lines /, and /, whose vector
equations are

D+ N 2 ke B n
D24 jkd p Bi-5j42k 1 . 200

Ny

and

N

Solution Comparing [1"and (2[with 7 (g, + A 51 and 7 = a, + u l;z respectively,

we get G 0% B=2il ik
d, 12¢ 0j0k and by, 1131 05 112k
Therefore i, —a Uik
and lix}[[21£—ﬁ+lg[x[31£—5ﬁ+2lg[
0 p g
Ol 2 -1 1| =3i-jlrk
3 -5 2

So B xb, O 0+1+40 =50
Hence, the shortest distance between the given lines is given by

b xb, 0. Td,—a [ _ [B=0+00_ 10

550 | o

Example 12 Find the distance between the lines /, and /, given by

PO 2 j—dkw N 2i43 46k
and FO3EH3 feskp 2ik3 fhek!

d [0



THREE DIMENSIONAL GEOMETRY 4000

Solution The two lines are parallel [Why[J['We have
G, i%2j -4k, d 03i4k3 75k and b 2143 /4 6k

Therefore, the distance between the lines is given by

0 pf

bx (G, -l 23 6
dn|—————

B0 2 1 -1

N4+ O+ 36
[[—@14}141& V213 213
C

| EXERCISE 11.2 |

1. Show that the three lines with direction cosines

23441203 03 412
13a 133 13 133 13 5 13 13a 13a 13 are mutually perpenaicular.

2. Show that the line through the points 1, (71, 2[J[3, 4, [2[Gs perpendicular to the
line through the points [0, 3, 2Cand 3, 5, 6]

3. Show that the line through the points 4, [ [TJ) 2, 3, 4Tis parallel to the line
through the points (M1, 02, 1), 2, 5T

4. Find the equation of the line which passes through the point 1, 2, 3(Jand is
parallel to the vector 3 /42 jL2 k.

5. Find the equation of the line in vector and in cartesian form that passes through
the point with position vector 2 i j + 4 k and is in the direction /42 j- k.

6. Find the cartesian equation of the line which passes through the point 2, 4, 050

x+3 y—-4 z+[]

and parallel to the line given by s p

x-=5 y+4 z-6
U

8. Find the vector and the cartesian equations of the lines that passes through the
origin and (3, (12, 37J

7. The cartesian equation of a line is . Write its vector form.
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o

Find the vector and the cartesian equations of the line that passes through the
points 3, (12, 0503, 02, 6]
10. Find the angle between the following pairs of lines ]
G0 F=2iL5 4% kA B4 246k and
F=lih6k+pin2 b2k
G0 7 =34k jL2k+ AL jL 2k and
F=2ik j-56krp3E5 f 4kt

11. Find the angle between the following pair of lines ]

x=2 _ y—1 _ z+3 and x+2 _ y—4 _ z=5

i
2 5 -3 -1 O 4
X y z x=5 y=-2 z-3
—:—:—and = =
i 2 2 1 4 1 C

-x [y-14 z-3
2p 2

12. Find the values of p so that the lines !

O-Ix y-5 6-z
3p 1

and

are at right angles.

x=5_y+2 z b

13. Show that the lines 5 0 and 1 =§= are perpendicular to

z

3
each other.

14. Find the shortest distance between the lines

F=0 42 j4 k0 0N ikl and
F=21k jlkhp2ik jh2k
15. Find the shortest distance between the lines
x+1 y+1 z+1 x=3 y-=5 z-[]
0 -6 1 1 -2 1
16. Find the shortest distance between the lines whose vector equations are
F=h2 fH3k DA LR34 2k
and 7 =4i45f46khp 21434kl

17. Find the shortest distance between the lines whose vector equations are
F=0—t0 4 F-20)%3-21¢ k and
F= S+l s 107 2s +10k
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11.6 Plane
A plane is determined uniquely if any one of the following is known [

iJ the normal to the plane and its distance from the origin is given, i.e., equation of
a plane in normal form.

AilJ it passes through a point and is perpendicular to a given direction.
fiii(] it passes through three given non collinear points.
Now we shall find vector and Cartesian equations of the planes.

11.6.1 Equation of a plane in normal form

Consider a plane whose perpendicular distance from the origin is d [d = 0CJFig 11.10.

If ON is the normal from the origin to the plane, and 7is the unit normal vector

along ON . Then ON [0d nJ. Let [Ibe any z
point on the plane. Therefore, N[ is
perpendicularto ON .
Therefore, NC-ON [10 .. A0 P(x,py2)
Let 7 be the position vector of the point [ 7
then NOJO 7 — d #)[as ON+NL=0O"[ [ d N
Therefore, [1[becomes (o) Y
F—dndn 10 x/
o Fig 11.10
or F—dnl-n 00 [d=+00]
or Fen—dn-n 00
ie., Fon=d asn-n=10 0 20

This is the vector form of the equation of the plane.
Cartesian form

Equation 2 gives the vector equation of a plane, where #lis the unit vector normal to
the plane. Let [TX, y, z[be any point on the plane. Then

Of OF=xikyjtz k
Let [, m, n be the direction cosines of 7! Then

n U likm fenk
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Therefore, 2gives

Esz+yﬁ+zlgEﬂtzl—mﬁ+n/@[=d
ie., Ix+my+nz=d .. 30
This is the cartesian equation of the plane in the normal form.

Equation 3Cshowsthatif 7 - (@ i+ b j4 ¢ k[ Od s the vector equation

of a plane, then ax by [cz [1d is the Cartesian equation of the plane, where a, b
and c are the direction ratios of the normal to the plane.

6
Example 13 Find the vector equation of the plane which is at a distance of FD

from the origin and its normal vector from the originis 243 fi 4k .
Solution Let 7 = 2 £ 3 jl+ 4 & Then

i 2053 fl+ak 203 jhdk
’[: — =
D A+ 0+16 V20
Hence, the required equation of the plane is

2 -3 4 6
- Hr— =
(\/2_[ 207 20 J NP
Example 14 Find the direction cosines of the unit vector perpendicular to the plane

Fo61-3 L2kl 00 passing through the origin.

Solution The given equation can be written as

Feol-6i+3 fr2 k1 .. a0

Now 61+ 3 42k 036+ 0+4=10

Therefore, dividing both sides of [1[by ] we get
6 3 2 1
o T AR e
[ O [F+[ J C
which is the equation of the plane in the form 7 -/il=d .

This shows that n'= — E[ A 2[ - % k' is a unit vector perpendicular to the

plane through the origin. Hence, the direction cosines of nlare =6 ,

C

MW

2
L
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Example 15 Find the distance of the plane 2x [0 3y [14z 116 J0 from the origin.

Solution Since the direction ratios of the normal to the plane are 2, [ B, 4[the direction
cosines of it are

2 -3 4 2 -3 4
J2 3044 223t a4 223244’ M o2 Vo
Hence, dividing the equation 2x [13y [14z (06 (J0 i.e., 2x [13y [J4z (16 throughout by

\/2_u, we get

2 -3 4 6
+ + =
NN RN A

This is of the form Ix Tmy [nz Od, where d is the distance of the plane from the

6
origin. So, the distance of the plane from the origin is .

g p g m
Example 16 Find the coordinates of the foot of the perpendicular drawn from the
origin to the plane 2x [J3y 04z (16 0.

Solution Let the coordinates of the foot of the perpendicular [ from the origin to the
planeis (x,y,, z, [0Fig 11.11L]

Z
Then, the direction ratios of the line O[Jare
X,V 2,
P 14
Writing the equation of the plane in the normal (5 )
form, we have |\ V..
2 N 3 v+ 4 e 6 o
207 207 2ot oo VAl
2 -3 4
where, , , are the direction
N200 ~200 200 X
cosines of the OT] Fig 11.11

Since d.c. 5 and direction ratios of a line are proportional, we have

X oo g
2 U3 Ty Uk

NPT ST NG

-3k 4k

2k
ie., O ,y, O 2y =
e N YA RN TR RN T
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6
Substituting these in the equation of the plane, we get & [ FD

2020

If d is the distance from the origin and /, m, n are the direction cosines of
the normal to the plane through the origin, then the foot of the perpendicular is
d, md, ndl]

Hence, the foot of the perpendicular is [;2 ) LS ﬁj

11.6.2 Equation of a plane perpendicular to a
given vector and passing through a given point

In the space, there can be many planes that are

perpendicular to the given vector, but through a given
pin P( x,,y,, z,[Jonly one such plane exists [see

V4
. j
Fig11.1210]
Let aplane pass through a point A with position

X

P(x, y, 2)
Y

° ) - Fig 11.12
vector d and perpendicular to the vector N .

Let 7 be the position vector of any point [T, y, z[in the plane. [Fig 11.13[]
Then the point [(lies in the plane if and only if Z

N

AL is perpendicular to N.ie., AL.N[0. But
Al=7—a . Therefore, (F —d)-N=0 O 00 <

This is the vector equation of the plane.

Cartesian form 0

Let the given point Abe [x, y,, z,[J[be [x, y, z[l ”

Fig 11.13

and direction ratios of N are A, B and C. Then,

G=x,i+y jrz k) F=xityj+zk and N=Ai+Bj+Ck

Now F AN o0
So [(x=x )i (y=31) P+ (22 )k |- A+ B 4 Ch=0
ie. Ax-x)+B@y-y)+C(z-z)=0

Example 17 Find the vector and cartesian equations of the plane which passes through
the point (3, 2, (4 and perpendicular to the line with direction ratios 2, 3, (1.
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Solution We have the position vector of point (5, 2, [14las G=5/42 j-4k and the
normal vector N perpendicular to the plane as N 12 [ 13 J- k

Therefore, the vector equation of the plane is given by 7 -GN =0

or F—(5 142 fLakil 2 i43 & k=0 . a0
Transforming (1 Cinto Cartesian form, we have

¥ 0504 =204 2+4kH 2 i43 fLk=0
or 2x-5430y-2[+1z+4=0

ie. 2x 03y 0z 020
which is the cartesian equation of the plane.

11.6.3 Equation of a plane passing through three non collinear points

LetR, S and T be three non collinear points on the plane with position vectors @, 5 and
crespectively [Fig 11.14[]

>N

e

The vectors RS and RT are in the given plane. Therefore, the vector RS x RT

X

Fig 11.14

is perpendicular to the plane containing points R, Sand T. Let 7 be the position vector
of any point Tin the plane. Therefore, the equation of the plane passing through R and

perpendicular to the vector RS x RT is
[F—al[RSx RTI 110

or (F—a).[(b-a)x(¢-d)] =0 0 0o
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This is the equation of the plane in vector form passing through three noncollinear
points.

Why was it necessary to say that the three points A

had to be non collinear [If the three points were on the same
line, then there will be many planes that will contain them
(Fig 11.150]

These planes will resemble the pages of a book where the
line containing the points R, S and T are members in the binding
of the book.

Cartesian form Fig 11.15

Let x,,y,, z,l) X,, »,, z,[land [X,, y,, z,[be the coordinates of the points R, S and T
respectively. Let [X, y, z[be the coordinates of any point [on the plane with position
vector 7. Then

RE O3 Ox, (10 G Oy,0f 02 0z,04f
RS U X, Ux L Ly, [ylti 01z, Oz,0f
R_’I‘. [ B-3 ['xl[ﬂ[ 5/3 [yl[} [ Q3 [Zl[]g
Substituting these values in equation [1of the vector form and expressing it in the
form of a determinant, we have
X=X YN I~
X=X V=0 55| =0
X=X V3=V &%
which is the equation of the plane in Cartesian form passing through three non collinear
points (X, y,, z,1, [x,, »,, z,lland [X,, y,, z, [

Example 18 Find the vector equations of the plane passing through the points
R2,5,030)S2, 03, 5Cand T35, 3,030

Solution Let G=2i45j-3k, b=-2i13 jh5k, ¢=5i43 L3k

Then the vector equation of the plane passing through 5z, » and ¢and is
given by
F—a[{[RSxRT! [0  Why[T]
or F—aIb—alxE—all 110

ie. F— 2445 jL3mI4i - Oj+ kx B3iL2 fi=0
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11.6.4 Intercept form of the equation of a plane

In this section, we shall deduce the equation of a plane in terms of the intercepts made
by the plane on the coordinate axes. Let the equation of the plane be

Ax [UBy [1Cz UD 110 [D = 0[] .. A0
Let the plane make intercepts a, b, ¢ on x, y and z axes, respectively Fig 11.16[]

Hence, the plane meets x, y and z-axes at (&, 0, 0[] y4
[0, b, 0010, 0, cCirespectively.

R (0,0,0)
Therefore AaOD O0O0or A 00—

R Y
Bb 1D [0 or B [ Q (0.00)
P (a,0,0)

Cc[D[OorC[T

Substituting these values in the equation [1Cof the
plane and simplifying, we get

Fig 11.16

£+Z+£ 1 .o a0
a b c

which is the required equation of the plane in the intercept form.

Example 19 Find the equation of the plane with intercepts 2, 3 and 4 on the x, y and
z-axis respectively.

Solution Let the equation of the plane be

X, Y. 2
+=+— 11 ..o
a b c

Here all12,b 03, c 4.
Substituting the values of @, b and ¢ in [1[] we get the required equation of the

plane as §+§+§=1 or 6x [14y [13z [112.

11.6.5 Plane passing through the intersection
of two given planes

Let n, and n, be two planes with equations
7-n Ud and 7 -n, [d respectively. The position

vector of any point on the line of intersection must
satisfy both the equations [Fig 11.1T]

Fig 11.17
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If 7 is the position vector of a point on the line, then

7-# Ud and 7-n, Ud,
Therefore, for all real values of A, we have
{-+An, 0 L d +Ad,
Since ¢ is arbitrary, it satisfies for any point on the line.
Hence, the equation 7 - [, +Aii, [=d, +Ad, represents a plane m, which is such

thatif any vector 7 satisfies both the equations m, and ,, it also satisfies the equation
7, i.e., any plane passing through the intersection of the planes

7-ny [dand 7-n,=d,
has the equation Fo(ng+ Any)=d + \d, .. a0
Cartesian form

In Cartesian system, let
i, A E4B, jHC k
i, A, ikB, j4+C,k
and 7O szI—y}Zleg

Then [ Cbecomes

XA, [ AA,[0y B, [ AB,[0z [C, [ AC,00d, [ Ad,
or Ax+By+Cz-d)+ AMAx+B,y+C,z-d)=0 .. 20
which is the required Cartesian form of the equation of the plane passing through the
intersection of the given planes for each value of A.

Example 20 Find the vector equation of the plane passing through the intersection of

the planes 7 - @-Plg[=6 and 7 - [21D-3}i+4lé[=—iandthepoint ,1,10

Solution Here, 7, = i+ j+k and i, [ 2/43 %4kl
and d l6and d, 1[5

Hence, using the relation 7 - (7, + A, [=d, +\d, , we get

i A RRAR2E43 j 4k O 6-50

N

or F o+ 200 4+ 30 O+ 40k O 6-54 0 00

where, A is some real number.
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Taking F=xi+y jrzk,we get

X i+ y fr z B4 20 G 430 L 1+ 40K [=6-5)
or O O2A Ty OO O3A0y OO J4A0z 006 T5A
or X OyOzO6 O0OA R2x O3y 04z 05000 . 20
Given that the plane passes through the point [1,1,1]Jit must satisfy [2[Ji.e.

00101 0600ARO3 0405000

e
of 14

Cutting the values of A in [10Jwe get

(EEREIR

10 ~ 23 13 6]

or Fl —i+ = jh—p | 0—
r([ 14P[J 14

or 7206423 jh26k1 060

which is the required vector equation of the plane.

11.7 Coplanarity of Two Lines
Let the given lines be

7 O a +\b, L a0

and 7 U 52+H52 .. 20

The line [1[passes through the point, say A, with position vector g, and is parallel
to l;l . The line [2[‘passes through the point, say B with position vector a, and is parallel
to b, .
Thus, AB [ d,—a,
The given lines are coplanar if and only if AB is perpendicular to 51 xEZ .
ie. AB.[bx by[ [0 or [, d3hxb, 10

Cartesian form
Let (x,,y,, z,land (X, y,, z, [ be the coordinates of the points A and B respectively.
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Leta, b, c, and a,, b,, ¢, be the direction ratios of 5 and b, , respectively. Then

AB= (&, —x, i+ [, -y, [J* (2, -z, [k
b =a i%+b j¥c kand by=a,i+b, e, k
The given lines are coplanar if and only if AB- (51 sz) = 0. In the cartesian form,
it can be expressed as
H=XH T T4
aq, bl q |= 0 ... 4]
a, b, )
Example 21 Show that the lines
- - | -2 z-
x[3:y 1:2 Sandx _Y :25
3 1 5 il 2
Solution Here,x, /13,y U1,z 5, a [J03,b U1,¢ U5

x, D01, y, 02,2z, 05, a, L, b, 02,¢, 15
Now, consider the determinant

are coplanar.

=% =N T34 210
a b q |[=|-3 1 5/=0
a, b, c, -1 25
Therefore, lines are coplanar.
11.8 Angle between Two Planes

Definition 2 The angle between two planes is defined as the angle between their
normals [Fig 11.100alM Observe that if 0 is an angle between the two planes, then so
is 100 00 [Fig 11.10MmM We shall take the acute angle as the angles between
two planes.

angle between the normals
Plane 1/?{\?[90 —(90-0)]
n, / _)/
/ 0 % / "
90-0 >
P <R

Plane 2 180 -0
the angle between

the planes
(b)

(a)
Fig 11.18
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If 7, and 7, are normals to the planes and 0 be the angle between the planes

F-n Ud and 7.1, =d,.
Then 6 is the angle between the normals to the planes drawn from some common
point.
ny - i,
We have, cos O =

|my | [0, |

The planes are perpendicular to each other if 7, .7, [0 and parallel if

7, 1s parallel to 7, .

Cartesian form Let 0 be the angle between the planes,
A x B,y UCz D, J0and Ax B,y LIC,z D, [J0
The direction ratios of the normal to the planes are A, B,, C, and A, B,, C,
respectively.
A A, +B, B, +C, C,
JAZ+ B2+ CF | AZ+B+C2

Therefore, cos 0 =

1. If the planes are at right angles, then 6 [ [0° and so cos 6 0.
Hence, cos 0 LA A, [IB,B, LIC,C, [I0.

A B
2. If the planes are parallel, then —- = —- = &
A, By, G

Example 22 Find the angle between the two planes 2x [y [12z (15 and 3x D6y (12z 110
using vector method.

