Numbers

INTRODUCTION

In Hindu Arabic System, we use ten symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 called *digits* to represent any number. This is the *decimal system* where we use the numbers 0 to 9. 0 is called *insignificant digit* whereas 1, 2, 3, 4, 5, 6, 7, 8, 9 are called *significant digits*.

A group of figures denoting a number is called a *numeral*. For a given numeral, we start from extreme right as unit's place, ten's place, hundred's place and so on.

Illustration 1 We represent the number 309872546 as shown below:

Ten Crore 108	Crores 107	Ten Lacs (million) 106	Lac's 105	Ten Thousand 104	Thousand 10 ³	Hundred 102	Ten's 101	Units 100
3	0	9	8	7	2	- 5	4	6

We read it as

'Thirty crores, ninety-eight lakhs, seventy-two thousands five hundred and forty-six.'

In this numeral:

The place value of 6 is $6 \times 1 = 6$.

The place value of 4 is $4 \times 10 = 40$.

The place value of 5 is $5 \times 100 = 500$.

The place value of 2 is $2 \times 1000 = 2000$ and so on.

The face value of a digit in a number is the value itself wherever it may be.

Thus, the face value of 7 in the above numeral is 7. The face value of 6 in the above numeral is 6 and so on.

NUMBER SYSTEM

Natural Numbers

Counting numbers 1, 2, 3, 4, 5, ... are known as *natural* numbers.

The set of all natural numbers can be represented by

$$N = \{1, 2, 3, 4, 5, \ldots\}.$$

Whole Numbers

If we include 0 among the natural numbers, then the numbers 0, 1, 2, 3, 4, 5, ... are called *whole numbers*.

The set of whole numbers can be represented by

$$W = \{0, 1, 2, 3, 4, 5, ...\}$$

Clearly, every natural number is a whole number but 0 is a whole number which is not a natural number.

Integers

All counting numbers and their negatives including zero are known as *integers*.

The set of integers can be represented by

$$Z$$
 or, $I = \{... -4, -3, -2, -1, 0, 1, 2, 3, 4, ...\}$

Positive Integers

The set $I^+ = \{1, 2, 3, 4, ...\}$ is the set of all *positive* integers. Clearly, positive integers and natural numbers are synonyms.

Negative Integers

The set $I^- = \{-1, -2, -3, ...\}$ is the set of all *negative integers*. 0 is neither positive nor negative.

Non-negative Integers

The set $\{0, 1, 2, 3, ...\}$ is the set of all *non-negative integers*.

Rational Numbers

The numbers of the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$, are known as *rational numbers*, e.g., $\frac{4}{7}$, $\frac{3}{2}$, $-\frac{5}{8}$, $\frac{0}{1}$, $-\frac{2}{3}$, etc.

The set of all rational numbers is denoted by O.

i.e.,
$$Q = \left\{x: x = \frac{p}{q}; p, q \neq I, q \neq 0\right\}$$

Since every natural number 'a' can be written as $\frac{a}{1}$ s,

so it is a rational number. Since 0 can be written as $\frac{0}{1}$ and every non-zero integer 'a' can be written as $\frac{a}{1}$, so it is also a rational number.

Every rational number has a peculiar characteristic that when expressed in decimal form is expressible either in terminating decimals or, non-terminating repeating decimals.

For example,
$$\frac{1}{5} = 0.2$$
, $\frac{1}{3} = 0.333$..., $\frac{22}{7} = 3.1428714287$, $\frac{8}{44} = 0.181818$..., etc.

The recurring decimals have been given a short notation as

$$0.333... = 0.\overline{3}$$

 $4.1555... = 4.0\overline{5}$
 $0.323232... = 0.\overline{32}$

Irrational Numbers

Those numbers which when expressed in decimal form are neither terminating nor repeating decimals are known as irrational numbers, e.g., $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, π , etc.

Note that the exact value of π is not $\frac{22}{7}$. $\frac{22}{7}$ is rational while π is irrational number. $\frac{22}{7}$ is approximate value of π . Similarly, 3.14 is not an exact value of it.

Real Numbers

The rational and irrational numbers combined together are called *real numbers*, e.g., $\frac{13}{21}$, $\frac{2}{5}$, $-\frac{3}{7}$, $\sqrt{3}$, $4 + \sqrt{2}$, etc. are real numbers.

The set of all real numbers is denoted by R.

Note that the sum, difference or, product of a rational and irrational number is irrational, e.g., $3+\sqrt{2}$, $4-\sqrt{3}$, $\frac{2}{3}-\sqrt{5}$, $4\sqrt{3}$, $-7\sqrt{5}$ are all irrational.

Even Numbers

All those numbers which are exactly divisible by 2 are called *even numbers*, e.g., 2, 6, 8, 10, etc., are even numbers.

Odd Numbers

All those numbers which are not exactly divisible by 2 are called *odd numbers*, e.g., 1, 3, 5, 7, etc., are odd numbers.

