6. Factorisation of Algebraic expressions

• Factorisation of quadratic polynomials of the form $ax^2 + bx + c$ can be done using Factor theorem and splitting the middle term.

Example 1:

Factorize $x^2 - 7x + 10$ using the factor theorem.

Solution:

Let
$$p(x) = x^2 - 7x + 10$$

The constant term is 10 and its factors are ± 1 , ± 2 , ± 5 and ± 10 .

Let us check the value of the polynomial for each of these factors of 10.

$$p(1) = 1^2 - 7 \cdot 1 + 10 = 1 - 7 + 10 = 4 \neq 0$$

Hence, x - 1 is not a factor of p(x).

$$p(2) = 2^2 - 7 \cdot 2 + 10 = 4 - 14 + 10 = 0$$

Hence, x - 2 is a factor of p(x).

$$p(5) = 5^2 - 7 \cdot 5 + 10 = 25 - 35 + 10 = 0$$

Hence, x - 5 is a factor of p(x).

We know that a quadratic polynomial can have a maximum of two factors. We have obtained the two factors of the given polynomial, which are x - 2 and x - 5.

Thus, we can write the given polynomial as:

$$p(x) = x^2 - 7x + 10 = (x - 2)(x - 5)$$

Example 2:

Factorize $2x^2 - 11x + 15$ by splitting the middle term.

Solution:

The given polynomial is $2x^2 - 11x + 15$.

Here, $a = 2 \times 15 = 30$. The middle term is -11. Therefore, we have to split -11 into two numbers such that their product is 30 and their sum is -11. These numbers are -5 and -6 [As (-5) + (-6) = -11 and $(-5) \times (-6) = 30$].

Thus, we have:

$$2x^{2} - 11x + 15 = 2x^{2} - 5x - 6x + 15$$
$$= x(2x - 5) - 3(2x - 5)$$
$$= (2x - 5)(x - 3)$$

Note: A quadratic polynomial can have a maximum of two factors.

• Identities for sum and difference of two cubes are:

o
$$a^3 + b^3 = (a+b)(a^2 + b^2 - ab)$$

o $a^3 - b^3 = (a-b)(a^2 + b^2 + ab)$

For example, $x^6 - 729y^6$ can be factorized as:

$$x^6 - 729v^6$$

$$= (x^3)^2 - (27y^3)^2$$

$$= (x^3 + 27y^3) (x^3 - 27y^3) [Using $a^2 - b^2 = (a+b) (a-b)]$

$$= [(x)^3 + (3y)^3] [(x)^3 - (3y)^3]$$

$$= (x+3y) (x^2 + 9y^2 - 3xy) (x-3y)(x^2 + 9y^2 + 3xy)$$$$