Solution The angle between two planes is the angle between their normals. From the
equation of the planes, the normal vectors are

NI 02i4 j-2kand N, =3i-6j-2k

NN || 264 jo2kbiBil6 -2k [iJ

[Ni [N, Ja+1+4 [+36+4 21
4

Hence 0 Lcos ‘(—J

Therefore cos 0 [

21
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Example 23 Find the angle between the two planes 3x [16y [12z [ and 2x 02y 2z [D.
Solution Comparing the given equations of the planes with the equations
A x B,y UC zUD, 0 and A, x B,y LUC,z D, [J0
We get A [13,B, 10006,C [12
A 02,B,02,C 012
3x2 + [F6200+ 2020

cos 6 [
\/(32 w360+ 3283) (22 + 22 +12202)

om0 | s 53
x 243 @3 21
543
Therefore, 0 Ccos! (2—\/1_]

11.9 Distance of a Point from a Plane
Vector form

Consider a point [J with position vector g and a plane m, whose equation is
7-nl0d Fig 11.107]

7 V4
y N
T, )
T,
Q P
P a
P N'
a N’ N >Y
0 YT N 0 1
-t u )
X
(@) X ®)
Fig 11.19

Consider a plane wt, through [Iparallel to the plane = . The unit vector normal to
n,is nl Hence, its equation is [7# — a =0
Le., r-rllla-nl

Thus, the distance ON’ of this plane from the origin is (4 - AlJTherefore, the distance
1) from the plane wt, is [Fig. 11.21 [all]

Le., ON UON'=d Uag-nl
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which is the length of the perpendicular from a point to the given plane.
We may establish the similar results for [Fig 11.10HT]

1. leean eplane 7, is in the form 7N=d ,where N is normal
to the plane, then the perpendicular distance is MD
[N [J

— td
2.  Thelength of the perpendicular from origin O to the plane 7 - N = 4 is K

[Since a 0L

Cartesian form

Let [1X,, ,, z,[be the given point with position vector a and
Ax 1By [ICz D

be the Cartesian equation of the given plane. Then
a xlz[+yl}z+zllg
N [ A i+Bj+Ck

Hence, from Note 1, the perpendicular from [Tto the plane is
(o iy j oz FOOA G B 4 CEI-D |

JRipC |

Axl+Byl+Czl—D|
\/A2+B2+C2 ‘

Example 24 Find the distance of a point [2, 5, 713 Cfrom the plane
Fol6i-3j42k1 04

Solution Here, G =2i{45 j-3%&, N=6i-3 j+2kandd /4.

Therefore, the distance of the point 12, 5, 13 [from the given plane is

12045 j-3k16i-3j+2ki-4  12-15-6-401 13

(6113 jH2 k0 - J36 + O+ 4 C
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11.10 Angle between a Line and a Plane

Definition 3 The angle between a line and aplaneis ~ Normal—> .
the complement of the angle between the line and e

normal to the plane [Fig 11.200] bg/ /
Vector form If the equation of the line is / sl
'T\

7 =i+ Ab and the equation of the plane is

7 -7 = d . Then the angle 0 between the line and the Plane

normal to the plane is Fig 11.20

b-ii
b

cos 0 [

and so the angle ¢ between the line and the plane is given by [0 [0, i.e.,
sin [T0 00O cos O

-0
[ sin
Fom |0

ie. sin ¢ [J

b-n
bl
Example 25 Find the angle between the line

x+1 y z-3
2 . 3 6
and the plane 10 x 02y 011 z 3.

Solution Let 0 be the angle between the line and the normal to the plane. Converting the
given equations into vector form, we have

D043 A 2 i3 fh 6k
and 1042 fe11k1 03
Here b O20+3 746k and 7i=10i42 j 114

Ny

N

243 4 6 k1042 f-11 k!
22+ 3246 107+ 22 411

sin ¢ [J

—40 [‘—_D 5L en .l(m
x15| " 21| Doy oretisin o
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EXERCISE 11.3

In each of the following cases, determine the direction cosines of the normal to
the plane and the distance from the origin.

all z 12 MmO x Oy Oz 01
lel) 2x 13y Lz [15 [do 5y 000o
Find the vector equation of a plane which is at a distance of [units from the

origin and normal to the vector 3;4 5 jL 6 k.

Find the Cartesian equation of the following planes]
i k=2 B0 720435 4k=1

e 708 —2t0i4 B—rUj4 2 s +¢ k=15
In the following cases, find the coordinates of the foot of the perpendicular
drawn from the origin.

all 2x [13y [14z (112 [10 B 3y 04z 106 00
lell x Ly Lz 01 [d 5y 0000
Find the vector and cartesian equations of the planes

al]

N

fall that passes through the point 1, 0, J2Jand the normal to the plane is
s

B that passes through the point 11,4, 6Cand the normal vector to the plane is
L2k

Find the equations of the planes that passes through three points.

@i i, 1, 010 6, 4, 050 M4, 02, 30

O 1,1,000, 2,102, 2, 010

Find the intercepts cut off by the plane 2x Oy [z [I5.

Find the equation of the plane with intercept 3 on the y-axis and parallel to TOX
plane.

Find the equation of the plane through the intersection of the planes
3x Oy 02z 04 J0and x Oy Oz 02 110 and the point 2, 2, 11]

Find the vector equation of the plane passing through the intersection of the
planes 7 .[2 /42 j—3k 0=, 7.[2 {45 j+ 3k 0= [ and through the point
2,1,30

Find the equation of the plane through the line of intersection of the
planes x Oy Tz (01 and 2x 03y 4z (15 which is perpendicular to the plane
x Uy [z 0.
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12. Find the angle between the planes whose vector equations are

Fo2i42 j-3k=5and F-3i-3 f45k=3.
13. In the following cases, determine whether the given planes are parallel or
perpendicular, and in case they are neither, find the angles between them.
Al Tk 05y 06z 030 00 and 3x Oy 010z 04 000
B0 2x Oy 03z02 00  and x J2y 05 00
(60 2x 02y 04z 0500 and 3x O3y 06z 01 00
[d0 2x Oy 03z 01 00  and 2x Oy 03z 03 00
el 4x 0y 0zOOO0 and y Oz 04 00

14. In the following cases, find the distance of each of the given points from the
corresponding given plane.

Point Plane
fall [0,0,00 3x U4y 012z 03
O 3, 02, 10 2x Uy 02z 03 00
el 2,3, 050 x 02y 02z 00
[d e, 0,00 2x O3y 06z 02 00

Miscellaneous Examples

Example 26 A line makes angles a, [,y and o with the diagonals of a cube, prove that

4
cos* a [1cos? B [Icos? y [1cos? d [ 3

Solution A cube is a rectangular parallelopiped having equal length, breadth and height.
Let OADBFEGC be the cube with each side of length a units. [Fig 11.2100

The four diagonals are OE, AF, BG and CD. Z
The direction cosines of the diagonal OE which

is the line joining two points O and E are UL a)F(O, a, a)
(@,0,4) G
a-0 a-0 a—0 7 E(a,0,0)
\/ 2, 2, 2’ \/ 2, 2, 2’ \/ 2, 2, 2
a“+a +a a“+a +a a“+a +a 5y
O/ "B, a,0)
11 X Aa, 0,0) D(a,a,0)

1
Le., s , 1=
3437 43 Fig 11.21
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1 1 1 1
Similarly, the direction cosines of AF, BG and CD are =, =, ——=[—F,
NEREERENEIRNE

11 d ! L respectivel
=~ b = an = b = b =~ b .
B MR el
Le /, m, n be the direction cosines of the given line which makes angles a, 3, v, 0
with OE, AF, BG, CD, respectively. Then

| |
cosa [E [l OmOn(Tcos B [E[[I[m On]

| |
cosy[ﬁﬂ[m OnlTtos & [Eﬂ[m On0  WhyM

Squaring and adding, we get
cos?a [Icos? B [Icos? y [Icos? &

1
[g O OmOn RO Om OrBF 000 Om On@B 0L Om Ch20

1 4
[g [4H2[m2[n2[[[g fas 2 Om? On? 010

Example 27 Find the equation of the plane that contains the point 1, (71, 2[0and is
perpendicular to each of the planes 2x 13y 02z [J5 and x 02y 3z O]

Solution The equation of the plane containing the given point is

Ax UlI0OBY O100C [z 02000 . ag
Applying the condition of perpendicularly to the plane given in (1 Gwith the planes

2x 03y 02z 05 and x 02y 003z O] we have

2A 03B 02C J0and A 02B 0J3C 00

Solving these equations, we find A [0 15C and B [14C. Hence, the required

equationis

U5Cx 01004 C w D100CEz 02000
ie. Sx 04y Oz O 0
Example 28 Find the distance between the point (6, 5, [Tand the plane determined
by the points A 3, (11, 2B (5, 2, 4Cand C11, (01, 67J
Solution Let A, B, C be the three points in the plane. D is the foot of the perpendicular
drawn from a point [Jto the plane. (D is the required distance to be determined, which

is the projection of Al on AB x AC.
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Hence, D [the dot product of AL with the unit vector along AB x AC.

So AC U3 46 jf+ Ok
Py

and AB x AC 0| 2 3 2| =12i-16/+12k
4 0 4

Onit vector along AR R[3ﬁ4ﬁ+3é

ni1 T alon - ==

vector along % Ner
Hence D 0 Bik6 f+ Dkl 3’;_4—}:%
e
3434
O

1C

Alternatively, find the equation of the plane passing through A, B and C and then
compute the distance of the point [ from the plane.

Example 29 Show that the lines
x—a+d _y-a z-a-d
o-290 o o+90

x—-b+c y-b z-b-c
and O = are coplanar.

B—vy B B+y

Solution

Here x, Uald x, Ubllc
y,Ua y, b
z, Ualld z, Wb lc
a, o 18 a, B Ly
b, U a b, B
¢, Jalld c, B Ly

Now consider the determinant

X=X, Vo=V Z,—Z b-c-—a+d b-a b+c—-a-d
a, b, a | o o—90 o o+0

a, b, ¢ B-vy B B+y
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Adding third column to the first column, we get
b—a b—-a b+c—-a-d
2| a o o +90 o0
p p P+v

Since the first and second columns are identical. Hence, the given two lines are
coplanar.

Example 30 Find the coordinates of the point where the line through the points
A 3,4, 1Tand B3, 1, 6 crosses the XY-plane.

Solution The vector equation of the line through the points A and B is
FU3ER 4 fl k005 30+ 01— 40+ 6- 10k |

ie. FU3IW4 fleklen i3 jusk . 0
Let Obe the point where the line AB crosses the XY-plane. Then the position
vector of the point [is of the form x 7 4+ y j

This point must satisfy the equation 11[J  [Why [T]

ie. Xty j O B2+ [4=-300H (M +5A00k
Equating the like coefficients of i, jand &, we have

xO302A

y 403 A

00105A

Solving the above equations, we get

13 23
x—and y=—
5 5

13 23
Hence, the coordinates of the required point are (? 5 OJ.

Miscellaneous Exercise on Chapter 11

1. Show that the line joining the origin to the point 12, 1, 1[is perpendicular to the
line determined by the points 3, 5, 010)4, 3, 011

2. Ifl,m,n andl,m,n, are the direction cosines of two mutually perpendicular
lines, show that the direction cosines of the line perpendicular to both of these

are my ny —my my, m L —nyly, Lmy—Lmy
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3.

10.

11.

12.

13.

14.

15.

16.

17.

MATHEMATICS

Find the angle between the lines whose direction ratios are a, b, ¢ and
b Ue, ¢ Ua, a Ub.

Find the equation of a line parallel to x-axis and passing through the origin.

If the coordinates of the points A, B, C, D be 1, 2,30J4, 5, [T, 4, 3, J6[and
[2, [] 2[respectively, then find the angle between the lines AB and CD.

-1 y-2 z=3 x-1 y-1 z-6 .
= = and = = are endicular,
-3 2k 2 3k 1 -5 perp
find the value of £.

Find the vector equation of the line passing through 1, 2, 3Cand perpendicular to

the plane 7. (442 jL5 ki 1=0.
Find the equation of the plane passing through (4, b, cCand parallel to the plane

Pl k=2,
Find the shortest distance between lines 7= 6 {42 j4 2 k4 A 12 j4 2 k!

and 7 =—4i- k4+p B2 j-2kL.

Find the coordinates of the point where the line through (3, 1, 6Cand 3, 4,10
crosses the Y +plane.

Find the coordinates of the point where the line through 5, 1, 6Cand 3, 4, 10
crosses the "X-plane.

Find the coordinates of the point where the line through 3, 04, 050and
2, 03, 1crosses the plane 2x Oy Oz 00

Find the equation of the plane passing through the point M1, 3, 2Cand perpendicular
to each of the planes x [12y [13z 5 and 3x 03y Oz 0O.

If the points 1, 1, pfand 13, 0, 10be equidistant from the plane
73144 f-12 k% 13 =0, then find the value of p.

Ifthe lines =

Find the equation of the plane passing through the line of intersection of the
planes 7 - [ j L ki=land 7-2ik43 = k4 =0 and parallel to x-axis.

If O be the origin and the coordinates of [Ibe 1, 2, [13[Jthen find the equation of
the plane passing through Jand perpendicular to O[]

Find the equation of the plane which contains the line of intersection of the planes
FolUd2 j4+3k-4=0,7-2i% - k(+5=0and whichis perpendicular to the
plane 7. 51@.3}2_61@[4_ [1=0.
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Find the distance of the point 1, [J5, J10from the point of intersection of the
line 7 =2i- j42 k%A B3ik4 /42 klandtheplane 7-FL ji4 k=5,

Find the vector equation of the line passing through M, 2, 3Cand parallel to the
planes 7- - j42k=5 and 7- Bik j4k(=6.

Find the vector equation of the line passing through the point 1, 2, [J4Cand
perpendicular to the two lines[]

x—0 y+10 z-10 x—15[y—2[_z—5

= d
3 —l6 s 0 s
[rove that if a plane has the intercepts a, b, ¢ and is at a distance of p units from
. 1 1 1 1
the origin, then — + — + — =—-.
a b c p

Choose the correct answer in Exercises 22 and 23.

22.

23.

Distance between the two planes2x [3y 4z (4 and 4x 6y Oz 12 is

. 2 .
[A 12 units (B[] 4 units [CO Cunits (D] — units

Jar

The planes2x [y [4z 05 and 5x [02.5y 10z [J6 are

[A[] Cerpendicular B[ Carallel
. 5
[CO intersect y-axis (D[ passes through (0, 0, Zj
Summary

Direction cosines of a line are the cosines of the angles made by the line
with the positive directions of the coordinate axes.

If [, m, n are the direction cosines of a line, then > [Im? [1n? (1.
Direction cosines of a line joining two points [[x,y,,z [and [Ilx,, y,, z, [ are

Yo =X Vo=V 2%
b b

N g N

where [1 [0 \/Dcz _xlﬁ + _ylﬁ +(Zz _21)2

Direction ratios of a line are the numbers which are proportional to the
direction cosines of a line.

If [, m, n are the direction cosines and a, b, ¢ are the direction ratios of a line
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then

C

a b
I0DF———ml 77—zl 777
Skew lines are lines in space which are neither parallel nor intersecting.
They lie in different planes.

Angle between skew lines is the angle between two intersecting lines
drawn from any point [preferably through the originparallel to each of the
skew lines.

If /,,m,n andl,m,, n,are the direction cosines of two lines[and O is the
acute angle between the two linesthen

cosO LI (L[ Umm, nn, Ll
Ifa, b, c and a, b,, c, are the direction ratios of two lines and 0 is the
acute angle between the two linesthen

a a, +b b, +¢ ¢,
\/alz+b12+cl2 \/a§+ b + c;

Cector equation of a line that passes through the given point whose position

cosO [

vectoris @ and parallel to a given vector p iS 7 = G+ A b -
Equation of a line through a point (X , y,, z, Land having direction cosines /, m, 1 is

NN VT 2T

[ m n
The vector equation of a line which passes through two points whose position

vectors are @ and b is F=a+ A b —al.
Cartesian equation of a line that passes through two points [x,, y , z, [and
. I S IS St I

B=a8 NH=h HTEH

X, ¥,, z,[is

If 0 is the acute angle between 7 =g, +1b and 7 =d, +Ab,, then

cos0= #bl'bi
, LLb,
X h _YTh _Z74 and N VTV E T
[, m, n, I m, n,

are the equations of two lines, then the acute angle between the two lines is
given by cos O L[ Lim m, [n n,L]
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Shortest distance between two skew lines is the line segment perpendicular
to both the lines.

Shortest distance between 7 =g, + A b and 7 =a, +p b, is

a, b, C

X=X VY= Z—Z .
= O] 18
a, b, ¢

a, b, (%)

\/U)lcz — by, 3 + [&a, —c,a, 3 + [ayh, —a b, [*

Distance between parallel lines 7 = a, + Ab and 7 = d, + 1 b is

b x [, —d,
b O

In the vector form, equation of a plane which is at a distance d from the

origin, and 7Jis the unit vector normal to the plane through the origin is
Fonk=d.

Equation of a plane which is at a distance of d from the origin and the direction
cosines of the normal to the plane as /, m, nis Ix Omy Onz Od.

The equation of a plane through a point whose position vector is a and

perpendicular to the vector N is [ — g (LN =0.
Equation of a plane perpendicular to a given line with direction ratios A, B, C
and passing through a given point (X, y,, z, Lis
A @ Ox,00B 3 Oy,00C 2 Oz, 000
Equation of a plane passing through three non collinear points (X, y,, z, L,
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X,, ¥, z,land [x, y,, z,[is
X=X Y= Z-Z
X=X =N %724 o
X3 =X Vi= )V 23— %
Cector equation of a plane that contains three non collinear points having
position vectors a, band¢éis (F-aO.0b—alx (€ —-a =0

Equation of a plane that cuts the coordinates axes at [a, 0, O] [0, b, 0CJand
[0, 0, cLis

Cector equation of a plane that passes through the intersection of
planes7 -7, =d, and ¥ -, =d, 1is ¥ -G, +An,[=d, + hd,, where A is any
nonléro constant.

Cartesian equation of a plane that passes through the intersection of two
given planes A x /B, y L/C, z D, [J0and A x B,y LUC,z D, [10

is A x OB, yOC, z0OD,O0AA, x OB,y 0OC,z0D,000.
Two lines 7 = G, + M;l and 7 = @, + ng are coplanar if
(G, —d, 3 xb,[ 00
In the cartesian form above lines passing through the points A [x , y , [;[and

B &,,y,,2,!
. . X=X W=V %%

_ YUY, zZUzZ, .

T ¢ are coplanar if 4 b < | oo.
2 2 a, b, )

In the vector form, if O is the angle between the two planes, 7 -7, =d, and
(h, - 1,

7 T,

The angle ¢ between the line 7 = + A5 and the plane 7 -i'=d is

7-n,=d,,then 0 [Jcos"
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b-n

(B (TR
¢ The angle 0 between the planes A x /By [ICz /D, [0 and

A x 1B,y [IC, z 1D, [10 is given by

sin ¢ =

A A, +B, B, +C, C,
JA? + B2+ C (A2 + B2 +C

cos O [J

& The distance of a point whose position vector is a fromthe plane 7 -#=d is
ld —a-nl
¢ The distance from a point (X, y,, z,[to the plane Ax [I1By [/Cz [ID [0 is
Ax, +By, +Cz, + D
\/ A% + B* + C?

\/
—_— Q‘Q_






Chapter 1 2

(LINEAR PROGRAMMING)

% The mathematical experience of the student is incomplete if he never had

the opportunity to solve a problem invented by himself. — G. POLYA +»

12.1 Introduction

In earlier classes, we have discussed systems of linear
equations and their applications in day to day problems. In
Class XI, we have studied linear inequalities and systems
of linear inequalities in two variables and their solutions by
graphical method. Many applications in mathematics
involve systems of inequalities/equations. In this chapter,
we shall apply the systems of linear inequalities/equations
to solve some real life problems of the type as given below:

A furniture dealer deals in only two items—tables and
chairs. He has Rs 50,000 to invest and has storage space
of at most 60 pieces. A table costs Rs 2500 and a chair
Rs 500. He estimates that from the sale of one table, he
can make a profit of Rs 250 and that from the sale of one L. Kantorovich
chair a profit of Rs 75. He wants to know how many tables and chairs he should buy
from the available money so as to maximise his total profit, assuming that he can sell all
the items which he buys.