Prime Numbers

A natural number other than 1 is a *prime number* if it is divisible by 1 and itself only.

For example, each of the numbers 2, 3, 5, 7, etc., are prime numbers.

Composite Numbers

Natural numbers greater than 1 which are not prime are known as *composite numbers*.

For example, each of the numbers 4, 6, 8, 9, 12, etc., are composite numbers.

- The number 1 is neither a prime number nor a composite number.
- 2. The number 2 is the only even number which is prime.
- **3.** Prime numbers up to 100 are: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, i.e., 25 prime numbers between 1 and 100.
- **4.** Two numbers which have only 1 as the common factor are called *co-primes* or, *relatively prime* to each other, e.g., 3 and 5 are co-primes.

Note that the numbers which are relatively prime need not necessarily be prime numbers, e.g., 16 and 17 are relatively prime although 16 is not a prime number.

Addition and Subtraction (Short-cut Methods)

The method is best illustrated with the help of following examples:

Illustration 2 54321 - (9876 + 8967 + 7689) = ?Step 1 Add 1st column:

$$6 + 7 + 9 = 22$$

To obtain 1 at unit's place add 9 to make 31. In the answer, write 9 at unit's place and carry over 3. 54321 8967

Step 2 Add 2nd column: $\frac{7689}{27789}$

To obtain 2 at ten's place, add 8 to make 32. In the answer, write 8 at ten's place and carry over 3.

Step 3 Add 3rd column:

$$3+8+9+6=26$$

To obtain 3 at hundred's place, add 7 to make 33. In the answer, write 7 at hundred's place and carry over 3.

Step 4 Add 4th column:

$$3+9+8+7=27$$

To obtain 4 at thousand's place add 7 to make 34. In the answer, write 7 at thousand's place and carry over 3.

Step 5 Add 5th column:

To obtain 5 at ten-thousand's place, add 2 to make 5. In the answer, write 2 at ten-thousand's place.

$$\therefore$$
 54321 - (9876 + 8967 + 7689) = 27789

MULTIPLICATION (SHORT-CUT METHODS)

1. Multiplication of a given number by 9, 99, 999, etc., that is by $10^n - 1$.

Method: Put as many zeros to the right of the multiplicant as there are nines in the multiplier and from the result subtract the multiplicant and get the answer.

Illustration 3 Multiply

- (a) 3893 by 99
- (b) 4327 by 999
- (c) 5863 by 9999

Solution:

- (a) $3893 \times 99 = 389300 3893 = 385407$
- (b) $4327 \times 999 = 4327000 4327 = 4322673$
- (c) $5863 \times 9999 = 58630000 5863 = 58624137$
- **2.** Multiplication of a given number by 11, 101, 1001, etc., that is, by $10^n + 1$.

Method: Place *n* zeros to the right of the multiplicant and then add the multiplicant to the number so obtained.

Illustration 4 Multiply

- (a) 4782×11
- (b) 9836×101
- (c) 6538×1001

Solution:

- (a) $4782 \times 11 = 47820 + 4782 = 52602$
- (b) $9836 \times 101 = 983600 + 9836 = 993436$
- (c) $6538 \times 1001 = 6538000 + 6538 = 6544538$

3. Multiplication of a given number by 15, 25, 35, etc.

Method: Double the multiplier and then multiply the multiplicant by this new number and finally divide the product by 2.

Illustration 5 Multiply

- (a) 7054×15
- (b) 3897×25
- (c) 4563×35

Solution:

- (a) $7054 \times 15 = \frac{1}{2}(7054 \times 30)$ = $\frac{1}{2}(211620) = 105810$
- (b) $3897 \times 25 = \frac{1}{2}(3897 \times 50) = \frac{1}{2}(194850)$ = 97425
- (c) $4536 \times 35 = \frac{1}{2}(4563 \times 70) = \frac{1}{2}(319410)$ = 159705
- **4.** Multiplication of a given number by 5, 25, 125, 625, etc., that is, by a number which is some power of 5.

Method: Place as many zeros to the right of the multiplicant as is the power of 5 in the multiplier, then divide the number so obtained by 2 raised to the same power as is the power of 5.

Illustration 6 Multiply

- (a) 3982×5
- (b) 4739×25
- (c) 7894×125
- (d) 4863×625

Solution:

(a)
$$3982 \times 2 = \frac{39820}{2} = 19910$$

(b)
$$4739 \times 25 = \frac{473900}{2^2} = \frac{473900}{4} = 118475$$

(c)
$$7894 \times 125 = \frac{7894000}{2^3} = \frac{7894000}{8}$$

= 986750

(d)
$$4863 \times 625 = \frac{48630000}{2^4} = \frac{48630000}{16}$$

= 3039375

DISTRIBUTIVE LAWS

For any three numbers a, b, c, we have

(a)
$$a \times b + a \times c = a \times (b + c)$$

(b)
$$a \times b - a \times c = a \times (b - c)$$

Illustration 7 $438 \times 637 + 438 \times 367 = ?$

Solution:
$$438 \times 637 + 438 \times 367 = 438 \times (637 + 367)$$

= $438 \times 1000 = 438000$

Illustration 8 $674 \times 832 - 674 \times 632 = ?$

Solution:
$$674 \times 832 - 674 \times 632 = 674 \times (832 - 632)$$

= $674 \times 200 = 134800$

SQUARES (SHORT-CUT METHODS)

1. To square any number ending with 5.

Method:
$$(A5)^2 = A(A+1)/25$$

Illustration 9

(a)
$$(25)^2 = 2(2+1)/25 = 6/25 = 625$$

(b)
$$(45)^2 = 4 (4 + 1)/25 = 20/25 = 2025$$

$$(c) (85)^2 = 8 (8 + 1)/25 = 72/25 = 7225$$

2. To square a number in which every digit is one.

Method: Count the number of digits in the given number and start writing numbers in ascending order from one to this number and then in descending order up to one.

Illustration 10

(a)
$$11^2 = 121$$

(b)
$$111^2 = 12321$$

(c)
$$1111^2 = 1234321$$

(d)
$$222^2 = 2^2 (111)^2 = 4 (12321) = 49284$$

(e)
$$3333^2 = 3^2 (1111)^2 = 9 (1234321) = 11108889$$

3. To square a number which is nearer to 10x.

Method: Use the formula:

$$x^{2} = (x^{2} - y^{2}) + y^{2} = (x + y)(x - y) + y^{2}$$

Illustration 11

(a)
$$(97)^2 = (97 + 3)(97 - 3) + 3^2$$

= $9400 + 9 = 9409$

(b)
$$(102)^2 = (102 - 2)(102 + 2) + 2^2$$

= $10400 + 4 = 10404$

$$(c) (994)^2 = (994 + 6) (994 - 6) + 6^2$$
$$= 988000 + 36 = 988036$$

$$(d) (1005)^2 = (1005 - 5) (1005 + 5) + 5^2$$
$$= 1010000 + 25 = 1010025$$

DIVISION

Division is repeated subtraction.

For example, when we divide 63289 by 43, it means 43 can be repeatedly subtracted 1471 times from 63289 and the remainder 36 is left.

Divisor
$$\rightarrow$$
 43) 63289 \leftarrow Dividend
$$\begin{array}{r}
43 \\
202 \\
\underline{172} \\
308 \\
\underline{301} \\
79 \\
\underline{43} \\
36
\end{array}$$
 \leftarrow Remainder

Dividend =
$$(Divisor \times Quotient) + Remainder$$

or, Divisor =
$$\frac{\text{Dividend} - \text{Remainder}}{\text{Quotient}}$$

Illustration 12 On dividing 7865321 by a certain number, the quotient is 33612 and the remainder is 113. Find the divisor.

Solution: Divisor =
$$\frac{\text{Dividend} - \text{Remainder}}{\text{Quotient}}$$

= $\frac{7865321 - 113}{33612} = \frac{7865208}{33612} = 234$

Illustration 13 A number when divided by 315 leaves remainder 46 and the value of quotient is 7. Find the number.

Solution: Number = (Divisor × Quotient) + Remainder
=
$$(315 \times 7) + 46 = 2205 + 46$$

= 2251

Illustration 14 Find the least number of 5 digits which is exactly divisible by 632.

Solution: The least number of 5 digits is 10000. Dividing this number by 632, the remainder is 520. So, the required number = 10000 + (632 + 520) = 10112.

$$\begin{array}{r}
15 \\
632 \overline{\smash) 10000} \\
\underline{632} \\
3680 \\
\underline{3160} \\
520
\end{array}$$

Illustration 15 Find the greatest number of 5 digits which is exactly divisible by 463.

Solution: The greatest number of 5 digits is 99999. Dividing this number by 463, the remainder is 454. So, the required number = 99999 - 454 = 99545.

Illustration 16 Find the number nearest to 13700 which is exactly divisible by 235.

Solution: On dividing the number 13700 by 235, the remainder is 70. Therefore, the nearest number to 13700, which is exactly divisible by 235 = 13700 - 70 = 13630.

TESTS OF DIVISIBILITY

- 1. Divisibility by 2: A number is divisible by 2 if the unit's digit is zero or divisible by 2.
 - For example, 4, 12, 30, 18, 102, etc., are all divisible by 2.
- **2. Divisibility by 3:** A number is divisible by 3 if the sum of digits in the number is divisible by 3.
 - For example, the number 3792 is divisible by 3 since 3 + 7 + 9 + 2 = 21, which is divisible by 3.