Such type of problems which seek to maximise (or, minimise) profit (or, cost) form
a general class of problems called optimisation problems. Thus, an optimisation
problem may involve finding maximum profit, minimum cost, or minimum use of
resources ctc.

A special but a very important class of optimisation problems is linear programming
problem. The above stated optimisation problem is an example of linear programming
problem. Linear programming problems are of much interest because of their wide
applicability in industry, commerce, management science etc.

In this chapter, we shall study some linear programming problems and their solutions
by graphical method only, though there are many other methods also to solve such
problems.
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12.2 Linear Programming Problem and its Mathematical Formulation

e begin our discussion with the above example of furniture dealer which will further
lead to a mathematical formulation of the problem in two variables. In this example, we
observe

(i) The dealer can invest his money in buying tables or chairs or combination thereof.
urther he would earn different profits by following different investment
strategies.

(i) There are certain overriding conditions or constraints vi., his investment is
limited to a maximum of Rs 50,000 and so is his storage space which is for a
maximum of 60 pieces.

Suppose he decides to buy tables only and no chairs, so he can buy 50000 2500,
i.e., 20 tables. His profit in this case will be Rs (250 20), i.e., Rs 5000.

Suppose he chooses to buy chairs only and no tables. ith his capital of Rs 50,000,
he can buy 50000 500, i.e. 00 chairs. ut he can store only 60 pieces. Therefore, he
is forced to buy only 60 chairs which will give him a total profit of Rs (60 75), i.e.,
Rs 4500.

There are many other possibilities, for instance, he may choose to buy 0 tables
and 50 chairs, as he can store only 60 pieces. Total profit in this case would be
Rs (0 250 50 75),i.e., Rs 6250 and so on.

e, thus, find that the dealer can invest his money in different ways and he would
earn different profits by following different investment strategies.

ow the problem is : How should he invest his money in order to get maximum
profit To answer this question, let us try to formulate the problem mathematically.

12.2.1 Mathematical formulation of the problem
Let x be the number of tables and y be the number of chairs that the dealer buys.
bviously, xandy mustbe nonnegative, i.e.,

x20 . . .0
(onnegative constraints)
y=0 (2

The dealer is constrained by the maximum amount he can invest (Here it is
Rs 50,000) and by the maximum number of items he can store (Here it is 60).

Stated mathematically,

2500x 500 y < 50000 (investment constraint)
or S5x y <00 .. 0
and x y <60 (storage constraint) .. (4)
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The dealer wants to invest in such a way so as to maximise his profit, say, which
stated as a function of x and y is given by

250 x 75 y (called objective function) .. (9)
Mathematically, the given problems now reduces to:
Maximise 250 x 75 y
subect to the constraints:

5x y<00
x y<60
x>0, >0

So, we have to maximise the linear function subect to certain conditions determined
by a set of linear inequalities with variables as nonnegative. There are also some other
problems where we have to minimise a linear function subect to certain conditions
determined by a set of linear inequalities with variables as nonnegative. Such problems
are called Linear Programming Problems.

Thus, a Linear rogramming roblem is one that is concerned with finding the
optimal value (maximum or minimum value) of a linear function (called objective
function) of several variables (say x and y), subect to the conditions that the variables
are non-negative and satisfy a set of linear inequalities (called linear constraints).
The term linear implies that all the mathematical relations used in the problem are
linear relations while the term programming refers to the method of determining a
particular programme or plan of action.

efore we proceed further, we now formally define some terms (which have been
used above) which we shall be using in the linear programming problems:

Objective function Linear function ax by, where a, b are constants, which has
to be maximised or minimied is called a linear objective function.

In the above example, 250 x 75 yisa linear obective function. ariables xand
y are called decision variables.

Constraints The linear inequalities or equations or restrictions on the variables of a
linear programming problem are called constraints. The conditions x > 0, y > 0 are
called nonnegative restrictions. In the above example, the set of inequalities () to (4)
are constraints.

Optimisation problem A problem which seeks to maximise or minimise a linear
function (say of two variables x and y) subect to certain constraints as determined by

a set of linear inequalities is called an optimisation problem. Linear programming
problems are special type of optimisation problems. The above problem of investing a
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given sum by the dealer in purchasing chairs and tables is an example of an optimisation
problem as well as of a linear programming problem.

e will now discuss how to find solutions to a linear programming problem. In this
chapter, we will be concerned only with the graphical method.

12.2.2 Graphical method of solving linear programming problems

In Class XI, we have learnt how to graph a system of linear inequalities involving two
variables x and y and to find its solutions graphically. Let us refer to the problem of
investment in tables and chairs discussed in Section 2.2. e will now solve this problem
graphically. Let us graph the constraints stated as linear inequalities:

Sx y<00 .. 0
x y<60 .. (2)
x>0 .. 0
y2>0 .. (4)

The graph of this system (shaded region) consists of the points common to all half
planes determined by the inequalities () to (4) (ig 2.). Each point in this region
represents a feasible choice open to the dealer for investing in tables and chairs. The
region, therefore, is called the feasible region for the problem. Every point of this
region is called a feasible solution to the problem. Thus, we have,

Feasible region The common region determined by all the constraints including
nonnegative constraints x,y >0 of a linear programming problem is called the feasible
region (or solution region) for the problem. Inig 2., the region AC (shaded) is

the feasible region for the problem. The region other than feasible region is called an
infeasible region. Y

Feasible solutions oints within and on the
boundary of the feasible region represent
feasible solutions of the constraints. In
ig 2., every point within and on the
boundary of the feasible region AC
represents feasible solution to the problem.
or example, the point (0, 50) is a feasible
solution of the problem and so are the points
(0, 60), (20, 0) etc.

Any point outside the feasible region is
called an infeasible solution. or example,
the point (25, 40) is an infeasible solution of
the problem.

Y Sx+y=100 x+y=60
Fig 12.1
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Optimal (feasible) solution: Any point in the feasible region that gives the optimal
value (maximum or minimum) of the obective function is called an optimal solution.

ow, we see that every point in the feasible region AC satisfies all the constraints
as given in () to (4), and since there are infinitely many points, it is not evident how
we should go about finding a point that gives a maximum value of the obective function
250 x 75 y. To handle this situation, we use the following theorems which are
fundamental in solving linear programming problems. The proofs of these theorems
are beyond the scope of the book.

Theorem 1 Let R be the feasible region (convex polygon) for a linear programming
problem and let ax by be the obective function. hen has an optimal value
(maximum or minimum), where the variables x and y are subect to constraints described
by linear inequalities, this optimal value must occur at a corner point (vertex) of the
feasible region.

Theorem 2 Let R be the feasible region for a linear programming problem, and let

ax by be the obective function. IfR is bounded**, then the obective function
has both a maximum and a minimum value on R and each of these occurs at a
corner point (vertex) of R.

Remark If R is unbounded, then a maximum or a minimum value of the obective
function may not exist. However, if it exists, it must occur at a corner point of R.
(y Theorem ).

In the above example, the corner points (vertices) of the bounded (feasible) region
are: , A, and C and it is easy to find their coordinates as (0, 0), (20, 0), (0, 50) and
(0, 60) respectively. Let us now compute the values of at these points.

¢ have
ertex of the Corresponding value
easible Region of (in Rs)
(0,0) 0
C (0,60) 4500 )
(0,50) 6250 <&— Maximum
A (20,0) 5000

A corner point of a feasible region is a point in the region which is the intersection of two boundary lines.

A feasible region of a system of linear inequalities is said to be bounded if it can be enclosed within a
circle. therwise, it is called unbounded. nbounded means that the feasible region does extend
indefinitely in any direction.
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e observe that the maximum profit to the dealer results from the investment
strategy (0, 50), i.e. buying 0 tables and 50 chairs.
This method of solving linear programming problem is referred as Corner Point
Method. The method comprises of the following steps:
ind the feasible region of the linear programming problem and determine its
corner points (vertices) either by inspection or by solving the two equations of
the lines intersecting at that point.
2. Evaluate the obective function ax by at each corner point. Let M and m,
respectively denote the largest and smallest values of these points.
(i) hen the feasible region is bounded, M and m are the maximum and
minimum values of .

(i) In case, the feasible region is unbounded, we have:

4. (a) M is the maximum value of , if the open half plane determined by
ax by M has no point in common with the feasible region. therwise,
has no maximum value.
(b) Similarly, m is the minimum value of, if the open half plane determined by
ax by mhasno point in common with the feasible region. therwise,
has no minimum value.

e will now illustrate these steps of Corner oint Method by considering some

examples:

Example 1 Solve the following linear programming problem graphically:

Maximise 4 x y .0
subect to the constraints:
x y<50 .. (2)
x <0 .. 0
x>0,y>0 . (4)

Solution The shaded region in ig 2.2 is the feasible region determined by the system
of constraints (2) to (4). e observe that the feasible region AC is bounded. So,
we now use Corner oint Method to determine the maximum value of .

The coordinates of the corner points , A, and C are (0, 0), (0, 0), (20, 0) and
(0, 50) respectively. ow we evaluate at each corner point.
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Corner Point | Corresponding value
of
(0,0) 0
(0,0) 120 €<— [Maximum
(20,0) 0
(0,50) 50

S0
X o 10 20 \40 Nm X
Y AGLDY N g
Fig 12.2

Hence, maximum value of is 20 at the point (0, 0).

Example 2 Solve the following linear programming problem graphically:

Minimise 200 x 500 y .0
subect to the constraints:
x2y>0 .. (2)
x4 y<24 .. 0
x>20,y>0 .. (4)

Solution The shaded region in ig 2. is the feasible region AC determined by the
system of constraints (2) to (4), which is bounded. The coordinates of corner points

. X Comer oint {Corresponding value
T of
C(0,6)

™ 0, 5) 2500

N 4,) 2300 ¢<— |Minimum

41 (0,6) 000

3 =4

2 4

1t (10,0)
X" ' ' ' ok

0;{' 1234567 N -

3x+4y=24
Fig 12.3
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A, and C are (0,5), (4,) and (0,6) respectively. ow we evaluate 200 x 500 y
at these points.

Hence, minimum value of is 200 attained at the point (4, )

Example 3 Solve the following problem graphically:

Minimise and Maximise Xy .. 0
subect to the constraints: x y<60 .. (2)
x y=20 .. 0
x<y .. (4)
x20,y20 .. (5)

Solution irst of all, let us graph the feasible region of the system of linear inequalities
(2) to (5). The feasible region AC is shown in the ig 2.4. ote that the region is
bounded. The coordinates of the corner points A, , C and are (0, 0), (5, 5), (5,5)

and (0, 20) respectively.

Corner Corresponding value of
oint x
A(0,0) 0
(5,5) 60 <— |Minimum
C(5,5) 180 <« Maximum
(0,20) 180 (Multiple
optimal
(60,0) X solutions)
T 50 '\
Y’ a0 x+3y=60
’ y=10
Fig 12.4

e now find the minimum and maximum value of . rom the table, we find that
the minimum value of is 60 at the point (5, 5) of the feasible region.

The maximum value of on the feasible region occurs at the two corner points
C (5, 5) and (0, 20) and it is O in each case.

Remark bserve that in the above example, the problem has multiple optimal solutions
at the corner points C and, i.e. the both points produce same maximum value 0. In
such cases, you can see that every point on the line segment C oining the two corner
points C and also give the same maximum value. Same is also true in the case if the
two points produce same minimum value.
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Example 4 etermine graphically the minimum value of the obective function

—50x 20 y .. 0
subect to the constraints:
2x—y=>-5 .. (2)
x y2..0
2x — y<2 .. (4)
x>20,y>0 .. (5)

Solution irst of all, let us graph the feasible region of the system of inequalities (2) to
(5). The feasible region (shaded) is shown in the ig 2.5. bserve that the feasible
region is unbounded.

e now evaluate at the corner points.

Y
A
10 0
. Corner oint —50x 20 y
: (0, 5) 00
(0,) 60
(,0) -50
(6,0) —300 <— [smallest
Y" T\A@L0) .
\OJ, 2 :';4'11"4':"7 8910
X’ Y (6, 0)
3x+y=3
Fig 12.5

rom this table, we find that — 00 is the smallest value of at the corner point
(6, 0). Can we say that minimum value of is — 00 ote that if the region would
have been bounded, this smallest value of is the minimum value of (Theorem 2).
ut here we see that the feasible region is unbounded. Therefore, — 00 may or may
not be the minimum value of . To decide this issue, we graph the inequality

—50x 20 y —00 (see Step (ii) of corner oint Method.)
ie., -5 2y -0
and check whether the resulting open half plane has points in common with feasible

region or not. If it has common points, then —00 will not be the minimum value of Z.
therwise, —00 will be the minimum value of .



LIEAR RRAMMI 5

As shown in the ig 2.5, it has common points. Therefore, -50x 20 y
has no minimum value subect to the given constraints.

In the above example, can you say whether z — 50 x 20 y has the maximum
value 00 at (0,5) or this, check whether the graph of ~ —50x 20 y 00 has points
in common with the feasible region. (hy)
Example 5 Minimise x2y

subect to the constraints:

x 2.0
x5 y<5 - (2)
x20,y20 .. 0

Solution Let us graph the inequalities () to () (ig 2.6). Is there any feasible region
hy is so

rom ig 2.6, you can see that
there is no point satisfying all the
constraints simultaneously. Thus, the
problem is having no feasible region and
hence no feasible solution.

Remarks rom the examples which we
have discussed so far, we notice some
general features of linear programming
problems:

(i) The feasible region is always a
convex region.

Fig 12.6

(i) The maximum (or minimum)
solution of the obective function occurs at the vertex (corner) of the feasible
region. If two corner points produce the same maximum (or minimum) value
of the obective function, then every point on the line segment oining these
points will also give the same maximum (or minimum) value.

EXERCISE 12.1|

Solve the following Linear rogramming roblems graphically:
1. Maximise x4y

subect to the constraints : x y<4,x > 0,y>0.
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Minimise - x4y

subectto x 2 y<, x 2 y<2, x2>0,y>0.
Maximise 5 x y

subectto x 5 y <5,5x 2 y<0, x 20,y>0.
Minimise x5y

suchthatx y >, x y2>22,xy20.
Maximise x2y

subectto x 2 <0, x y<5 x,y=>0.
Minimise x2y

subectto2x y>, x 2 y>6,x,y>0.

Show that the minimum of occurs at more than two points.

7.

10.

Minimise and Maximise 5 x 0 y
subectto x 2 y <20, x »>260,x—2y>0,x,y>0.
Minimise and Maximise x2y

subectto x 2 y>00,2 x—y<0,2x y<200 x,y=>0.

Maximise —Xx 2 y,subect to the constraints:
x=2, x y25x2y26,y=0.
Maximise x y,subectto x—y<—-, —x y<0, x,y 0.

12.3 Different Types of Linear Programming Problems

A few important linear programming problems are listed below:

1.

Manufacturing problems In these problems, we determine the number of units
of different products which should be produced and sold by a firm
when each product requires a fixed manpower, machine hours, labour hour per
unit of product, warehouse space per unit of the output etc., in order to make
maximum profit.

Diet problems In these problems, we determine the amount of different kinds
of constituents/nutrients which should be included in a diet so as to minimise the
cost of the desired diet such that it contains a certain minimum amount of each
constituent/nutrients.

Transportation problems In these problems, we determine a transportation
schedule in order to find the cheapest way of transporting a product from
plants/factories situated at different locations to different markets.
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Let us now solve some of these types of linear programming problems:

Example 6 (Diet problem): A dietician wishes to mix two types of foods in such a
way that vitamin contents of the mixture contain atleast units of vitamin A and 0
units of vitamin C. ood I contains 2 units/kg of vitamin A and unit/kg of vitamin C.
ood II contains unit/kg of vitamin A and 2 units/kg of vitamin C. It costs
Rs 50 per kg to purchase ood I and Rs 70 per kg to purchase ood 1II . ormulate
this problem as a linear programming problem to minimise the cost of such a mixture.

Solution Let the mixture contain x kg of ood I and ykgofood 1II.Clearly, x>0,
y 2 0. e make the following table from the given data:

Resources ood Requirement
I 11
x W
itamin A 2
(units/kg)
itamin C 2 0
(units/kg)
Cost (Rs/kg) [ 50 70

Since the mixture must contain at least units of vitamin A and O units of
vitamin C, we have the constraints:

2x y=
x2y=20
Total cost of purchasing x kg of food I and y kg of ood 1I is
50 x70 y
Hence, the mathematical formulation of the problem is:
Minimise 50 x70 y .. 0
subect to the constraints:
2x y2>..(2)
x2y20 .. 0
x,y20 .. (4

Let us graph the inequalities (2) to (4). The feasible region determined by the
system is shown in the ig 2.7. Here again, observe that the feasible region is
unbounded.
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Let us evaluate at the corner points A(0,), (2,4) and C(0,0).

‘7

127

w2 1
Dy 5 A(08) Corneroint |50 x 70 y
©,) 560
2.4) 380 <— |Minimum
1 BXS (0,0) 500
AN
Y*" N \:\* : c :

o 2 /‘\6 Ty K12

X' (40 (10,0)
2x+y=8
Fig 12.7

In the table, we find that smallest value of is 0 at the point (2,4). Can we say
that the minimum value of is 0 Remember that the feasible region is unbounded.
Therefore, we have to draw the graph of the inequality

50x 70 y0ie., 5 x 7y

to check whether the resulting open half plane has any point common with the feasible
region. rom the ig 2.7, we see that it has no points in common.

Thus, the minimum value of is 0 attained at the point (2, 4). Hence, the optimal
mixing strategy for the dietician would be to mix 2 kgofood I and4kgofood 1II,
and with this strategy, the minimum cost of the mixture will be Rs 0.

Example 7 (Allocation problem) A cooperative society of farmers has 50 hectare
of land to grow two crops X and . The profit from crops X and per hectare are
estimated as Rs 0,500 and Rs ,000 respectively. To control weeds, a liquid herbicide
has to be used for crops X and at rates of 20 litres and 0 litres per hectare. urther,

no more than 00 litres of herbicide should be used in order to protect fish and wild life
using a pond which collects drainage from this land. How much land should be allocated
to each crop so as to maximise the total profit of the society

Solution Let x hectare of land be allocated to crop X and y hectare to crop . bviously,
x>0,y2>0.

rofit per hectare on crop X Rs 0500

rofit per hectare on crop Rs 000

Therefore, total profit Rs (0500  x 000 y)
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The mathematical formulation of the problem is as follows:

Maximise 0500 x 000 y
subect to the constraints:
x ¥ <50 (constraint related to land) .. 0
20x + 0 y <00 (constraint related to use of herbicide)
ie. 2x y<0 .. (2)
x20,y>0 (non negative constraint) .. 0

Let us draw the graph of the system of inequalities () to (). The feasible region
AC is shown (shaded) in the ig 2.. bserve that the feasible region is bounded.
The coordinates of the corner points , A, and C are (0, 0), (40, 0), (0, 20) and
(0, 50) respectively. Let us evaluate the obective function 0500 x 000 yat
these vertices to find which one gives the maximum profit.

Y (0,50

N Corner oint | 0500 x 000 y
‘} / (0,0) 0

40- A( 40, 0) 420000

301 (0, 20) 495000 < [Maximum
201 C(0,50) 450000

101

X5 \
Y x+y=50
Fig 12.8

Hence, the society will get the maximum profit of Rs 4,5,000 by allocating 0
hectares for crop X and 20 hectares for crop .

Example 8 (Manufacturing problem) A manufacturing company makes two models
A and of a product. Each piece of Model A requires labour hours for fabricating
and labour hour for finishing. Each piece of Model requires 2 labour hours for
fabricating and labour hours for finishing. or fabricating and finishing, the maximum
labour hours available are 0 and 0 respectively. The company makes a profit of

Rs 000 on each piece of model A and Rs 2000 on each piece of Model . How many
pieces of Model A and Model should be manufactured per week to realise a maximum
profit hat is the maximum profit per week
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Solution Suppose x is the number of pieces of Model A and y is the number of pieces
of Model . Then

Total profit (inRs) 000  x 2000 y

Let 000 x 2000 y
e now have the following mathematical model for the given problem.
Maximise 000 x 2000 y .0

subect to the constraints:

x 2 y<0 (abricating constraint)

ie. x 4 y<60 .. (2)
x y<0 (inishingconstraint) .. 0
x20,y20 (nonnegative constraint) .. @

The feasible region (shaded) AC determined by the linear inequalities (2) to (4)
is shown in the ig 2.. ote that the feasible region is bounded.

\/

3x + 4y = 6020

(0,10)C

X'< Ol TR . -‘/\>x
v, 200) x+3p=30
Fig 12.9
Let us evaluate the obective function at each corner point as shown below:
Corner oint 000 x 2000 y
0(0,0) 0
A (20,0) 60000
(2,6) 168000 <— | Maximum
C(0,0) 20000

e find that maximum value of is ,6,000 at (2, 6). Hence, the company
should produce 2 pieces of Model A and 6 pieces of Model to realise maximum
profit and maximum profit then will be Rs ,6,000.



LIEAR RRAMMI 5

|EXERCISE 12.2

Reshma wishes to mix two types of food and in such a way that the vitamin
contents of the mixture contain at least units of vitamin A and units of
vitamin . ood costs Rs 60/kg and ood costs Rs 0/kg. ood contains
units/kg of itamin A and 5 units / kg of itamin while food contains

4 units/kg of itamin A and 2 units/kg of vitamin . etermine the minimum cost
of the mixture.

ne kind of cake requires 200g of flour and 25g of fat, and another kind of cake
requires 00g of flour and 50g of fat. ind the maximum number of cakes which
can be made from 5kg of flour and kg of fat assuming that there is no shortage
of the other ingredients used in making the cakes.

A factory makes tennis rackets and cricket bats. A tennis racket takes .5 hours
of machine time and hours of craftman s time in its making while a cricket bat
takes hour of machine time and hour of craftman s time. In a day, the factory
has the availability of not more than 42 hours of machine time and 24 hours of
craftsman s time.

(1) hat number of rackets and bats must be made if the factory is to work
at full capacity

(i) If the profit on a racket and on a bat is Rs 20 and Rs 0 respectively, find
the maximum profit of the factory when it works at full capacity.

A manufacturer produces nuts and bolts. It takes hour of work on machine A
and hours on machine to produce a package of nuts. It takes hours on
machine A and hour on machine to produce a package of bolts. He earns a
profit of Rs7.50 per package on nuts and Rs 7.00 per package on bolts. How
many packages of each should be produced each day so as to maximise his
profit, if he operates his machines for at the most 2 hours a day

A factory manufactures two types of screws, A and . Each type of screw
requires the use of two machines, an automatic and a hand operated. It takes
4 minutes on the automatic and 6 minutes on hand operated machines to
manufacture a package of screws A, while it takes 6 minutes on automatic and
minutes on the hand operated machines to manufacture a package of screws

. Each machine is available for at the most 4 hours on any day. The manufacturer
can sell a package of screws A at a profit of Rs 7 and screws at a profit of
Rs 0. Assuming that he can sell all the screws he manufactures, how many
packages of each type should the factory owner produce in a day in order to
maximise his profit etermine the maximum profit.
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A cottage industry manufactures pedestal lamps and wooden shades, each
requiring the use of a grinding/cutting machine and a sprayer. It takes 2 hours on
grinding/cutting machine and hours on the sprayer to manufacture a pedestal
lamp. It takes hour on the grinding/cutting machine and 2 hours on the sprayer
to manufacture a shade. n any day, the sprayer is available for at the most 20
hours and the grinding/cutting machine for at the most 2 hours. The profit from
the sale of a lamp is Rs 5 and that from a shade is Rs . Assuming that the
manufacturer can sell all the lamps and shades that he produces, how should he
schedule his daily production in order to maximise his profit

A company manufactures two types of novelty souvenirs made of plywood.
Souvenirs of type A require 5 minutes each for cutting and 0 minutes each for
assembling. Souvenirs of type require minutes each for cutting and minutes
each for assembling. There are hours 20 minutes available for cutting and 4
hours for assembling. The profit is Rs 5 each for type A and Rs 6 each for type
souvenirs. How many souvenirs of each type should the company manufacture
in order to maximise the profit

A merchant plans to sell two types of personal computers —a desktop model and
a portable model that will cost Rs 25000 and Rs 40000 respectively. He estimates
that the total monthly demand of computers will not exceed 250 units. etermine
the number of units of each type of computers which the merchant should stock
to get maximum profit if he does not want to invest more than Rs 70 lakhs and if
his profit on the desktop model is Rs 4500 and on portable model is Rs 5000.

A diet is to contain at least 0 units of vitamin A and 00 units of minerals. Two
foods and , are available. ood costs Rs 4 per unit food and , costs
Rs 6 per unit. ne unit of food contains units of vitamin A and 4 units of
minerals. ne unitof food , contains 6 units of vitamin A and units of minerals.
ormulate this as a linear programming problem. ind the minimum cost for diet
that consists of mixture of these two foods and also meets the minimal nutritional
requirements.

There are two types of fertilisers and ,.  consists of 0 nitrogen and 6
phosphoric acid and , consists of 5 nitrogen and 0 phosphoric acid. After
testing the soil conditions, a farmer finds that she needs atleast 4 kg of nitrogen
and 4 kg of phosphoric acid for her crop. If costs Rs 6/kg and | costs
Rs 5/kg, determine how much of each type of fertiliser should be used so that
nutrient requirements are met at a minimum cost. hat is the minimum cost

The corner points of the feasible region determined by the following system of

linear inequalities:

2x y <0, x y <5 x,y>0are (0, 0), (5 0), (, 4) and (0, 5). Let
px gy, where p, g 0. Condition on p and ¢ so that the maximum of

occurs at both (, 4) and (0, 5) is

A p ¢q O p2g O p g O g »p
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Miscellaneous Examples

Example 9 (Diet problem) A dietician has to develop a special diet using two foods
and . Each packet (containing 0 g) of food contains 2 units of calcium, 4 units

of iron, 6 units of cholesterol and 6 units of vitamin A. Each packet of the same quantity
of food contains units of calcium, 20 units of iron, 4 units of cholesterol and units

of vitamin A. The diet requires atleast 240 units of calcium, atleast 460 units of iron and
at most 00 units of cholesterol. How many packets of each food should be used to
minimise the amount of vitamin A in the diet hat is the minimum amount of vitamin A

Solution Let x and y be the number of packets of food and respectively. bviously
x>0,y > 0. Mathematical formulation of the given problem is as follows:
Minimise Z 6 x  y (vitamin A)

subect to the constraints

2 x  y 2240 (constraint on calcium), i.e. 4 y=>0 .. 0

4x 20 y >460 (constraint on iron), i.e. x5y=25 .. (2)

6x 4 y <00 (constraint on cholesterol),i.e. x 2 y <50 .. 0
x>20,y>20 .. (4)

Let us graph the inequalities () to (4).

The feasible region (shaded) determined by the constraints () to (4) is shown in
ig 2.0 and note that it is bounded.

(0, 23) 40 -
N

20 1

(115, 0)
X’ AN X
O 20\ 40 &0 80 100 120 —s
N x+5y=115
+2p=
dx+y =80 3x+2y=150

Fig 12.10
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The coordinates of the corner points L., M and are (2, 72), (5, 20) and (40, 5)
respectively. Let us evaluate at these points:

Corner oint 6 X y

(2,72) 22

(5,20) 150 < Minimum
(40,5) 25

rom the table, we find that is minimum at the point (5, 20). Hence, the amount
of vitamin A under the constraints given in the problem will be minimum, if 5 packets
of food and 20 packets of food are used in the special diet. The minimum amount
of vitamin A will be 50 units.

Example 10 (Manufacturing problem) A manufacturer has three machines I, II
and III installed in his factory. Machines I and II are capable of being operated for
at most 2 hours whereas machine Il must be operated for atleast 5 hours a day. She
produces only two items M and each requiring the use of all the three machines.

The number of hours required for producing unit of each of M and on the three
machines are given in the following table:

Items | Number of hours required on machines
I II 111
M 2
2 25

She makes a profit of Rs 600 and Rs 400 on items M and respectively. How many
of each item should she produce so as to maximise her profit assuming that she can sell
all the items that she produced hat will be the maximum profit

Solution Let x and y be the number of items M and respectively.
Total profit on the production Rs (600 x 400 y)
Mathematical formulation of the given problem is as follows:

Maximise 600 x 400 y
subect to the constraints:

x 2 y <2 (constraint on Machine I) .. 0
2x  y <2 (constraint on Machine II) .. (2)
5
X4 > 5 (constraint on Machine III) .. 0

x 20,20 .. (4)
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Let us draw the graph of constraints () to (4). ACE is the feasible region
(shaded) as shown in ig 2. determined by the constraints () to (4). bserve that
the feasible region is bounded, coordinates of the corner points A, , C, and E are

(5,0) (6, 0),(4,4), (0, 6) and (0, 4) respectively.
Y

2x+y=12 /

X9
Y

Fig 12.11

Let us evaluate 600 x 400 y at these corner points.

Corner point 600 x 400 y
(5,0) 000
(6,0) 600
4,4) 4000 €<— | Maximum
(0, 6) 2400
(0,4) 600

e see that the point (4, 4) is giving the maximum value of . Hence, the
manufacturer has to produce 4 units of each item to get the maximum profit of Rs 4000.

Example 11 (Transportation problem) There are two factories located one at
place and the other at place . rom these locations, a certain commodity is to be
delivered to each of the three depots situated at A, and C. The weekly requirements
of the depots are respectively 5, 5 and 4 units of the commodity while the production
capacity of the factories at and are respectively and 6 units. The cost of
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transportation per unit is given below:

From/To Cost (in Rs)
A C
60 0 50
00 20 00

How many units should be transported from each factory to each depot in order that
the transportation cost is minimum. hat will be the minimum transportation cost

Solution The problem can be explained diagrammatically as follows (ig 2.2):

Let x units and y units of the commodity be transported from the factory at to
the depots at A and respectively. Then ( — x — y) units will be transported to depot
at C (hy) Factory

Factory

Fig 12.12
Hence, we have x>0,y>0 and —x—-y20
ie. x>20,y>0 and x y<

ow, the weekly requirement of the depot at A is 5 units of the commodity. Since
X units are transported from the factory at , the remaining (5 — x) units need to be
transported from the factory at . bviously, 5 —-x20,1.e.x<5.

Similarly, (5—y)and 6—-(5—x 5 —y)=x y—4units are to be transported from
the factory at to the depots at and C respectively.
Thus, 5-y20,x y—-42>0
ie. y<5,x y=> 4
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Total transportation cost is given by

60 x00 y00(5 —-x)2005 =-y)00( x y—4) 50¢( —Xx=Y)
0C x=7y 0) Y
Therefore, the problem reduces to 1 x=5
Minimise 0( x—7y 0) 2‘5\
subect to the constraints: g 5 (3,5
x>20,y>0 .. 0 \B(O’S) < y=3
x y<..(2) /4' D(5,3)
x<5 T e A (5,0)
y<5 .4 ,
and x y=4 .. (5) e 0 ; /4;‘\ \ .
The shaded region ACE ¥ Fao PN o

represented by the constraints () to
(5) is the feasible region (ig 2.). Fig 12.13

bserve that the feasible region is bounded. The coordinates of the corner points
of the feasible region are (0, 4), (0, 5), (, 5), (5, ), (5, 0) and (4, 0).
Let us evaluate at these points.

rom the table, we see that the minimum value of is 550 at the point (0, 5).

Corner oint 0( x—T7y 0)
0,4) 620
0,5) 550 <— Minimum
) 50
(5,) 740
(5,0) 50
4,0) 40

Hence, the optimal transportation strategy will be to deliver 0, 5 and units from
the factory at and 5, 0 and units from the factory at to the depots at A, and C
respectively. Corresponding to this strategy, the transportation cost would be minimum,

1.e., Rs 550.

Miscellaneous Exercise on Chapter 12

1. Refer to Example . How many packets of each food should be used to maximise
the amount of vitamin A in the diet hat is the maximum amount of vitamin A

in the diet
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A farmer mixes two brands and of cattle feed. rand , costing Rs 250 per
bag, contains units of nutritional element A, 2.5 units of element and 2 units
of element C. rand costing Rs 200 per bag contains .5 units of nutritional
element A, .25 units of element , and units of element C. The minimum
requirements of nutrients A, and C are units, 45 units and 24 units respectively.
etermine the number of bags of each brand which should be mixed in order to
produce a mixture having a minimum cost per bag hat is the minimum cost of
the mixture per bag

A dietician wishes to mix together two kinds of food X and in such a way that

the mixture contains at least O units of vitamin A, 2 units of vitamin and
units of vitamin C. The vitamin contents of one kg food is given below:

Food Vitamin A | Vitamin B | Vitamin C
X 2
2 2

ne kg of food X costs Rs 6 and one kg of food costs Rs 20. ind the least
cost of the mixture which will produce the required diet

A manufacturer makes two types of toys A and . Three machines are needed
for this purpose and the time (in minutes) required for each toy on the machines
is given below:

Types of Toys Machines

I I | I
A 2 |6
6 0

Each machine is available for a maximum of 6 hours per day. If the profit on
each toy of type A is Rs 7.50 and that on each toy of type is Rs 5, show that 5
toys of type A and 0 of type should be manufactured in a day to get maximum
profit.

An aeroplane can carry a maximum of 200 passengers. A profit of Rs 000 is
made on each executive class ticket and a profit of Rs 600 is made on each
economy class ticket. The airline reserves at least 20 seats for executive class.
However, at least 4 times as many passengers prefer to travel by economy class
than by the executive class. etermine how many tickets of each type must be
sold in order to maximise the profit for the airline. hat is the maximum profit
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6. Two godowns A and have grain capacity of 00 quintals and 50 quintals
respectively. They supply to ration shops, , E and whose requirements are
60, 50 and 40 quintals respectively. The cost of transportation per quintal from
the godowns to the shops are given in the following table:

Transportation cost per quintal (in Rs)
From/To A B
6 4
E 2
2.50

How should the supplies be transported in order that the transportation cost is
minimum hat is the minimum cost

7. An oil company has two depots A and with capacities of 7000 L and 4000 L
respectively. The company is to supply oil to three petrol pumps, , E and
whose requirements are 4500L, 000L and 500L respectively. The distances
(in km) between the depots and the petrol pumps is given in the following table:

Distance in (km.)
From / To A B
7
E 6 4
2

Assuming that the transportation cost of 0 litres of oil is Re per km, how
should the delivery be scheduled in order that the transportation cost is minimum
hat is the minimum cost

8. A fruit grower can use two types of fertilier in his garden, brand and brand .
The amounts (in kg) of nitrogen, phosphoric acid, potash, and chlorine in a bag of
each brand are given in the table. Tests indicate that the garden needs at least
240 kg of phosphoric acid, at least 270 kg of potash and at most 0 kg of
chlorine.

If the grower wants to minimise the amount of nitrogen added to the garden,
how many bags of each brand should be used hat is the minimum amount of
nitrogen added in the garden
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9.

10.

kg per bag
Brand P | Brand Q
itrogen 5
hosphoric acid 2
otash 5
Chlorine .5 2

Refer to uestion . If the grower wants to maximise the amount of nitrogen
added to the garden, how many bags of each brand should be added hat is
the maximum amount of nitrogen added

A toy company manufactures two types of dolls, A and . Market tests and available
resources have indicated that the combined production level should not exceed 200
dolls per week and the demand for dolls of type is at most half of that for dolls of
type A. urther, the production level of dolls of type A can exceed three times the
production of dolls of other type by at most 600 units. If the company makes profit of
Rs 2 and Rs 6 per doll respectively on dolls A and , how many of each should be
produced weekly in order to maximise the profit

Summary

A linear programming problem is one that is concerned with finding the optimal

value (maximum or minimum) of a linear function of several variables (called
objective function) subect to the conditions that the variables are

nonnegative and satisfy a set of linear inequalities (called linear constraints).
ariables are sometimes called decision variables and are non-negative.

A few important linear programming problems are:
(i) ietproblems
(i) Manufacturing problems
(iii) Transportation problems
The common region determined by all the constraints including the nonnegative

constraints x > 0, y > 0 of a linear programming problem is called the feasible
region (or solution region) for the problem.

oints within and on the boundary of the feasible region represent feasible
solutions of the constraints.

Any point outside the feasible region is an infeasible solution.
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@ Any point in the feasible region that gives the optimal value (maximum or
minimum) of the obective function is called an optimal solution.

@ The following Theorems are fundamental in solving linear programming
problems:
Theorem 1 Let R be the feasible region (convex polygon) for a linear
programming problemandlet  ax by be the obective function. hen
has an optimal value (maximum or minimum), where the variables x and y
are subect to constraints described by linear inequalities, this optimal value
must occur at a corner point (vertex) of the feasible region.
Theorem 2 Let R be the feasible region for a linear programming problem,
and let ax by be the obective function. If R is bounded, then the
obective function has botha maximum and a minimum value on R and
each of these occurs at a corner point (vertex) of R.

& Ifthe feasible region is unbounded, then a maximum or a minimum may not
exist. However, if it exists, it must occur at a corner point of R.

¢ Corner point method for solving a linear programming problem. The method
comprises of the following steps:

(i) ind the feasible region of the linear programming problem and determine
its corner points (vertices).

(i) Evaluate the obective function ax by at each corner point. Let M
and m respectively be the largest and smallest values at these points.

(ii)) Ifthe feasible region is bounded, M and m respectively are the maximum
and minimum values of the obective function.

If the feasible region is unbounded, then
(i) Misthe maximum value of the obective function, if the open half plane
determined by ax by M has no point in common with the feasible
region. therwise, the obective function has no maximum value.
(i) m is the minimum value of the obective function, if the open half plane
determined by ax by m has no point in common with the feasible
region. therwise, the obective function has no minimum value.