- 3. Divisibility by 4: A number is divisible by 4 if the number formed by the last two digits (ten's digit and unit's digit) is divisible by 4 or are both zero. For example, the number 2616 is divisible by 4 since 16 is divisible by 4.
- **4. Divisibility by 5:** A number is divisible by 5 if the unit's digit in the number is 0 or 5. For example, 13520, 7805, 640, 745, etc., are all divisible by 5.
- 5. Divisibility by 6: A number is divisible by 6 if the number is even and sum of its digits is divisible by 3.For example, the number 4518 is divisible by 6 since it is even and sum of its digits 4 + 5 + 1 + 8 = 18 is divisible by 3.
- 6. Divisibility by 7: The unit digit of the given number is doubled and then it is subtracted from the number obtained after omitting the unit digit. If the remainder is divisible by 7, then the given number is also divisible by 7.

For example, consider the number 448. On doubling the unit digit 8 of 448 we get 16. Then, 44 - 16 = 28. Since 28 is divisible by 7, 448 is divisible by 7.

- 7. Divisibility by 8: A number is divisible by 8, if the number formed by the last 3 digits is divisible by 8. For example, the number 41784 is divisible by 8 as the number formed by last three digits, i.e., 784 is divisible by 8.
- **8. Divisibility by 9:** A number is divisible by 9 if the sum of its digits is divisible by 9.

For example, the number 19044 is divisible by 9 as the sum of its digits 1 + 9 + 0 + 4 + 4 = 18 is divisible by 9.

9. Divisibility by 10: A number is divisible by 10, if it ends in zero.

For example, the last digit of 580 is zero, therefore, 580 is divisible by 10.

10. Divisibility by 11: A number is divisible by 11, if the difference of the sum of the digits at odd places and sum of the digits at even places is either zero or divisible by 11.

For example, in the number 38797, the sum of the digits at odd places is 3 + 7 + 7 = 17 and the sum of the digits at even places is 8 + 9 = 17. The difference is 17 - 17 = 0, so the number is divisible by 11.

11. Divisibility by 12: A number is divisible by 12 if it is divisible by 3 and 4.

- **12. Divisibility by 18:** An even number satisfying the divisibility test of 9 is divisible by 18.
- 13. Divisibility by 25: A number is divisible by 25 if the number formed by the last two digits is divisible by 25 or the last two digits are zero.

 For example, the number 13675 is divisible by 25

For example, the number 13675 is divisible by 25 as the number formed by the last two digits is 75, which is divisible by 25.

- **14. Divisibility by 88:** A number is divisible by 88 if it is divisible by 11 and 8.
- **15. Divisibility by 125:** A number is divisible by 125 if the number formed by the last three digits is divisible by 125 or the last three digits are zero.

For example, the number 5250 is divisible by 125 as 250 is divisible by 125.

SOME USEFUL SHORT-CUT METHODS

1. Test to find whether a given number is a prime

Step 1 Select a least positive integer n such that $n^2 >$ given number.

Step 2 Test the divisibility of given number by every prime number less than n.

Step 3 The given number is prime only if it is not divisible by any of these primes.

Illustration 17 Investigate whether 571 is a prime number. **Solution:** Since $(23)^2 = 529 < 571$ and $(24)^2 = 576 > 571$ $\therefore n = 24$

Prime numbers less than 24 are 2, 3, 5, 7, 11, 13, 17, 19, 23. Since 24 is divisible by 2, 571 is not a prime number **Illustration 18** Investigate whether 923 is a prime number. **Solution:** Since $(30)^2 = 900 < 923$ and $(31)^2 = 961 > 923$

∴ n = 31

Prime numbers less than 31 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. Since 923 is not divisible by any of these primes, therefore 923 is a prime number

2. The least number which when divided by d_1 , d_2 and d_3 leaves the remainders r_1 , r_2 and r_3 , respectively, such that $(d_1 - r_1) = (d_2 - r_2) = (d_3 - r_3)$ is (LCM of d_1 , d_2 and d_3) – $(d_1 - r_1)$ or $(d_2 - r_2)$ or $(d_3 - r_3)$.

Illustration 19 Find the least number which when divided by 9, 10 and 15 leaves the remainders 4, 5 and 10, respectively.

Solution: Here 9 - 4 = 10 - 5 = 15 - 10 = 5Also, L.C.M. (9, 10, 15) = 90

 \therefore the required least number = 90 - 5 = 85

3. A number on being divided by d_1 and d_2 successively leaves the remainders r_1 and r_2 , respectively. If the number is divided by $d_1 \times d_2$, then the remainder is $(d_1 \times r_2 + r_1)$.

Illustration 20 A number on being divided by 10 and 11 successively leaves the remainders 5 and 7, respectively. Find the remainder when the same number is divided by 110.

Solution: The required remainder = $d_1 \times r_2 + r_1$ = $10 \times 7 + 5 = 7$

4. To find the number of numbers divisible by a certain integer.

The method is best illustrated with the help of following example.

Illustration 21 How many numbers up to 532 are divisible by 15?

Solution: We divide 532 by 15.

$$532 = 35 \times 15 + 7$$

The quotient obtained is the required number of numbers. Thus, there are 35 such numbers

Illustration 22 How many numbers up to 300 are divisible by 5 and 7 together?