¢ If two corner points of the feasible region are both optimal solutions of the
same type, i.e., both produce the same maximum or minimum, then any point
on the line segment oining these two points is also an optimal solution of the
same type.
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Historical Note

In the orld ar II, when the war operations had to be planned to economise
expenditure, maximise damage to the enemy, linear programming problems
came to the forefront.

The first problem in linear programming was formulated in 4 by the Russian
mathematician, L. antorovich and the American economist, . L. Hitchcock,
both of whom worked at it independently of each other. This was the well
known transportation problem. In 45, an English economist, .Stigler,
described yet another linear programming problem — that of determining an
optimal diet.

In 47, the American economist, . . antig suggested an efficient method
known as the simplex method which is an iterative procedure to solve any
linear programming problem in a finite number of steps.

L. atorovich and American mathematical economist, T. C. oopmans were
awarded the nobel prie in the year 75 in economics for their pioneering
work in linear programming. ith the advent of computers and the necessary
softwares, it has become possible to apply linear programming model to
increasingly complex problems in many areas.

J
0‘0






Chapter 1 3

(PROBABILITY )

o The theory of probabilities is simply the Science of logic
quantitatively treated. — C.S. PEIRCE +»

13.1 Introduction

In earlier Classes, we have studied the probability as a
measure of uncertainty of events in a random experiment.
We discussed the axiomatic approach formulated by
Russian Mathematician, A.N. Kolmogorov (1903-1987)
and treated probability as a function of outcomes of the
experiment. We have also established equivalence between
the axiomatic theory and the classical theory of probability
in case of equally likely outcomes. On the basis of this
relationship, we obtained probabilities of events associated
with discrete sample spaces. We have also studied the
addition rule of probability. In this chapter, we shall discuss
the important concept of conditional probability of an event
given that another event has occurred, which will be helpful
in understanding the Bayes' theorem, multiplication rule of Pierre de Fermat
probability and independence of events. We shall also learn (1601-1665)
an important concept of random variable and its probability
distribution and also the mean and variance of a probability distribution. In the last
section of the chapter, we shall study an important discrete probability distribution
called Binomial distribution. Throughout this chapter, we shall take up the experiments
having equally likely outcomes, unless stated otherwise.

13.2 Conditional Probability

Uptill now in probability, we have discussed the methods of finding the probability of
events. If we have two events from the same sample space, does the information
about the occurrence of one of the events affect the probability of the other event? Let
us try to answer this question by taking up a random experiment in which the outcomes
are equally likely to occur.

Consider the experiment of tossing three fair coins. The sample space of the
experiment is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
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1
Since the coins are fair, we can assign the probability 3 to each sample point. Let

be the event  at least two heads appear and be the event first coin shows tail .
Then
= {HHH, HHT, HTH, THH}

and = {THH, THT, TTH, TTT}
Therefore ~ P() =P ({HHH}) P ({HHT}) P ({HTH}) P ({THH})
I 11
“8isg g (VW
and P() =P ({THH}) P ({THT}) P ({TTH}) P ({TTT})
1 1 1 11
= —4—+—+—=—
g8 8 8 8
Also N = {THH}

with P( n)=P({THH}) = é

Now, suppose we are given that the first coin shows tail, i.e. occurs, then what is
the probability of occurrence of ? With the information of occurrence of , we are
sure that the cases in which first coin does not result into a tail should not be considered
while finding the probability of . This information reduces our sample space from the
set S to its subset for the event . In other words, the additional information really
amounts to telling us that the situation may be considered as being that of a new
random experiment for which the sample space consists of all those outcomes only
which are favourable to the occurrence of the event .

Now, the sample point of which is favourable to event is THH.

1
Thus, Probability of considering as the sample space=  —,

1
or Probability of given that the event has occurred=  —

This probability of the event is called the conditional probability of E given
that F has already occurred, and is denoted by P ().

1
Thus PO= -

Note that the elements of which favour the event are the common elements of
and , i.e. the sample points of M.
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Thus, we can also write the conditional probability of given that has occurred as

Number of elementary events favourableto M

P() =
0 Number of elementary events which are favourable to
n() N

n()

ividing the numerator and the denominator by total number of elementary events
of the sample space, we see that P() can also be written as

n() N
B niS)y PO,
P() = n0) = PO . (D)
n(S)

Note that (1) is valid only when P() #0i.e., # ¢ (Why?)

Thus, we can define the conditional probability as follows

Definition 1 If and are two events associated with the same sample space of a
random experiment, the conditional probability of the event given that has occurred,
i.e. P () is given by

PO N .
P)= ———— providedP() #0

P()
13.2.1 Properties of conditional probability

Let and be events of a sample space S of an experiment, then we have
Property 1 P(S)) =P(|) =1

We know that
_ P(Sn) PO
A TR T
P() P
Also P() = g(—)()szzl
Thus P(S)=P() =1

Property 2 If A and B are any two events of a sample space S and is an event
of S such that P() = 0, then

P((AVwB))) =P(A) P(B) P((A N B))
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In particular, if A and B are disjoint events, then
P((AUB)) =P(A) P(B)
We have
P(A B) N
P()
_PAN B
P()

(by distributive law of union of sets over intersection)

P(Am)P(B ) PANB nN)

P((AUB)) =

P()
_ P(AN) f(B » P(A B n
P() P() P()

=P(A) P(B) P((ANB))

When A and B are disoint events, then
P((AnB))=0

= P((AuB))=P(A) P(B)
Property 3P( )=1 —P()
rom Property 1, we know that P(S) =1
= P(C U H=1 since S = v
= PO P( N=1 since and ' are disoint events

Thus, P()=1 -P(
Let us now take up some examples.

7 9
Example 1 If P(A) = IER PB) = '} and P(AnB) = IER evaluate P(AB).

Solution We have P(AB)= w _13_
P(B) 9 9
13

Example 2 A family has two children. What is the probability that both the children are
boys given that at least one of them is a boy ?
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Solution Let b stand for boy and g for girl. The sample space of the experiment is
S=1{(b b), (g b), (b g), (g &)}
Let and denote the following events
both the children are boys
at least one of the child is a boy

Then ={( bb)} and = {( b,b), (g.h), (b,g)}
Now N =1{( b,b)}
Thus PO = i andP( N )= l
1
Theref P() = —P() a _1:_—
erefore 0= PQ) —2—3

Example 3 Ten cards numbered 1 to 10 are placed in a box, mixed up thoroughly and
then one card is drawn randomly. If it is known that the number on the drawn card is
more than 3, what is the probability that it is an even number?

Solution Let A be the event the number on the card drawn is even and B be the
event the number on the card drawn is greater than 3 . We have to find P(AB).

Now, the sample space of the experimentis S={1,,3,,5,,7,8,9, 10}

Then A=1,,810}, B=1{5,,7,8,9,10}
and AnB={,8, 10}
Also P(A) = i,P(B)=landP(AmB)=—
10 10 10
Then P(AB) = P(PA(E)B ) 2=
10

Example 4 In a school, there are 1000 students, out of which 30 are girls. It is known
that out of 30, 10 of the girls study in class II. What is the probability that a student
chosen randomly studies in Class II given that the chosen student is a girl?

Solution Let denote the event that a student chosen randomly studies in Class II
and be the event that the randomly chosen student is a girl. We have to find P ().
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30

N PO)= -2 —03 and P()=n -063= Why?

oW 0= Tooo and PO= 003 (Why?)
P() ~0.03

Then P() = (12() 3 0.1

Example 5 A die is thrown three times. vents A and B are defined as below
A on the third throw
B on the first and 5 on the second throw
ind the probability of A given that B has already occurred.

Solution The sample space has 1 outcomes.

(LL) (1) ... (1) (L) G ) - ()
Now A= (3’13) (3n) (3n) (ala) (n) . '(n)

(5.1) (5,) - (55 GL) G) - ()

B= {(,5,1), (’5’)’ (a5a3)a (’5’)’ (a5a5)a (,5,)}
and A N B={(5,)}.
Now P(B) = — and P(AmB)=%
1
_ P(AnB) 1 1
Then P(AB) = P®) 7 =
1

Example 6 A die is thrown twice and the sum of the numbers appearing is observed
to be . What is the conditional probability that the number has appeared at least
once?

Solution Let be the event that number appears at least once and be the event
that the sum of the numbers appearing is

Then, ={GD, (), (3), (), (:5), (), (1), (), (3.), (5,), ()}
and = {(1,5), (a)a (3a3)’ (’)’ (5’1)}

11 5
We have PO = 3—and PO = 3

Also N =10, ()}
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Therefore P( n)= 3
Hence, the required probability

_ PO _3 __
PO= 7o 75
3

or the conditional probability discussed above, we have considered the elemen-
tary events of the experiment to be equally likely and the corresponding definition of
the probability of an event was used. However, the same definition can also be used in
the general case where the elementary events of the sample space are not equally
likely, the probabilities P( M) and P () being calculated accordingly. Let us take up
the following example.

Example 7 Consider the experiment of tossing a coin. If the coin shows head, toss it

again but if it shows tail, then throw a die. ind the (H,H)
conditional probability of the event that the die shows Head (H) <
a number greater than  given that there is at least < (H,T)
onetail .
(T.1)
Solution The outcomes of the experiment can be (1,2)
represented in following diagrammatic manner called Tail (T) (T,3)
the tree diagram . g:g%
The sample space of the experiment may be . (T,6)
Fig 13.1

described as
S={(H,H), (H,T), (T,1), (T,), (T,3), (T,), (T.5), (T,)}

where (H, H) denotes that both the tosses result into Va
head and (T, i) denote the first toss result into a tail and

(H,H)
Head (H)<
the number i appeared on the die for i = 1,,3,,5.. & Vi~ (H,T)
Thus, the probabilities assigned to the 8 elementary ™ (T
)

events

(H,H), (H, T), (T, 1).(T.), (T.3) (T, (T, 5),(T.) —

are L T T T T respectively which is v (T5)
clear from the ig 13.. Fig 13.2 (T,6)
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Let be the event that there is at least one tail and be the event  the die shows
a number greater than . Then

= {(H,T),(T.1),(T,), (T.3),(T), (T.5), (T.)}
={(T.5),(T)tand N ={(T.5),(T,)}
Now P() =P{HT)}) PETD}) PH(T)}) PH(T3)})
P({(T)}) P((T.5)}) PH(T)})

= —+—t+—+—+—F—+— ==

T 111111
1 1 1
and PC m)=PUTH) PAMH= 77— =
1
P(O) N n
Hence P() = T =§=9_

| EXERCISE 13.1]
1. iven that and are events such that P() = 0., P() = 0.3 and
P( n)=0., find P() and P()
. Compute P(AB), if P(B) =0.5and P (A nB)=10.3
3. If P(A)=0.8, P(B)=0.5and P(BA)=0., find
i P(AnB) (i) P(AB) (i) P(A UB)

5
4. valuate P(A U B), if P(A)=P(B) = e} and P(AB) = 3

5
5. IfP(A)= 17 ,P(B)= ;7 and (AU B) =%, find

(i) P(AnB) (i) P(AB) (iii) P(BA)
etermine P() in xercises to 9.
6. A coin is tossed three times, where
(i) head on third toss , heads on first two tosses
(i) at least two heads , at most two heads

(ii}) at most two tails at least one tail
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Two coins are tossed once, where

tail appears on one coin, one coin shows head

no tail appears, no head appears
A die is thrown three times,

appears on the third toss, and 5 appears respectively
on first two tosses

Mother, father and son line up at random for a family picture

son on one end, father in middle
A black and a red dice are rolled.

(a) ind the conditional probability of obtaining a sum greater than 9, given

that the black die resulted in a 5.
(b) ind the conditional probability of obtaining the sum 8, given that the red die

resulted in a number less than .
A fair die is rolled. Consider events = {1,3,5}, ={,3} and = {,3,,5}
ind

(i) P() and P() @) P() and P()
(i) P(C w ))and P(( )

Assume that each born child is equally likely to be a boy or a girl. If a family has
two children, what is the conditional probability that both are girls given that
(i) the youngest is a girl, (ii) at least one is a girl?
An instructor has a question bank consisting of 300 easy True alse questions,
00 difficult True alse questions, 500 easy multiple choice questions and 00
difficult multiple choice questions. If a question is selected at random from the
question bank, what is the probability that it will be an easy question given that it
is a multiple choice question?
iven that the two numbers appearing on throwing two dice are different. ind
the probability of the event the sum of numbers on the dice is
Consider the experiment of throwing a die, if a multiple of 3 comes up, throw the

die again and if any other number comes, toss a coin. ind the conditional probability
of the event the coin shows a tail , given that at least one die showsa 3 .

In each of the xercises 1 and 17 choose the correct answer

16.

1
If P(A)= —, P(B) =0, then P(AB) is

1
(A) O B) —
(C) notdefined O1
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17. If A and B are events such that P(AB) = P(BA), then

(A) AcBbutA#B (B) A=B

(C) AnB=¢ 0 P(A) = P(B)
13.3 Multiplication Theorem on Probability
Let and be two events associated with a sample space S. Clearly, the set N
denotes the event that both and have occurred. In other words, M denotes the
simultaneous occurrence of the events and . The event M 1s also written as .

ery often we need to find the probability of the event . or example, in the
experiment of drawing two cards one after the other, we may be interested in finding
the probability of the event a king and a queen . The probability of event is obtained
by using the conditional probability as obtained below

We know that the conditional probability of event given that has occurred is
denoted by P() and is given by

P() = P(I))(—;\,P() ?

rom this result, we can write
P( n)=P().P( .. (1)

Also, we know that

PO=  TRSTPO @

PO N .

or PO = T (since N = nN)
Thus, P( n)=P(. P) v ()

Combining (1) and (), we find that
P( n)=P(O P
=P() P() provided P() #0and P() #0.
The above result is known as the multiplication rule of probability.
Let us now take up an example.
Example 8 Anurn contains 10 black and 5 white balls. Two balls are drawn from the

urn one after the other without replacement. What is the probability that both drawn
balls are black?

Solution Let and denote respectively the events that first and second ball drawn
are black. We have to find P( m) or P ().
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10
Now P() = P (black ball in first draw) = 15

Also given that the first ball drawn is black, i.e., event has occurred, now there
are 9 black balls and five white balls left in the urn. Therefore, the probability that the
second ball drawn is black, given that the ball in the first draw is black, is nothing but
the conditional probability of given that has occurred.

. 9
Le. P() = T

By multiplication rule of probability, we have
P( n)=P(O P(
10 9 3
= — X — =—
15 17

Multiplication rule of probability for more than two events If , and are
three events of sample space, we have

P n N )=POPOP N ) =POPOPO
Similarly, the multiplication rule of probability can be extended for four or
more events.

The following example illustrates the extension of multiplication rule of probability
for three events.

Example 9 Three cards are drawn successively, without replacement from a pack of
5 well shuffled cards. What is the probability that first two cards are kings and the
third card drawn is an ace?

Solution Let K denote the event that the card drawn is king and A be the event that
the card drawn is an ace. Clearly, we have to find P (KKA)

Now P(K) = 5

Also, P (KK) is the probability of second king with the condition that one king has
already been drawn. Now there are three kings in (5 — 1) =51 cards.

3
Therefore P(KK) = 1

Lastly, P(AKK) is the probability of third drawn card to be an ace, with the condition
that two kings have already been drawn. Now there are four aces in left 50 cards.
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Therefore P(AKK) = 50

By multiplication law of probability, we have
P(KKA) =P(K) P(KK) P(AKK)
3

= — X — X —=—

551 50 555

13.4 Independent Events

Consider the experiment of drawing a card from a deck of 5 playing cards, in which
the elementary events are assumed to be equally likely. If and denote the events
'the card drawn is a spade' and 'the card drawn is an ace' respectively, then

13 1 1
PO 5513 and P

Also and is the event ' the card drawn is the ace of spades' so that

1
P -
(M= 3
1
_ PO 5 _
Hence PO = PO = T =
13
Since P() = —= P (), we can say that the occurrence of event has not
affected the probability of occurrence of the event .
We also have
b
PO~ 3
= —_— === P
PO o L1z 'V
Again, P() = — = P() shows that occurrence of event has not affected

13
the probability of occurrence of the event .

Thus, and are two events such that the probability of occurrence of one of
them is not affected by occurrence of the other.

Such events are called independent events.
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Definition 2 Two events and are said to be independent, if

P() =P () provided P () =0
and P() =P () provided P () =0
Thus, in this definition we need to have P() # Oand P() = 0O
Now, by the multiplication rule of probability, we have

P( n)=P).P( .. (D)
If and are independent, then (1) becomes
P( n)=P0.P0O -0

Thus, using (), the independence of two events is also defined as follows

Definition 3 Let and be two events associated with the same random experiment,
then and are said to be independent if

P( n)=PO.P(
Remarks
(i) Two events and are said to be dependent if they are not independent, i.e. if
P( n) #P(O.P(

(i) Sometimes there is a confusion between independent events and mutually
exclusive events. Term independent is defined in terms of probability of events
whereas mutually exclusive is defined in term of events (subset of sample space).
Moreover, mutually exclusive events never have an outcome common, but
independent events, may have common outcome. Clearly, independent and

mutually exclusive do not have the same meaning.
In other words, two independent events having nonero probabilities of occurrence

can not be mutually exclusive, and conversely, i.e. two mutually exclusive events
having nonero probabilities of occurrence can not be independent.

(i) Two experiments are said to be independent if for every pair of events and ,
where is associated with the first experiment and with the second experiment,
the probability of the simultaneous occurrence of the events and when the
two experiments are performed is the product of P() and P() calculated
separately on the basis of two experiments, i.e., P( N )=P (). P()

(iv) Three events A, B and C are said to be mutually independent, if
P(AnB)=P(A) P(B)
P(An C)=P(A) P(C)
P(Bn C)=P(B) P(C)
and P(AnBn C)=P(A) P(B) P(C)
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If at least one of the above is not true for three given events, we say that the
events are not independent.

Example 10 A die is thrown. If is the event the number appearing is a multiple of
3 and be the event the number appearing is even then find whether and are
independent ?

Solution We know that the sample space is S = {1, , 3,, 5, }

Now ={3,},=1{,,}and N ={}

1 31 1
Then P() = Ez_’ P() =—=—and P() n =—
Clearly P( n)=P().P(
Hence and are independent events.

Example 11 An unbiased die is thrown twice. Let the event A be odd number on the
first throw and B the event odd number on the second throw . Check the independence
of the events A and B.

Solution Ifall the 3 elementary events of the experiment are considered to be equally
likely, we have

18 1 18 1
P(A) = —=— and P(B)=—=—
3 3
Also P(A m B) =P (odd number on both throws)
221
3
I 1 1
Now P(A) PB) = —xX—=—
Clearly P(AnB)=P(A) P(B)
Thus, A and B are independent events

Example 12 Three coins are tossed simultaneously. Consider the event  three heads
or three tails ,  at least two heads and  at most two heads . Of the pairs (,),
(,) and (,), which are independent? which are dependent?
Solution The sample space of the experiment is given by

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}
Clearly = {HHH, TTT}, = {HHH, HHT, HTH, THH}
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and = {HHT, HTH, THH, HTT, THT, TTH, TTT}
Also A = {HHH}, ~ ={TTT}, ~ ={HHT, HTH, THH}
Therefore P() = é=§,P9 1=—=TP7() S
and P( n)= é’P() M aﬁé)é N =§
Also P(). P() = éxlzljﬂly 3=lx1=l.
1 7 7

and P(). PO = gXTZ—
Thus P( mn)=P().P(

P( n) #P().P0
and P( n) #P(.P)

Hence, the events ( and ) are independent, and the events ( and ) and
(‘and ) are dependent.