Solution: L.C.M. of 5 and 7 = 35

We divide 300 by 35

$$300 = 8 \times 35 + 20$$

Thus, there are 8 such numbers.

5. Two numbers when divided by a certain divisor give remainders r_1 and r_2 . When their sum is divided by the same divisor, the remainder is r_3 . The divisor is given by $r_1 + r_2 - r_3$.

Illustration 23 Two numbers when divided by a certain divisor give remainders 473 and 298, respectively. When their sum is divided by the same divisor, the remainder is 236. Find the divisor.

Solution: The required divisor = 437 + 298 - 236 = 499

Practice Exercises

DIFFICULTY LEVEL-1 (BASED ON MEMORY)

1. A student was asked to divide a number by 6 and add 12 to the quotient. He, however, first added 12 to the number

2. Which of the following integers is the square of an integer

correct answer should have been:

(a) 122

(c) 114

for every integer n?

and then divided it by 6, getting 112 as the answer. The

(b) 118

(d) 124

[Based on MAT, 2004]

(a) 248

(c) 148

(a) 0

10. For every positive real number:

(b) 348

(d) 448

 $\left[\frac{x}{2}\right] + \left[\frac{x+1}{2}\right] = \dots$

(b) 1

where ([]) is the greatest integer function.

[Based on MAT, 2002]

2	2	(4) 0	(0) 1
(a) $n^2 + 1$ (c) $n^2 + 2n$	(b) $n^2 + n$ (d) $n^2 + 2n + 1$	(c) $[x+1]$	(d)[x]
(c) $n^2 + 2n$	Activities of the control of the con		[Based on MAT, 2002]
3. Given that $N = (521)^1$ of N .	[Based on MAT, 2004] $^{25} \times (125)^{521}$, find the last two digits		it multiples of 11 are there, if the five 5 and 7 in the same order?
	(1) 25	(a) 12	(b) 13
(a) 75 (c) 45	(b) 25 (d) None of these	(c) 10	(d) None of these
(A) (B) (B) (B)	18.00		[Based on MAT, 2002]
from the number. The	s of a 3-digit number is subtracted e resulting number is always:	The smallest num make it a perfect of	nber by which 3600 can be divided to cube is:
(a) Divisible by 6	(b) Not divisible by 6	(a) 9	(b) 50
(c) Divisible by 9	(d) Not divisible by 9 [Based on MAT, 2004]	(c) 300	(d) 450
= TL 1	**************************************		[Based on MAT, 2002]
	must be subtracted from each of the and 42, so that the remainders may be	13. The least number square is:	having four digits which is a perfect
(a) 0	(b) 1	(a) 1004	(b) 1016
(c) 2	(d) 7	(c) 1036	(d) None of these
	[Based on MAT, 2003]		[Based on MAT, 2002]
6. The highest power of	of 5 that is contained in 125 ¹²⁵ –	14. The remainder wh	nen 7 ⁸⁴ is divided by 342 is:
25 ²⁵ is:		(a) 0	(b) 1
(a) 25	(b) 50	(c) 49	(d) 341
(c) 75	(d) 125		[Based on MAT, 2001]
7. Of the 120 people in the thirds of the people are	e room, three-fifths are women. If two- e married, then what is the maximum he room who could be unmarried?	is 14. When 45 is	is such that the product of the digits sadded to the number, then the digits places. Find the number.
(a) 40	(b) 20	(a) 72	(b) 27
(c) 30	(d) 60	(c) 37	(d) 14
	[Based on MAT, 2003]		[Based on MAT, 2001]
8. If $x = 2 + 2^{2/3} + 2^{1/3}$,	then the value of $x^3 - 6x^2 + 6x$ is:	16. In a division sum	the divisor is 12 times the quotient and
(a) 3	(b) 2	The state of the s	nder. If the remainder is 48, then what is
(c) 1	(d) None of these	the dividend?	
	[Based on MAT, 2002]	(a) 240	(b) 576
9. A number of three d	ligits in scale 7 when expressed in	(c) 4800	(d) 4848
	eversed in order. The number is:		[Based on HFT, 2003]

	7.5 * */**	715 1 1/10			[Based on MAI (Dec), 2000]
	(a) 1, 1/11	(b) 1, 1/10	27.		owing way on the fingers of her
	(c) 1, 1/12	(d) 1, 10			calling the thumb 1, the index
		[Based on SCMHRD, 2002]			er 3, the ring finger 4, the little
19.	If m , n , o , p and q are integ be even when which of the	ers, then $m(n+o)(p-q)$ must efollowing is even?			d direction calling the ring figure d so on. She counted upto 1994. hich finger?
	(a) $m+n$	(b) $n+p$		(a) The middle finger	(b) The index finger
	(c) m	(d) p		(c) The thumb	(d) The ring finger
	[Ba	sed on REC Tiruchirapalli, 2002]			[Based on MAT (Sept), 2008]
20.	Which of the following n 99?	umbers is exactly divisible by	28.	in the form of a solid squ	rishing to draw up his 5180 men are found that he had 4 men less.
	(a) 114345	(b) 135792		If he could get four more the number of men in the	e men and form the solid square,
	(c) 3572404	(d) 913464			
		[Based on MAT, 2005]		(a) 72	(b) 68
21.		sum of the first two is 45; the		(c) 78	(d) 82
		third is 55 and the sum of the		<u> </u>	[Based on MAT (Feb), 2008]
	third and thrice the first is	Service Section Co. Productive Selection of Association Section Sectio	29.		andidate needs three-fourths of vo-thirds of the votes have been
	(a) 20	(b) 25			5/6 of what he needs, then what
	(c) 30	(d) 35		part of the remaining vot	
		[Based on MAT, 2005]		(a) 1/8	(b) 7/12
22.		nber is 9 times the number		(c) 1/4	(d) 3/8
	The number is:	ligits and sum of the digits is 9.			[Based on MAT (Feb), 2008]
		(1) 54	30.	The sum of the place valu	ues of 3 in the number 503535 is:
	(a) 72	(b) 54	750,000	(a) 3300	(b) 0.6
	(c) 63	(d) 81		(c) 60	(d) 3030
	<u></u>	[Based on MAT (Feb), 2010]		(-)	[Based on MAT (Feb), 2008]
23.	other is 36. The smaller nu	BH BHARWATHANA	31.	Find the whole number equal to one-sixth times to	which when increased by 20 is
	(a) 6	(b) 7		(a) 7	(b) 5
	(c) 8	(d) 9		(c) 3	(d) 4
		[Based on MAT (Sept), 2009]			[Based on MAT (Sept), 2007]
24.		e divisible by 5 and also those e digits are eliminated from the	32.	What will be the remaind	by 765 leaves a remainder 42. er if the number is divided by 17?
	(a) 40	(b) 47		(a) 8	(b) 5
	300 00 00 00 00 00 00 00 00 00 00 00 00	(d) 45		(c) 7	(d) 6 [Based on MAT (Sept), 2007]
	(c) 53	252 22 12	33.	After being set up, a com	pany manufactured 6000 scooters
25.	How many numbers are which 9 occurs only once?	[Based on MAT (May), 2009] there between 500 and 600 in	55.	in the third year and 70 Assuming that the product	00 scooters in the seventh year. tion increases uniformly by a fixed s the production in the tenth year?
	(a) 19	(b) 18		(a) 7850	(b) 7650
	(c) 20	(d) 21		(c) 7750	(d) 7950
		[Based on MAT (Feb), 2009]			[Based on MAT (May), 2006]
		[Desce of PLAT (Feb), 2007]	'		[Dased on MAI (May), 2000]

26. One of a group of swans, 7/2 times the square root of the number are playing on the shore of the pond. The two

swans?

(a) 10

(c) 12

remaining are inside the pond. What is the total number of

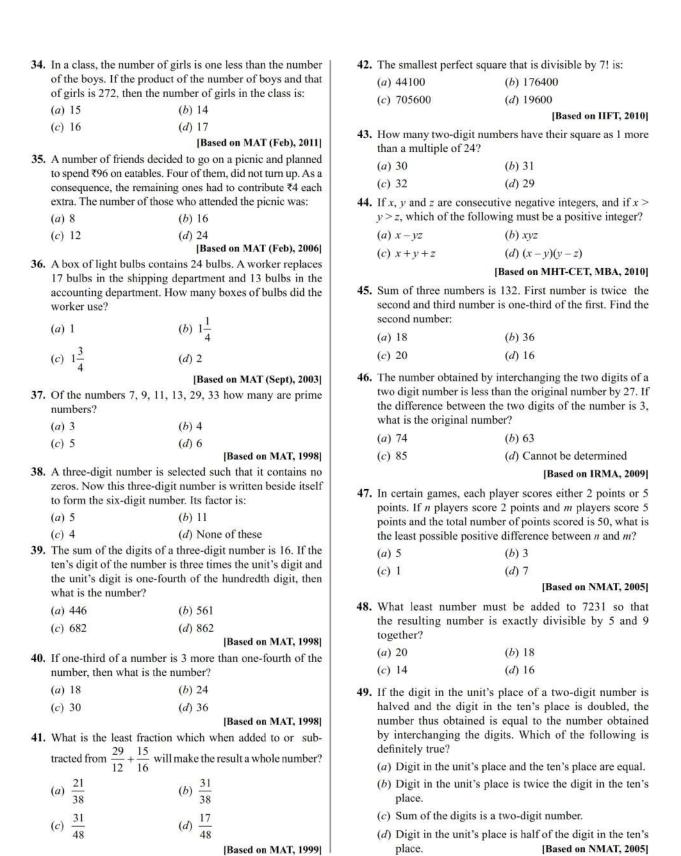
(b) 14

(d) 16

17. Which of the following integers has the most divisors?

18. In which of the following pairs of numbers, it is true that

their sum is 11 times their product?