Example 13 Prove that if and are independent events, then so are the events
and .

Solution Since and are independent, we have

P( n)=P(.P0 (D)
rom the venn diagram in ig 13.3, it is clear

that mand M 'are mutually exclusive events E (E'NF’) S
andalso =( n) Uu( N ). N ¥
Therefore PO=P( ) P( D)
or P( n N=P) -P( Nn)

=P() - P().P( (ENF) —(gAF)_ (E'nF)

by (1) Fig 13.3
=P() (1 —P()
=P(. P( )

Hence, and ' are independent
9
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In a similar manner, it can be shown that if the events and are
independent, then
(a) 'and are independent,

(b) '"and ' areindependent

Example 14 If A and B are two independent events, then the probability of occurrence

of at least one of A and B is given by 1 P(A’) P(B’)

Solution We have

P (at least one of A and B) = P(A U B)

=P(A) P(B) —P(A n B)
=P(A) P(B) - P(A) P(B)
=P(A) P(B) 1 -P(A)
=P(A) P(B).P(A ")
=1-P(A") P(B) P(A ")
=1-P(A") 1 -P(B)
=1-P(A") P (B")

|[EXERCISE 13.2|

3 1
1. If P(A) =g and P (B) =g , find P (A N B) if A and B are independent events.

2. Two cards are drawn at random and without replacement from a pack of 5
playing cards. ind the probability that both the cards are black.

3. A box of oranges is inspected by examining three randomly selected oranges
drawn without replacement. If all the three oranges are good, the box is approved
for sale, otherwise, it is reected. ind the probability that a box containing 15
oranges out of which 1 are good and 3 are bad ones will be approved for sale.

4. A fair coin and an unbiased die are tossed. Let A be the event head appears on
the coin and B be the event 3 on the die . Check whether A and B are
independent events or not.

5. A die marked 1, , 3 inred and , 5, in green is tossed. Let A be the event,

the number is even, and B be the event, the number is red . Are A and B

independent?

3 3 1
6. Let and be events with P() =§, P() :E and P( n)= 5 Are

and independent?
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1 3
iven that the events A and B are such that P(A)= —, P(AuU B) = 5 and

P(B)=p.ind p if they are (i) mutually exclusive (ii) independent.
Let A and B be independent events with P(A) = 0.3 and P(B) =0.. ind
(i) P(A N B) (i) P(A U B)
(iii) P(AB) (iv) P(BA)

1 1 1
If A and B are two events such that P(A)= —,P(B)= — and P(AN B) =§ ,
find P (not A and not B).

1 7 1
vents A and B are such that P (A)= —,P(B)= T and P(not Aornot B)= —.

State whether A and B are independent ?
iven two independent events A and B such that P(A) = 0.3, P(B) =0..
ind
(i) P(A and B) (i) P(A and not B)
(iii) P(A or B) (iv) P(neither A nor B)
A die is tossed thrice. ind the probability of getting an odd number at least once.

Two balls are drawn at random with replacement from a box containing 10 black
and 8 red balls. ind the probability that

(i) both balls are red.
(i) first ball is black and second is red.
(iii) one of them is black and other is red.

1 1
Probability of solving specific problem independently by A and B are — and 3

respectively. If both try to solve the problem independently, find the probability
that

(1) theproblem issolved (i) exactly one of them solves the problem.

One card is drawn at random from a well shuffled deck of 5 cards. In which of
the following cases are the events and independent ?

(1) the card drawn is a spade
the card drawn is an ace
(ii) the card drawn is black
the card drawn is a king
(iii) the card drawn is a king or queen
the card drawn is a queen or ack .



58 MATHMATICS

16. Inahostel, 0 of the students read Hindi news paper, 0 read nglish news
paper and 0 read both Hindi and nglish news papers. A student is selected
at random.
(a) ind the probability that she reads neither Hindi nor nglish news papers.
(b) If she reads Hindi news paper, find the probability that she reads nglish
news paper.
(c) If she reads nglish news paper, find the probability that she reads Hindi
news paper.
Choose the correct answer in xercises 17 and 18.
17. The probability of obtaining an even prime number on each die, when a pair of
diceisrolledis
1 1 1
(A) O (B) 3 © T 0 3
18. Two events A and B will be independent, if
(A) A and B are mutually exclusive
(B) P(A'B)=1 PA)1 P(B)
(C) P(A) = P(B)
(0 P(A) P(B)=1

13.5 Bayes' Theorem

Consider that there are two bags [ and II. Bag I contains white and 3 red balls and
Bag Il contains white and 5 red balls. One ball is drawn at random from one of the

1
bags. We can find the probability of selecting any of the bags (i.e. — ) or probability of

drawing a ball of a particular colour (say white) from a particular bag (say Bag I). In
other words, we can find the probability that the ball drawn is of a particular colour, if
we are given the bag from which the ball is drawn. But, can we find the probability that
the ball drawn is from a particular bag (say Bag Il), if the colour of the ball drawn is
given? Here, we have to find the reverse probability of Bag II to be selected when an
event occurred after it is known. amous mathematician, ohn Bayes' solved the problem
of finding reverse probability by using conditional probability. The formula developed
by him is known as ‘Bayes theorem’ which was published posthumously in 173.
Before stating and proving the Bayes' theorem, let us first take up a definition and
some preliminary results.

13.5.1 Partition of a sample space

A set of events , ,1s said to represent a partition of the sample space S if

12 5 eee

@) .m ].=¢,i¢j,i,j=l,,3,..., n

i
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(b) ,VE,u..u =Sand

(¢c) P( ) Oforalli=1,,.., n
In other words, the events |, ...,  represent a partition of the sample space
S if they are pairwise disoint, exhaustive and have nonero probabilities.
As an example, we see that any nonempty event and its complement ' form a
partition of the sample space S since they satisfy n '=¢and U '=S.

rom the enn diagram in ig 13.3, one can easily observe that if and are any
two events associated with a sample space S, thentheset { ~ ', N, 'n, 'n '}
is a partition of the sample space S. It may be mentioned that the partition of a sample

space is not unique. There can be several partitions of the same sample space.

We shall now prove a theorem known as Theorem of total probability.

13.5.2 Theorem of total probability

Let { , ..., ,} beapartition of the sample space S, and suppose that each of the
events |, ..,  hasnonero probability of occurrence. Let Abe any event associated
with S, then

P(A)=P( )P(A ) P(C )PA ) ... P( ) P(A )
- SP0RA)

Proof iven that ., ,isa partition of the sample space S (ig 13.). Therefore,

1°

S= U uv..u
and .M j=¢,i¢j,i,j=1,,..., n
Now, we know that for any event A,
A=AnNS
=An(,vu U.U ) 2 3
=(An J)UAN YU.UMAN ) Fig13.4

AlsoAn andAnN ; are respectively the subsets of  and ;- We know that
. and jare disoint, for i# j,therefore, A N ;andA M ; are also disoint for all
i#j, ,j=1,,.., n
Thus, PA)=P(A n J)UAN )U..UAN )
=P(An ) PA n )..PA n )
Now, by multiplication rule of probability, we have
PAAn )=P( )P(A )as P( )#0Vi=1,,.. n
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Therefore, PA)=P( )P(A )P( )P@A ) ..P( HPA )

or P(A) = SPOR(A) |

Example 15 A person has undertaken a construction ob. The probabilities are 0.5
that there will be strike, 0.80 that the construction ob will be completed on time if there
is no strike, and 0.3 that the construction ob will be completed on time if there is a
strike. etermine the probability that the construction ob will be completed on time.

Solution Let A be the event that the construction ob will be completed on time, and B
be the event that there will be a strike. We have to find P(A).
We have

P(B) = 0.5, P(no strike)=P(B )=1-P(B)=1-0.5=0.35
P(AB) = 0.3, P(AB ")=0.80
Since events B and B’ form a partition of the sample space S, therefore, by theorem
on total probability, we have
P(A) =P(B) P(AB) P(B ') P(AB")
=0.5 0.3 0.35 0.8
=0.08 0.8=0.88
Thus, the probability that the construction ob will be completed in time is 0.88.
We shall now state and prove the Bayes' theorem.
Bayes’ Theorem If .., , are n non empty events which constitute a partition
of sample space S,i.e. |, .., , arepairwisedisointand U U..U =Sand
A is any event of nonero probability, then

POPA)

n

2POBA)

1°

P( A)= foranyi=1,,3, .., n

Proof By formula of conditional probability, we know that
P(AN),
P(A)

POP(A ;
= ()}I)P((—IZ)I (by multiplication rule of probability)

POPA ;
__POPA) (by the result of theorem of total probability)

SPORA)

P(A) =
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Remark The following terminology is generally used when Bayes' theorem is applied.
The events |, .., | are called hypotheses.
The probability P( ) is called the priori probability of the hypothesis

The conditional probability P( . A) is called a posteriori probability of the
hypothesis

Bayes' theorem is also called the formula for the probability of "causes". Since the

/s are a partition of the sample space S, one and only one of the events  occurs (i.e.

one of the events . must occur and only one can occur). Hence, the above formula

gives us the probability of a particular  (i.e. a "Cause"), given that the event A has
occurred.

The Bayes' theorem has its applications in variety of situations, few of which are
illustrated in following examples.

Example 16 Bag I contains 3 red and black balls while another Bag Il contains 5 red
and black balls. One ball is drawn at random from one of the bags and it is found to
be red. ind the probability that it was drawn from Bag IL.

Solution Let | be the event of choosing the bag I,  the event of choosing the bag II
and A be the event of drawing a red ball.

1
Then P( )=P( )= —
: 3
Also P(A ) = P(drawing a red ball from Bag I) = 7
: 5
and P(A ) = P(drawing a red ball from Bag II) = I

Now, the probability of drawing a ball from Bag II, being given that it is red,
is P( A)
By using Bayes' theorem, we have

1
_ POP(A) 3
PCA = BoraPOP@) 13,15
1

Example 17 iven three identical boxes I, II and III, each containing two coins. In

box I, both coins are gold coins, in box I, both are silver coins and in the box III, there
is one gold and one silver coin. A person chooses a box at random and takes out a coin.
If the coin is of gold, what is the probability that the other coin in the box is also of gold?
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SolutionLet |, and | be the events that boxes I, Il and I1I are chosen, respectively.

Then P( ) =P( )= 3)=%

Also, let A be the event that the coin drawn is of gold

Then P(A 1) = P(a gold coin from bag ) = — =
P(A ) =P(a gold coin from bag II) = 0

1
P(A ) =P(a gold coin from bag III) = —

Now, the probability that the other coin in the box is of gold
= the probability that gold coin is drawn from the box I.
=P( ,A)

By Bayes' theorem, we know that

PORMA)
PORA)POP(A)POP(A) 5

1

P( \A) =

l><1+1><0 +l><l 3
3 3 3

Example 18 Suppose that the reliability of a HI test is specified as follows

Of people having HI, 90 of the test detect the disease but 10 go undetected. Of
people free of HI, 99 of the test are udged HI ive but 1 are diagnosed as
showing Hlive. rom a large population of which only 0.1 have HI, one person

is selected at random, given the HI test, and the pathologist reports himher as
Hlive. What is the probability that the person actually has HI?

Solution Let denote the event that the person selected is actually having Hl and A
the event that the person's HI test is diagnosed as ive. We need to find P(A).
Also ' denotes the event that the person selected is actually not having HI.

Clearly, {, '} is a partition of the sample space of all people in the population.
We are given that

0.1
- = ——=0.001
P()=0.1 100
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P( =1 P()=0.999
P(A) = P(Person tested as Hlive given that heshe
is actually having HI)
90
100
and P(A ') =P(Person tested as HI ive given that heshe
is actually not having HI)

=90

1
=1= 100—0.01

Now, by Bayes' theorem
POP(A)
POP(A)POP(A) '

P(A) =

B 0.001x0.9 90
~0.001x0.9+0.999%0.01 1089
= 0.083 approx.

Thus, the probability that a person selected at random is actually having HI
given that heshe is tested Hlive is 0.083.

Example 19 In a factory which manufactures bolts, machines A, B and C manufacture
respectively 5, 35 and 0 of the bolts. Of their outputs, 5, and percent are
respectively defective bolts. A bolt is drawn at random from the product and is found
to be defective. What is the probability that it is manufactured by the machine B?

Solution Let events B, B, B, be the following
B, the bolt is manufactured by machine A
B the bolt is manufactured by machine B
B, the bolt is manufactured by machine C

Clearly, B, B, B, are mutually exclusive and exhaustive events and hence, they
represent a partition of the sample space.

Let the event be the bolt is defective .
The event occurs with B | or with B or with B.. iven that,
P(B,) =5=05, P(B ) =0.35 and P(B,) = 0.0
Again P(B ) = Probability that the bolt drawn is defective given that it is manu-
factured by machine A = 5=0.05
Similarly, P(B ) =0.0, P(B ) =0.0.
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Hence, by Bayes' Theorem, we have
P(B )P(B )
P(B)P(B)PB )P¢B )P(B; )P(B )
0.35x%0.0
T 0.5 0.05 935 0.00.0+ 0.0 x
0.010 8
T 0035 9

Example 20 A doctor is to visit a patient. rom the past experience, it is known that
the probabilities that he will come by train, bus, scooter or by other means of transport

PB) =

311 11 1
are respectively E’E’Eandg . The probabilities that he will be late are 37 aIlld_’
if he comes by train, bus and scooter respectively, but if he comes by other means of
transport, then he will not be late. When he arrives, he is late. What is the probability

that he comes by train?

Solution Let be the event that the doctor visits the patient late and let T , T, T,, T
be the events that the doctor comes by train, bus, scooter, and other means of transport
respectively.

3 1 1 .
Then P(T) = E,P(T3)=§,P(T ):Eand P(T ):E (given)
1
P(T ) = Probability that the doctor arriving late comes by train = —

1 1
Similarly, P(T )= 3 P(T )= T and P(T ) =0, since he is not late if he

comes by other means of transport.
Therefore, by Bayes' Theorem, we have
P(T,) = Probability that the doctor arriving late comes by train
P(THP(T),
P(T) P(T )P (T )PET )P () P(T )P (T )P( T)

3 1

10

31 1.1 1 1
—X—+—X—+ —x—+ —x0
10 5 3 10 15

10 1

3
= —X—=—
0 18

. S
Hence, the required probability is —.
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Example 21 A man is known to speak truth 3 out of times. He throws a die and
reports that it is a six. ind the probability that it is actually a six.

Solution Let be the event that the man reports that six occurs in the throwing of the
die and let S, be the event that six occurs and S be the event that six does not occur.

1
Then P(S,) = Probability that six occurs = —

5
P(S ) = Probability that six does not occur = —

P(S ) = Probability that the man reports that six occurs when six has
actually occurred on the die

3
= Probability that the man speaks the truth = —

P(S ) = Probability that the man reports that six occurs when six has
not actually occurred on the die

= Probability that the man does not speak the truth =1— 3 = 1

Thus, by Bayes' theorem, we get
P(S,) = Probability that the report of the man that six has occurred is
actually a six
) P(S)P(S)
P(S)P(S)P(S HP(S)

3
Hence, the required probability is Py

EXERCISE 13.3

1. Anurn contains 5 red and 5 black balls. A ball is drawn at random, its colour is
noted and is returned to the urn. Moreover, additional balls of the colour drawn
are put in the urn and then a ball is drawn at random. What is the probability that
the second ball is red?
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2.

A bag contains red and black balls, another bag contains red and black
balls. One of the two bags is selected at random and a ball is drawn from the bag
which is found to be red. ind the probability that the ball is drawn from the
first bag.

Of the students in a college, it is known that O reside in hostel and 0 are

day scholars (not residing in hostel). Previous year results report that 30 of all
students who reside in hostel attain A grade and 0 of day scholars attain A
grade in their annual examination. At the end of the year, one student is chosen
atrandom from the college and he has an A grade, what is the probability that the
student is a hostlier?

In answering a question on a multiple choice test, a student either knows the

3
answer or guesses. Let — be the probability that he knows the answer and —

be the probability that he guesses. Assuming that a student who guesses at the

1
answer will be correct with probability —. What is the probability that the stu-
dent knows the answer given that he answered it correctly?

A laboratory blood test is 99 effective in detecting a certain disease when it is
in fact, present. However, the test also yields a false positive result for 0.5 of
the healthy person tested (i.e. if a healthy person is tested, then, with probability
0.005, the test will imply he has the disease). If 0.1 percent of the population
actually has the disease, what is the probability that a person has the disease
given that his test result is positive ?

There are three coins. One is a two headed coin (having head on both faces),
another is a biased coin that comes up heads 75 of the time and third is an
unbiased coin. One of the three coins is chosen at random and tossed, it shows
heads, what is the probability that it was the two headed coin ?

An insurance company insured 000 scooter drivers, 000 car drivers and 000
truck drivers. The probability of an accidents are 0.01, 0.03 and 0.15 respectively.
One of the insured persons meets with an accident. What is the probability that
he is a scooter driver?

A factory has two machines A and B. Past record shows that machine A produced
0 of the items of output and machine B produced 0 of the items. urther,

of the items produced by machine A and 1 produced by machine B were
defective. All the items are put into one stockpile and then one item is chosen at
random from this and is found to be defective. What is the probability that it was
produced by machine B?

Two groups are competing for the position on the Board of directors of a
corporation. The probabilities that the first and the second groups will win are
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0. and 0. respectively. urther, if the first group wins, the probability of
introducing a new product is 0.7 and the corresponding probability is 0.3 if the
second group wins. ind the probability that the new product introduced was by
the second group.

Suppose a girl throws a die. If she gets a 5 or, she tosses a coin three times and
notes the number of heads. If she gets 1, , 3 or, she tosses a coin once and
notes whether a head or tail is obtained. If she obtained exactly one head, what
is the probability that she threw 1, , 3 or with the die?

A manufacturer has three machine operators A, B and C. The first operator A
produces 1 defective items, where as the other two operators B and C pro-
duce 5 and 7 defective items respectively. A is on the ob for 50 of the

time, B is on the ob for 30 of the time and C is on the ob for 0 of the time.

A defective item is produced, what is the probability that it was produced by A?
A card from a pack of 5 cards is lost. rom the remaining cards of the pack,
two cards are drawn and are found to be both diamonds. ind the probability of
the lost card being a diamond.

Probability that A speaks truth is 5 A coin is tossed. A reports that a head
appears. The probability that actually there was head is

A B 1 C 1

() 3 (B) (© 5 0 3

If A and B are two events such that A ¢ B and P(B) # 0, then which of the
following is correct?

_P®B)
(A) P(AB) “PA) (B) P(AIB) P(A)
(C) P(AB) = P(A) () None of these

13.6 Random Variables and its Probability Distributions

We have already learnt about random experiments and formation of sample spaces. In
most of these experiments, we were not only interested in the particular outcome that
occurs but rather in some number associated with that outcomes as shown in following
examplesexperiments.

(i) Intossing two dice, we may be interested in the sum of the numbers on the

two dice.

(i) Intossinga coin 50 times, we may want the number of heads obtained.
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(iii) In the experiment of taking out four articles (one after the other) at random
from a lot of O articles in which are defective, we want to know the
number of defectives in the sample of four and not in the particular sequence
of defective and nondefective articles.

In all of the above experiments, we have a rule which assigns to each outcome of
the experiment a single real number. This single real number may vary with different
outcomes of the experiment. Hence, it is a variable. Also its value depends upon the
outcome of a random experiment and, hence, is called random variable. A random
variable is usually denoted by .

If you recall the definition of a function, you will realise that the random variable
is really speaking a function whose domain is the set of outcomes (or sample space) of
a random experiment. A random variable can take any real value, therefore, its
co-domain is the set of real numbers. Hence, a random variable can be defined as
follows

Definition 4 A random variable is a real valued function whose domain is the sample
space of a random experiment.
or example, let us consider the experiment of tossing a coin two times in succession.
The sample space of the experiment is S = {HH, HT, TH, TT}.

If denotes the number of heads obtained, then is a random variable and for
each outcome, its value is as given below

(HH)=, (HT)=1, (TH)=1, (TT)=0.
More than one random variables can be defined on the same sample space. or

example, let Y denote the number of heads minus the number of tails for each outcome
of the above sample space S.

Then Y(HH)=,YMHT)=0,Y (TH)=0, Y (TT) =
Thus, and Y are two different random variables defined on the same sample
space S.

Example 22 A person plays a game of tossing a coin thrice. or each head, he is
given Rs by the organiser of the game and for each tail, he has to give Rs 1.50 to the
organiser. Let denote the amount gained or lost by the person. Show that is a

random variable and exhibit it as a function on the sample space of the experiment.

Solution is a number whose values are defined on the outcomes of a random
experiment. Therefore, is a random variable.
Now, sample space of the experiment is

S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT}



PROBABILITY 559

Then (HHH) =Rs ( 3)=Rs

(HHT) = (HTH) = (THH) = Rs ( —1 1.50)=Rs .50
(HTT) = (THT) = (TTH) = Rs (1 ) ( 1.50)= Rel
and (TTT)= -Rs(3 1.50)= —Rs.50

where, minus sign shows the loss to the player. Thus, for each element of the sample
space, takes a unique value, hence, is a function on the sample space whose range
is

{1, .50, .50, }
Example 23 A bag contains white and 1 red balls. One ball is drawn at random and
then put back in the box after noting its colour. The process is repeated again. If
denotes the number of red balls recorded in the two draws, describe .
Solution Let the balls in the bag be denoted by w,, w , ». Then the sample space is
S={ww,ww,ww,ww,wrwrrw,rw,rr}
Now, for eSS
( ®)=number of red balls
Therefore
(Cwowh = wowh=( ww)=( ww})=0
{wr)=C wr=( rwph={ rwh=land({ rrj)=
Thus, is a random variable which can take values 0, 1 or.
13.6.1 Probability distribution of a random variable

Letus look at the experiment of selecting one family out of ten families f,, /..., f,, in
such a manner that each family is equally likely to be selected. Let the families f,, f,
[, have 3,,3,,5,,3,,,5 members, respectively.

Letus select a family and note down the number of members in the family denoting
. Clearly, is a random variable defined as below

(H=30CH=.C H=30H=.C fH=5
(H=.C H=30/H=.C f)=.C f)=5
Thus, can take any value ,3,,5 or depending upon which family is selected.

Now, will take the value when the family  f is selected. can take the value
3 when any one of the families f,, £, /. is selected.

Similarly, =, when family  f, f or f is selected,
=35, when family f or f,  is selected

and =, when family £, is selected.
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Since we had assumed that each family is equally likely to be selected, the probability

that family f* is selected is %

1
Thus, the probability that can take the value is 10 We write P(=)= —

Also, the probability that any one of the families /|, £, or f, is selected is

3
PS5 = 10

3
Thus, the probability that can take the value 3 = 0

3
We write P(=3)= 0

Similarly, we obtain

3
P(=)=P({ f’f’ﬁ})zﬁ
P(=5=P{ f,f,} 10

1
and P(=)=P({ £} =75

Such a description giving the values of the random variable along with the
corresponding probabilities is called the probability distribution of the random
variable X.

In general, the probability distribution of a random variable is defined as follows

Definition 5 The probability distribution of a random variable is the system of numbers

X, x X
P() PP p,
where, p>0, D p =1,i=1,,., n
i=1

The real numbers x, x ,..., x,_are the possible values of the random variable and
p, (i =1,,..., n) is the probability of the random variable taking the value x, i.e.,

P( =x)=p,
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If x, is one of the possible values of a random variable , the statement

= x,is true only at some point (s) of the sample space. Hence, the probability that
takes value x, is always nonero, i.e. P(=  x)#0.

Also for all possible values of the random variable , all elements of the sample
space are covered. Hence, the sum of all the probabilities in a probability distribution
must be one.

Example 24 Two cards are drawn successively with replacement from a well-shuffled
deck of 5 cards. ind the probability distribution of the number of aces.

Solution The number of aces is a random variable. Let it be denoted by . Clearly,
can take the values 0, 1, or .

Now, since the draws are done with replacement, therefore, the two draws form
independent experiments.

Therefore, P(=0) = P(non-ace and non-ace)

= P(non-ace) P(non-ace)

P(=1) = P(ace and non-ace or non-ace and ace)
= P(ace and non-ace) P(non-ace and ace)

= P(ace). P(non-ace) P (non-ace) . P(ace)

8 8
= —X—+—X—=——
555519
and P(=)=P (ace and ace)
1
= — X—=—
5519
Thus, the required probability distribution is
0 1
N
0 19 19 19

Example 25 ind the probability distribution of number of doublets in three throws of
a pair of dice.
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Solution Let denote the number of doublets. Possible doublets are

(LD, (), (3:3), (), (5.3, ()

Clearly, can take the value 0, 1, , or 3.

Probability of getting a doublet = 3i =—

15
Probability of not getting a doublet =1——=—

5.5 5 15
Now P(=0)="P (nodoublet) = x=x=="—"—

P(=1) =P (one doublet and two non-doublets)
1 55 5 1 5 5 5 1

= —X—X—+—X—X—+—X—X—

ORI
= le J_

P( =) = P (two doublets and one non-doublet)
1 5 1 5 1 5 1 1 [1 5) 15

1
:Tx—x—+—x—x—+—x—x—=3——x—

and P(=3) = P (three doublets)
1 1 1 1

=—X—X—=—r0

1
Thus, the required probability distribution is

0 1 3

- 15 75 15 1
0 1 1 1 1

Verification Sum of the probabilities

‘ 15 75 15 1
2P= +
ST

15 75 45 4 1

= :—:1

11
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Example 26 Let denote the number of hours you study during a randomly selected
school day. The probability that can take the values x, has the following form, where
k is some unknown constant.

0.1,if x=0
kx, if x=lor
k(5—x), if x=3or
0, otherwise

(a) ind the value of .

(b) What is the probability that you study at least two hours ? xactly two hours? At
most two hours?

Solution The probability distribution of is

0 1 3
PO [0.1 k k k k
(a) We know that Z pi =1
i=1
Therefore 0.1 & k k k=1
i.e. k=0.15
(b) P(you study at least two hours) =P( 2)

P(=) P(=3) P(=)
=k k k=5k=5015=075

P(you study exactly two hours) =P(=)
= k= 0.15=03
P(you study at most two hours) =P( <)

=P(=0) P(=1) P(=)
=0.1 & k=013 k=0.130.15
=0.55

13.6.2 Mean of a random variable

In many problems, it is desirable to describe some feature of the random variable by
means of a single number that can be computed from its probability distribution. ew
such numbers are mean, median and mode. In this section, we shall discuss mean only.
Mean is a measure of location or central tendency in the sense that it roughly locates a
middle or average value of the random variable.
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Definition 6 Let be a random variable whose possible values  x,,x , x,, ..., x_occur
with probabilities p, p , p.,..., p,, respectively. The mean of , denoted by , is the

number Z X, p; i.e. the mean of is the weighted average of the possible values of ,
i=1

each value being weighted by its probability with which it occurs.
The mean of a random variable is also called the expectation of , denoted by

0.
Thus, 0= u :zx[pi =X,p, Xp .. Xp.
i=1

In other words, the mean or expectation of a random variable is the sum of the
products of all possible values of by their respective probabilities.

Example 27 Let a pair of dice be thrown and the random variable be the sum of the
numbers that appear on the two dice. ind the mean or expectation of .

Solution The sample space of the experiment consists of 3 elementary events in the
form of ordered pairs (x,y,), wherex,=1,,3,,5, and y,=1,,3,,5,.

The random variable 1i.e. the sum of the numbers on the two dice takes the
values, 3,,5,,7,8,9,10, 11 or 1.

Now  B(=)=P({(LDY) =5
P(=3)=PULCDY =5
P(=)=PUIA.O.GDY) ==
P(=5)=P({(1,),(,3),(3,),(1D}) =—
P(=)=PULS.O.GAOGD) ==

P(=7)=P({(1,),(;5), 3.). (:3), (5,), ()}) =3

P(=8)=P({(.),(3,5), (), (5.3), ()}) =3
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P( = 9) = P({(3a)a (,5), (5’)’ (,3)}) :3_
3

P( = 10) = P({(’)’ (5’5)’ (’)}) :3_

P(: ll)ZP({(S,),(,S)}) :3_

1
P=D=PUOD =5
The probability distribution of is

or x, 3 5 7 8 9 10 | 11 1
- L (R 2N R T O I R < B I
Ocr pI37 13 |13 |3 |3 |3 |3 |3 |3 |3 |3
Therefore,
=)= Zn:x —3><i+5><i+ X—+ X—
|2 iDi 3333

i=1

+7><i+8><i+ ><—+9><i+10><L+11><—+1 X—
333 3333
_1(}3109330}+++++_7
3

Thus, the mean of the sum of the numbers that appear on throwing two fair dice is 7.

13.6.3 Variance of a random variable

The mean of a random variable does not give us information about the variability in the
values of the random variable. In fact, if the variance is small, then the values of the
random variable are close to the mean. Also random variables with different probability
distributions can have equal means, as shown in the following distributions of and Y.

1 3

o |

0 | W

1
P() 3

0 |
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Y 1 0 5
ry| 2| = | 2 1|1
&) 8 8 8 8 8
Clearl = 1><1+3><2+ Tt X—=——=
early ()_ 2 2 . 5 =3
1 3 1 1
= —Ix—40x—4+5x—+ %= x—=—=
and (Y) . 5 3 - =3

The variables and Y are different, however their means are same. It is also
easily observable from the diagramatic representation of these distributions (ig 13.5).

P(X) P(Y)

Ys1 Ys
2/8 I 2/8

Ys1 |‘| |‘| Vs
o[ 1 -1 o 1 2 3

® (ii)

Fig 13.5

To distinguish from Y, we require a measure of the extent to which the values of
the random variables spread out. In Statistics, we have studied that the variance is a
measure of the spread or scatter in data. Likewise, the variability or spread in the

values of a random variable may be measured by variance.

2} —
o[

(V]
(3]
B~
S

Definition 7 Let be a random variable whose possible values  x,,x ,...,x occur with
probabilities p(x,), p(x ),..., p(x ) respectively.

Let u= () be the mean of . The variance of , denoted by ar () or o. is

defined as

o, —arh= (3 x-) p(x)
i=1

or equivalently o, =( L)
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The non-negative number

6, = \Jar - \%2 5= ) px)

is called the standard deviation of the random variable .
Another formula to find the variance of a random variable. We know that,

aO= Y- ) pi)
i=1

n

= Z(x[ + = x)px)

:ixi p(xi)'i'i p(xi)_i x; p(x;)
i=1 i=1 i1

= ixi p(x)+ ip(xi)_ Zn:xip(xi)
i=1 i=1 i=1

= Zn:xi plx)+ - {sincezn:p (x;)=land = Zn:xip(xi)}
i=1 i=1 i=1

= > x plx)-

or ar () = anxi p(xi)_(zn:xi p(xi)J
i=1 i=1

or ar () = ( )y 0 , where ( )=Zn:xi p(x;)
i=1

Example 28 ind the variance of the number obtained on a throw of an unbiased die.

Solution The sample space of the experiment is S = {1, , 3, , 5, }.

Let denote the number obtained on the throw. Then is a random variable
which can take values 1, , 3, , 5, or.
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Also P(1)= PO~ P3) = PO~ P(5)=PO =

Therefore, the Probability distribution of is

1 3 5
1 1 1 1 1 1
P() = — - | = - -
Now 0= zx[p(xi)
i=1
=1><l+3><l+5><l+ ><1+ ><1+ xlzl—
1 1 1 1 1 1 91
Also ( y=1 Xx=43 x—=+45 Xx—+ x—+ x—+ x—=—

Thus, ar () = ( ) ()

Example 29 Two cards are drawn simultaneously (or successively without replacement)
from a well shuffled pack of 5 cards. ind the mean, variance and standard deviation
of the number of kings.

Solution Let denote the number of kings in a draw of two cards. is a random
variable which can assume the values 0, 1 or .

8
8
. CcC @8 )- 8 ¥ 188
N P(=0)=P(mok = = = =
oW (=0) (no king) s 5 sk 1
G) -

'c, C

P(=1) = P (one king and one non-king) =#

_ 8x3 x

55k 1
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C 3x 1
d P(=)=P(twoki = = =—
an (=) (two kings) e S5k 1
Thus, the probability distribution of is
0 1
N N R
0 1 1 1
Now Mean of =()= z x; p(x;)
= 0 @4_1 i ::,(—:_
1 1 1 1
Also ( )= in p(x;)

=0 @4_1 31 — 3><—:—
1 1 1

1
Now ar() = ( ) 0
_ ﬁof_j -
11 (1)
800
Therefore = \Jar( —(}&7

|EXERCISE 13.4|

1. State which of the following are not the probability distributions of a random
variable. ive reasons for your answer.

Qo | 1
P() 0.0.0.

@ o | 1]3
PO Pl 0.5 D. 0.1] 0.3
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@ [Y [ 1 [o [1
P(Y)| o0.0.

_.
o

ivw [ 3 1 [o 1
PO 03 p.0.0.1 0.0p

. Anurn contains 5 red and black balls. Two balls are randomly drawn. Let

represent the number of black balls. What are the possible values of ? Is a
random variable ?

Let represent the difference between the number of heads and the number of
tails obtained when a coin is tossed times. What are possible values of ?

ind the probability distribution of
(i) number of heads in two tosses of a coin.
(i) number of tails in the simultaneous tosses of three coins.

(iil) number of heads in four tosses of a coin.

ind the probability distribution of the number of successes in two tosses of a die,
where a success is defined as
(i) number greater than

(ii) six appears on at least one die

. rom a lot of 30 bulbs which include defectives, a sample of bulbs is drawn

at random with replacement. ind the probability distribution of the number of
defective bulbs.

. Acoin s biased so that the head is 3 times as likely to occur as tail. If the coin is

tossed twice, find the probability distribution of number of tails.

. Arandom variable has the following probability distribution

o [1 3]s [7
PO P | k| k| k|3k|k | k|7k &

etermine
W k (i) P( 3)
(@) P() (iv) P(0 3)



10.
11.

12.

13.

14.

15.
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The random variable has a probability distribution P() of the following form,
where k is some number

k, if x=0
Lk if A=
3k, if x=
0, otherwise

P() =

(a) etermine the value of £.
(b) indP (), P( <)L,P( 2).
ind the mean number of heads in three tosses of a fair coin.

Two dice are thrown simultaneously. If denotes the number of sixes, find the
expectation of .

Two numbers are selected at random (without replacement) from the first six
positive integers. Let denote the larger of the two numbers obtained. ind

0.

Let denote the sum of the numbers obtained when two fair dice are rolled.
ind the variance and standard deviation of .

A class has 15 students whose ages are 1, 17,15,1,1,17,19,0, 1, 18, 0,
17,1, 19 and 0 years. One student is selected in such a manner that each has
the same chance of being chosen and the age of the selected student is
recorded. What is the probability distribution of the random variable ? ind
mean, variance and standard deviation of .

In a meeting, 70 of the members favour and 30 oppose a certain proposal.
A member is selected at random and we take = 0 if he opposed, and =1 if
he is in favour. ind () and ar ().

Choose the correct answer in each of the following

16.

17.

The mean of the numbers obtained on throwing a die having written 1 on three
faces, on two faces and 5 on one face is

8

(4) 1 (B) (©) 3 0 3

Suppose that two cards are drawn at random from a deck of cards. Let be the
number of aces obtained. Then the value of () is

37 5 1
(A) 1 (B) 3 ©) 3 0 73
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13.7 Bernoulli Trials and Binomial Distribution

13.7.1 Bernoulli trials
Many experiments are dichotomous in nature. or example, a tossed coin shows a
head or tail ,a manufactured item canbe defective or non-defective , the response
to a question might be yes or no , anegghas hatched or nothatched , the decision
is yes or no etc. In such cases, it is customary to call one of the outcomes a success
and the other not success or failure . or example, in tossing a coin, if the occurrence
of the head is considered a success, then occurrence of tail is a failure.
ach time we toss a coin or roll a die or perform any other experiment, we call it a
trial. If a coin is tossed, say, times, the number of trials is, each having exactly two
outcomes, namely, success or failure. The outcome of any trial is independent of the
outcome of any other trial. In each of such trials, the probability of success or failure
remains constant. Such independent trials which have only two outcomes usually
referred as success or failure are called Bernoulli trials.
Definition 8 Trials of a random experiment are called Bernoulli trials, if they satisfy
the following conditions
(i) There should be a finite number of trials.
(i) The trials should be independent.
(ii)) ach trial has exactly two outcomes success or failure.
(iv) The probability of success remains the same in each trial.
or example, throwing a die 50 times is a case of 50 Bernoulli trials, in which each
trial results in success (say an even number) or failure (an odd number) and the
probability of success (p) is same for all 50 throws. Obviously, the successive throws
of the die are independent experiments. If the die is fair and have six numbers 1 to

1 1
written on six faces, then p= — andg=1 p = — =probability of failure.

Example 30 Six balls are drawn successively from an urn containing 7 red and 9 black
balls. Tell whether or not the trials of drawing balls are Bernoulli trials when after each
draw the ball drawn is

(i) replaced (i) notreplaced in the urn.

Solution

(i) The number of trials is finite. When the drawing is done with replacement, the

7
probability of success (say, red ball) is p = T which is same for all six trials

(draws). Hence, the drawing of balls with replacements are Bernoulli trials.
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(i) When the drawing is done without replacement, the probability of success
(i.e., red ball) in first trial is 1— , in nd trial is E if the first ball drawn is red or

G if the first ball drawn is black and so on. Clearly, the probability of success is

not same for all trials, hence the trials are not Bernoulli trials.