(b) 91

(d) 101

[Based on SCMHRD Ent. Exam., 2003]

(a) 88

(c) 99

50.	If <i>m</i> and <i>n</i> are two integer the following cannot be the	s such that $m \times n = 64$, which of	57.		integer and if the a	unit's digit of a^2 is 9 and it of $(a + 2)^2$?
	(a) 20	(b) 65		(a) 1	(b) 3	n or (a + 2) .
	(c) 16	(d) 35 [Based on ATMA, 2005]		(c) 5	(d) 14	
51.	1000 PT 1100 PT 1	which of the following must be		(0) 5	(4) 14	[Based on ATMA, 2008]
	(a) $a > 0$	(b) $b > 0$	58.			integer n , the remainder
	(c) $a - b > 0$	(d) ab > 0		is $n-4$. Which of	AND THE AND THE PARTY OF	ould be the value of n ?
	(-)	[Based on ATMA, 2006]		(a) 3	(b) 4	
52.	If a positive integers n is a also be divisible by which	livisible by both 5 and 7, <i>n</i> must of the following?		(c) 7	(d) 12	[Based on ATMA, 2008
	I. 12	II. 35	59.	$4^{109} + 6^{109}$ is div	rided by 25, the re	emainder is:
	III. 70			(a) 20	(b) 10	
	(a) None	(b) II only		(c) 5	(d) 0	
	(c) I and II	(d) II and III				[Based on JMET, 2006]
		[Based on ATMA, 2006]	60.	What is the digit	in the units place	of 102 ⁵¹ ?
53.		re digits whose sum is 10. The		(a) 2	(b) 4	. 01 102
	. N Parketter at 20 at 2	sum of the other two and the		(c) 6	(d) 8	
		by 99, if the final digit and the ged. The digit in the hundreds		(0) 0	(1) 0	[Based on JMET, 2006]
	place is:		61.	Find the least nu	mber which must	be subtracted from 9269
	(a) 3	(b) 5			number is exactly	
	(c) 4	(d) 2		(a) 17	(b) 57	
		[Based on ATMA, 2006]		(c) 71	(d) 63	
54.	어디를 하는 것 같아 아니라 얼마나 아무네. 그 아이에 얼마나 아이에게 되었다. 그리네이 아일까 없	al numbers, then which of the	62	Find the least m	ımbar which mus	t be added to 15463 so
	following is an odd numb		02.			y divisible by 107?
	(a) $x^{y} + y^{x}(x - y)(x^{y} + x)$			(a) 52	(b) 71	ā 150
	(c) $y^x (x^2 - y) (x^y - x)$	(d) None of these		(c) 55	(d) 19	
		[Based on ATMA, 2008]	(2)	365000000000000000000000000000000000000		1.1
55.		tegers divisible by 5, 3 and 12	63.		are real numbers $-d < e + a$ and d	such that $a+b \le c+d$ $b \ge a+b$ then:
		two-digit prime number, then			umber is a and the	
	which of the following sta				umber is a and the	
	I. Product of <i>abcp</i> is zer	0.			umber is e and the	
	II. $a+b+c+p$ is odd.				amber is c and the	
	III. $(b^2 + c^2) - (p^2 - a^2)$ is			(a) the largest in		D, Delhi University, 2011
	IV. $a(p-c) + a(c+b)$ is	divisible by 5.	64	Lat 2x+y = 10, 2		$x^{x} = 30$ where x, y and $z^{x} = 30$
	(a) I and IV only	(b) II and III only	04.		l numbers. The va	
	(c) II and IV only	(d) IV only				
		[Based on ATMA, 2008]		(a) $\frac{3}{2}$	(b) $\sqrt{1}$	5
56.		ntegers such that x is a factor of		50 32		
	y and x is a multiple of z, necessarily an integer?	which of the following is NOT		(c) $\frac{\sqrt{6}}{2}$	(d) 15	
	(a) $\frac{xy}{}$	(b) $\frac{y+z}{x}$			[Based on GBC	O, Delhi University, 2011
			65.	What is the num divisible by 73?	ber just more tha	n 5000 which is exactly
	(c) $\frac{yz}{x}$	(d) $\frac{x+y}{z}$		(a) 5001	(b) 500	09

(c) 5037

[Based on ATMA, 2008]