13.7.2 Binomial distribution

Consider the experiment of tossing a coin in which each trial results in success (say,
heads) or failure (tails). Let S and denote respectively success and failure in each
trial. Suppose we are interested in finding the ways in which we have one success in
six trials.

Clearly, six different cases are there as listed below
S, S,S,8S,S, S.

Similarly, two successes and four failures can have — — combinations. It will be

lengthy ob to list all of these ways. Therefore, calculation of probabilities of 0, 1, ,...,

n number of successes may be lengthy and time consuming. To avoid the lengthy
calculations and listing of all the possible cases, for the probabilities of number of
successes in n-Bernoulli trials, a formula is derived. or this purpose, let us take the
experiment made up of three Bernoulli trials with probabilities p and ¢ =1 p for
success and failure respectively in each trial. The sample space of the experiment is
the set

S = {SSS, SS, SS, SS, S, S, S, }
The number of successes is a random variable and can take values O, 1, , or 3.
The probability distribution of the number of successes is as below

P(=0)=P(no success)

=P({}) =P0 PO PO

=¢.q.q= ¢ since the trials are independent
P(=1)=P(one successes)

=P({S, S, S})

=P({S}) P({S}) P({S})

=P(S) PO P() PO P(S) P() P() P() P(S)

=p449 9p9 9.9p =3pq
P(=)=P (two successes)

=P({SS, SS, SS})

=P({SS}) P ({SS}) P({SS})



STMATHMATICS

=P(S) P(S) P() P(S) P() P(S) P() P(S) P(S)
=pp9q. p4qp qgpp = 3pq
and P( = 3) = P(three success) = P ({SSS})
=P(S). P(S) . P(S) =p?
Thus, the probability distribution of is
0 1 3

P() g’ [3qp|3ap | p
Also, the binominal expansion of (¢ p)*is

3 3
g +3q p+3qp +p

Note that the probabilities of 0, 1, or 3 successes are respectively the 1st, nd,
3rd and th term in the expansion of ( ¢ p)*.

Also, sinceg p =1, it follows that the sum of these probabilities, as expected, is 1.

Thus, we may conclude that in an experiment of n-Bernoulli trials, the probabilities
of 0, 1, ,..., nsuccesses can be obtained as 1st, nd,...,( » 1) ™terms in the expansion
of (¢ p)". To prove this assertion (result), let us find the probability of x-successes in
an experiment of n-Bernoulli trials.

Clearly, in case of x successes (S), there will be (n  x) failures ().

n
Now, x successes (S) and (n  x) failures () can be obtained in x(n—3 ways.

In each of these ways, the probability of x successes and (n — x) failures is

= P(x successes) . P(n—x) failures is

_ P(S).P(5)...P(S) - P().P()...P(

xtimes (n—x) times N F T
) n
Thus, the probability of x successes in n-Bernoulli trials is ﬁ p g
x(n—
or ncxpx qn x
Thus P(x successes) = "C p*¢"™*, x=0,1,,., n.(g=1 p)

Clearly, P(x successes), i.e. "C_p*¢" “is the (x 1) ™ term in the binomial
expansion of (¢ p)".

Thus, the probability distribution of number of successes in an experiment consisting
of n Bernoulli trials may be obtained by the binomial expansionof (¢ p)". Hence, this
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distribution of number of successes can be written as
0 1 .. X n
P() nCO qn nCl qn—lpl nC qn—p ncx qn—xpx ncnpn

The above probability distribution is known as binomial distribution with parameters
n and p, because for given values of n and p, we can find the complete probability
distribution.

The probability of x successes P( = x) is also denoted by P (x) and is given by
P(x)="C ¢"p", x=0,1,..,n.(g=1 p)
This P (x) is called the probability function of the binomial distribution.

A binomial distribution with n-Bernoulli trials and probability of success in each
trial as p, is denoted by B(n, p).

Let us now take up some examples.
Example 31 If a fair coin is tossed 10 times, find the probability of
(i) exactly six heads

(ii) at least six heads
(iii) at most six heads

Solution The repeated tosses of a coin are Bernoulli trials. Let denote the number
of heads in an experiment of 10 trials.

1
Clearly, has the binomial distribution with n=10andp= —

Therefore P(= x)="Cq"p,x=0,1,,., n

1 1
Here i/l:lo’pz—’qZI p=_

1 10—x 1 x 1 10
Therefore P(= x)= 10 C, (—j (—j =10CX (—j
10
1 101 105
Now () (=)= "C [;J =
X

(i) P(atleast six heads) =P( 2>)
=P(=) P(=7) P(=8) P(=9) P(=10)
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10 10 10 10 10
e el e e (4

(10101010100 Y (Y (Y ([ )| 193
:h73>89d0+k < )T J+L_J}T_5T
(ii)) P(at most six heads) =P( <)
=P(=0) P(=1) P(=) P(=3)
P(=) P(=5) P(=)

10 10 10 10
(2 e )
locs(gj‘°+loc [1)‘°+mc (1]“’

88 53

T

Example 32 Ten eggs are drawn successively with replacement from a lot containing
10 defective eggs. ind the probability that there is at least one defective egg.

Solution Let denote the number of defective eggs in the 10 eggs drawn. Since the
drawing is done with replacement, the trials are Bernoulli trials. Clearly, has the

10 1
binomial distribution withn =10 and p= m=ﬁ .
Therefore = 1- -2
q p 10
Now P(at least one defective egg) =P( =21)=1 P(=0)
9 10 910
_ 1_ IOC 7 _ 1_ Z
‘ (10} 10"
|EXERCISE 13.5|
1. Adie is thrown times. If getting an odd number is a success, what is the
probability of
(1) 5 successes? (i) at least 5 successes?

(iii) at most 5 successes?
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A pair of dice is thrown times. If getting a doublet is considered a success, find
the probability of two successes.

There are 5 defective items in a large bulk of items. What is the probability
that a sample of 10 items will include not more than one defective item?

ive cards are drawn successively with replacement from a well-shuffled deck
of 5 cards. What is the probability that

(1) all the five cards are spades?
(i) only 3 cards are spades?
(iii) none is a spade?
The probability that a bulb produced by a factory will fuse after 150 days of use
is 0.05. ind the probability that out of 5 such bulbs
(i) none
(i) not more than one
(iii) more than one
(iv) at least one
will fuse after 150 days of use.

A bag consists of 10 balls each marked with one of the digits 0 to 9. If four balls
are drawn successively with replacement from the bag, what is the probability
that none is marked with the digit 0?

In an examination, 0 questions of true-false type are asked. Suppose a student
tosses a fair coin to determine his answer to each question. If the coin falls
heads, he answers 'true' if it falls tails, he answers 'false'. ind the probability
that he answers at least 1 questions correctly.

Suppose has a binomial distribution B [, l] . Show that =3 is the most

likely outcome.
(Hint P(= 3) is the maximum among all P( x), x,=0,1,,3,,5,)

On a multiple choice examination with three possible answers for each of the
five questions, what is the probability that a candidate would get four or more
correct answers ust by guessing ?

A person buys a lottery ticket in 50 lotteries, in each of which his chance of
winning a prie is ﬁ What is the probability that he will win a prie

(a) at least once (b) exactly once (c) at least twice?
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ind the probability of getting 5 exactly twice in 7 throws of a die.
ind the probability of throwing at most sixes in throws of a single die.

It is known that 10 of certain articles manufactured are defective. What is the
probability that in a random sample of 1 such articles, 9 are defective?

In each of the following, choose the correct answer
In a box containing 100 bulbs, 10 are defective. The probability that out of a
sample of 5 bulbs, none is defective is
5
9
C N
© (%

o 1]

1
The probability that a student is not a swimmer is 5 Then the probability that

(A) 10!

5 5

() None of these

sc (1
OE

)

1
5

C, —
© ‘s

Miscellaneous Examples

Example 33 Coloured balls are distributed in four boxes as shown in the following
table

Box Colour
Black White Red Blue
I 3 5
II
111 1 3 1
13 1 5

A box is selected at random and then a ball is randomly drawn from the selected

box. The colour of the ball is black, what is the probability that ball drawn is from the
box III?
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Solution Let A, |, , ,and be the events as defined below
A ablack ball is selected , box Tis selected
box II is selected , box Il is selected
box I is selected

Since the boxes are chosen at random,

Therefore P( )=P( )=P( )=P( )= l

3 1
Also P(A 1)=§’P(A )=§,P(A 3)=7and P(A ):E

P(box III is selected, given that the drawn ball is black) = P( |A). By Bayes'
theorem,

PO PEA) 5
POR(A) POR(A)POP(A) ;POPA + )
1 1

7 _
1 3 1 1 1 1 1 =0.15
X+ X=X —F+—X—

18 7 13

P( A) =

1
Example 34 ind the mean of the Binomial distribution B (, gj

1
Solution Let be the random variable whose probability distributionis B (, —j.

3
H ! d 1 !
=, p=—and g=1—-——=—
ere n P 3 q 373
1 —X X
We know that P(= x)= CX(EJ (gj ,x=0,1,,3,.

1.e. the distribution of is

X, P(x) x, P(x)

1
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Now Mean (p) = in p(x;)
i=1

~osaf5)(she’ (5)(5) * () et
B T

3 3 3

38+108  + B
3 81 3

3
Example 35 The probability of a shooter hitting a target is —. How many minimum

number of times must heshe fire so that the probability of hitting the target at least
once is more than 0.99?

Solution Let the shooter fire n times. Obviously, 7 fires are n Bernoulli trials. In each

3
trial, p = probability of hitting the target = — and ¢ = probability of not hitting the

n

! e v v _ne (L) (3) e 3
target= —.Then P(= x)="C,q" "p = CX(—J (—j ="C,—.
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Now, given that,
P(hitting the target at least once) 0.99

i.e. P(x>1)0.99
Therefore, 1 P(x=0)0.99
o
or 1-"Cy— 0.99
P o1
or Cy—<0.01 ie. — 0.01
. L 100 (1
or 0.01 - ()

The minimum value of # to satisfy the inequality (1) is .
Thus, the shooter must fire times.

Example 36 A and B throw a die alternatively till one of them getsa  and wins the
game. ind their respective probabilities of winning, if A starts first.

Solution Let S denote the success (gettinga ) and denote the failure (not getting

a ).

Thus, P(S) = l, P() =2

1
P(A wins in the first throw) = P(S) = —

A gets the third throw, when the first throw by A and second throw by B result into
failures.

5 5 1
Therefore, P(A wins in the 3rd throw) =P(S)= POPOP(S)= —x—x—
Sh
= — X_
. 5 1
P(A wins in the 5th throw) = P (S) = [—) [—] and so on.

pewine- <(2) (1)+(2) (1)
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1
EEERNE
3
P(Bwins)=1 P (A wi —l—i——
(B wins) = (A wins) = 1 11
Remark Ifa ar ar .. ar'' ..., where r 1,then sum of this infinite .P.

a
is given by F (Refer A.1.3 of Class I Text book).
—-r

Example 37 If a machine is correctly set up, it produces 90 acceptable items. If it is
incorrectly set up, it produces only 0 acceptable items. Past experience shows that
80 of the set ups are correctly done. If after a certain set up, the machine produces
acceptable items, find the probability that the machine is correctly setup.

Solution Let A be the event that the machine produces acceptable items.

Also let B, represent the event of correct set up and B represent the event of
incorrect setup.

Now P(B,) =0.8, P(B ) =0.
P(AB)) =0.9 0.9 and P(AB )= 0. 0.
P(B,)P(AB
Therefore P(B,A) = (B,)P(AB )

P(B,)P(AB )P(B ) P(AB )

~ 0.80.90.9 8
~0.80.90.90.0.0.80

= =0.95

Miscellaneous Exercise on Chapter 13
1. A and B are two events such that P (A) # 0. ind P(BA), if
(i) Aisasubsetof B @ AnB=¢
2. A couple has two children,

(i) indthe probability that both children are males, if it is known that at least
one of the children is male.

(i) ind the probability that both children are females, if it is known that the
elder child is a female.
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Suppose that 5 of men and 0.5 of women have grey hair. A grey haired
person is selected at random. What is the probability of this person being male?
Assume that there are equal number of males and females.

Suppose that 90 of people are right-handed. What is the probability that
at most of a random sample of 10 people are right-handed?

An urn contains 5 balls of which 10 balls bear a mark " and the remaining 15
bear amark "Y'. A ball is drawn at random from the urn, its mark is noted down
and it is replaced. If balls are drawn in this way, find the probability that

(i) all will bear " mark.
(i) not more than will bear "Y' mark.
(ii)) at least one ball will bear "Y' mark.

(iv) the number of balls with " mark and "Y' mark will be equal.

In a hurdle race, a player has to cross 10 hurdles. The probability that he will

5
clear each hurdle is —. What is the probability that he will knock down fewer

than hurdles?

A die is thrown again and again until three sixes are obtained. ind the probabil -
ity of obtaining the third six in the sixth throw of the die.

If a leap year is selected at random, what is the chance that it will contain 53
tuesdays?

An experiment succeeds twice as often as it fails. ind the probability that in the
next six trials, there will be atleast successes.

How many times must a man toss a fair coin so that the probability of having
at least one head is more than 90?

In a game, p man wins a rupee for a six and loses a rupee for any other number
when a faif die is thrown. The fnan decided to fhrow a die thiice but to quit as
and when lffegetsarsix-d-the expected vatue pf theamournt{he wins loses.

Suppose we have fgur boxes A,B,C and containling coloured marbles as given
below

Box arble colour
Raod M hito Pl
EANVAY Y YY IIILL p vy
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C 8 1 1
0

One of the boxes has been selected at random and a single marble is drawn from
it. If the marble is red, what is the probability that it was drawn from box A?, box B?,
box C?
13. Assume that the chances of a patient having a heart attack is 0. It is also
assumed that a meditation and yoga course reduce the risk of heart attack by
30 and prescription of certain drug reduces its chances by 5. At a time a
patient can choose any one of the two options with equal probabilities. It is given
that after going through one of the two options the patient selected at random
suffers a heart attack. ind the probability that the patient followed a course of
meditation and yoga?
14. Ifeach element of a second order determinant is either ero or one, what is the
probability that the value of the determinant is positive? (Assume that the indi-
vidual entries of the determinant are chosen independently, each value being

1
assumed with probability —).

15. An electronic assembly consists of two subsystems, say, A and B. rom previ-
ous testing procedures, the following probabilities are assumed to be known

P(A fails) = 0.
P(B fails alone) = 0.15
P(A and B fail) = 0.15
valuate the following probabilities
(i) P(A failsB has failed) (i) P(A fails alone)

16. Baglcontains 3 red and black balls and Bag Il contains red and 5 black balls.
One ball is transferred from Bag I to Bag Il and then a ball is drawn from Bag II.
The ball so drawn is found to be red in colour. ind the probability that the
transferred ball is black.

Choose the correct answer in each of the following

17. If A and B are two events such that P(A) = 0 and P(B A) = 1, then
(A) AcB (B) Bc A (C) B=9¢ OA= ¢

18. IfP(AB) P(A), then which of the following is correct
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(A) P(BA) P(B) (B) P(A nB) P(A).P(@B)
(C) P(BA) P(B) () P(BA) = P(B)
19. IfA and B are any two events such that P(A) P(B)  P(A and B) = P(A), then
(A) P(BA)=1 (B) P(AB) =1
(C) PBA)=0 O P(AB)=0
Summary

The salient features of the chapter are
@ The conditional probability of an event, given the occurrence of the event

:P() N

is given by P() PO ,PO #0
¢ 0<P() <1, P( =1 P ()
P(C v)=P(O PO P(( n)
¢ PC n)=POPO,PO #0
P( n)=P(OPO,PO #0
¢ If and are independent, then
P( n)=POP(
P(O)O=P(O,P0 #0
P()=P(,PO #0
4 Theorem of total probability
Let{ ,, ,.., ) beapartition of a sample space and suppose that each of
» »-- ,hasmnonero probability. Let A be any event associated with S,
then
P(AA)=P( )P(A ) P( )PA ) .. P( )PA )
¢ Bayes' theorem If |, .., are events which constitute a partition of

sample space S,1.e. |,
and A be any event with nonero probability, then

POP(A)
S PORA)

,., ,arepairwisedisointand 4 4 ..4 =S

P(A) =

& A random variable is a real valued function whose domain is the sample
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space of a random experiment.
@ The probability distribution of a random variable is the system of numbers

X, X, X,

P() P, D, p,

where, p. >0, Zpl:l,izl,,..., n

i=l1
¢ Let bearandom variable whose possible values  x,,x ,x,,...,x occur with
probabilities p , p , p,, ... p, respectively. The mean of , denoted by  p, is

the number z XD .

i=1
The mean of a random variable is also called the expectation of , denoted
by (.

¢ Let be a random variable whose possible values x,, x, ..., x, occur with
probabilities p(x)), p(x ), ..., p(x,) respectively.

Let p = () be the mean of . The variance of , denoted by ar () or

o, ,is defined as o, =ar()= (z x;— ) px;)

i=1
or equivalently = ( L)
The non-negative number

o, =qar()= z X, — ) p(x;)

i=1
is called the standard deviation of the random variable .

¢ ar()= ( ) 0

& Trials of a random experiment are called Bernoulli trials, if they satisfy the
following conditions

(i) There should be a finite number of trials.
(i) The trials should be independent.
(iii) ach trial has exactly two outcomes success or failure.
(iv) The probability of success remains the same in each trial.
or Binomial distribution B ( n, p), P (= x)="C ¢ " p ,x=0, 1,..,n
(¢g=1 p)
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Historical Note

The earliest indication on measurement of chances in game of dice appeared
in 177 in a commentary on ante's ivine Comedy. A treatise on gambling
named liber de Ludo Alcae, by eronimo Carden (1501-157) was published
posthumously in 13. In this treatise, he gives the number of favourable cases
for each event when two dice are thrown.

alileo (15-1) gave casual remarks concerning the correct evaluation
of chance in a game of three dice. alileo analysed that when three dice are
thrown, the sum of the number that appear is more likely to be 10 than the sum 9,
because the number of cases favourable to 10 are more than the number of
cases for the appearance of number 9.

Apart from these early contributions, it is generally acknowledged that the
true origin of the science of probability lies in the correspondence between two
great men of the seventeenth century, Pascal (13-1) and Pierre de ermat
(101-15). A rench gambler, Chevalier de Metre asked Pascal to explain
some seeming contradiction between his theoretical reasoning and the
observation gathered from gambling. In a series of letters written around 15,
Pascal and ermat laid the first foundation of science of probability. Pascal solved
the problem in algebraic manner while ermat used the method of combinations.

reat utch Scientist, Huygens (19-195), became acquainted with the
content of the correspondence between Pascal and ermat and published a first
book on probability, " De Ratiociniis in Ludo Aleae" containing solution of many
interesting rather than difficult problems on probability in games of chances.

The next great work on probability theory is by acob Bernoulli (15-1705),

in the form of a great book, "Ars Conjectendi" published posthumously in 1713
by his nephew, Nicholes Bernoulli. To him is due the discovery of one of the most
important probability distribution known as Binomial distribution. The next
remarkable work on probability lies in 1993. A. N. Kolmogorov (1903-1987) is
credited with the axiomatic theory of probability. His book, oundations of
probability published in 1933, introduces probability as a set function and is
considered a classic .

J
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