(d) 5027

- **66.** The sum of two numbers is 100 and their difference is 37. The difference of their squares is: divisible by 357 is: (a) 37(b) 100(a) 94762 (c) 63 (d) 3700 (c) 94485 67. The number of times 79 be subtracted from 50000, so that the remainder be 43759 is: (a) 69 (b)795 * 3457 is divisible by 11 is: (c) 59 (d) None of these (a) 2(b) 368. The nearest figure to 58701 which is divisible by 567 is: (c) 0 (d) 4(a) 58968 (b) 58434 (c) 58401 (d) None of these DIFFICULTY LEVEL-2 (Based on Memory) 1. Let a, b, c, d be the four integers such that a + b + c + d =5. If a, a + 2 and a + 4 are prime numbers, then the number of possible solutions for a is:
 - 4m + 1, where m is a positive integer. Given m, which one of the following is necessarily true?
 - (a) The minimum possible value of

$$a^2 + b^2 + c^2 + d^2$$
 is $4m^2 - 2m + 1$

(b) The minimum possible value of

$$a^2 + b^2 + c^2 + d^2$$
 is $4m^2 + 2m + 1$

(c) The maximum possible value of

$$a^2 + b^2 + c^2 + d^2$$
 is $4m^2 - 2m + 1$

(d) The maximum possible value of

$$a^2 + b^2 + c^2 + d^2$$
 is $4m^2 + 2m + 1$.

[Based on CAT, 2003]

- 2. How many three-digit positive integers with digits x, yand z in the hundred's, ten's and unit's place, respectively, exist such that $x \le y$, $z \le y$ and $x \ne 0$?
 - (a) 245

(b) 285

(c) 240

(d) 320

[Based on CAT, 2003]

3. The number of positive integers n in the range $12 \le$ $n \le 40$ such that the product $(n-1)(n-2) \dots 3 \times 2 \times 1$ is not divisible by n is:

(a) 5

(b) 7

(c) 13

(d) 14

- **4.** Let x and y be positive integers such that x is prime and y is composite. Then,
 - (a) y x cannot be an even integer.
 - (b) xy cannot be an even integer.
 - (c) $\frac{(x+y)}{x}$ cannot be an even integer.

(d) None of these

[Based on CAT, 2004]

69. The number of five figures to be added to a number of four fives to obtain the least number of six figures exactly

(b) 94802

(d) None of these

70. The least value to be given to * so that the number

(a) One

(b) Two

(c) Three

(d) None of these

[Based on CAT, 2004]

6. What is the remainder when 4^{96} is divided by 6?

(a) 0

(b) 2

(c) 3

(d) 4

[Based on CAT, 2004]

7. The remainder when 5^{163} is divided by 1000 is:

(a) 125

(b) 625

(c) 25

(d) None of these

8. If the sum of n consecutive integers is 0, which of the following must be true?

I. n is an even number.

II. n is an odd number.

III. The average of the n integers is 0.

(a) I only

(b) II only

(c) III only

(d) II and III

- 9. A player holds 13 cards of four suits of which seven are black and six are red. There are twice as many diamonds as spades and twice as many hearts as diamonds. How many clubs does he hold?
 - (a) 4

(b) 5

(c) 6

(d) 7

[Based on FMS Delhi, 2004]

10. In three coloured boxes: red, green and blue, 108 balls are placed. There are twice as many in the green and red boxes combined as they are in the blue box and twice

12700000	blue box as they are in the red box. How here in the green box?	The second secon	ne nine numbers, i.e., 111, 222, 333, 888, 999?' Tanu immediately gave the
(a) 18	(b) 36	desired answer. It w	/as:
(c) 45	(d) None of these	(a) 7, 37, 111	(b) 3, 37, 111
**************************************	[Based on FMS Delhi, 2004]	(c) 9, 37, 111	(d) 9, 13, 111
	$c = 3^4 \dots z = 26^{27}$. In the product of all the many zeros exist in the end?	an increasing arith	e number that is the fifth term of ametic sequence for which all four
(a) 100	(b) 104	preceding terms are	also prime:

[Based on FMS Delhi, 2004]

12. The unit's digit of a two-digit number is one more than the digit at ten's place. If the number is more than five times of the sum of the digits of the number, then find the sum of all such possible numbers:

(a) 246

(c) 80

11.

(b) 275

(d) 106

(c) 290

(d) 301

[Based on FMS Delhi, 2004]

13. Let $20 \times 21 \times 22 \times ... \times 30 = A$. If A is divisible by 10^{x} , then find the maximum value of x:

(a) 3

(b) 4

(c) 5

(d) 6

[Based on FMS Delhi, 2004]

14. A student was asked to find the sum of all the prime numbers between 10 to 40. He found the sum as 180. Which of the following statements is true?

(a) He missed one prime number between 10 and 20.

(b) He missed one prime number between 20 and 30.

(c) He added one extra prime number between 10 and 20.

(d) None of these

[Based on FMS Delhi, 2004]

15. $\sqrt{-1}$ is not defined but it is denoted by i. Clearly, i is not a real number, so it is called imaginary number. Now

find $\sum_{n=1}^{100} (i)^n$:

(a) i

(b) 1

(c) -1

(d) 0

[Based on FMS Delhi, 2004]

16. (a+b+c+d+e)/(v+w+x+y+z) = N, where a, b, c, d, e are five consecutive even integers and v, w, x, y, z are five consecutive odd integers. If v = a + 1 and n represent natural numbers, then which of the following is the most suitable value of N?

(a) (n+4)/(n+5)

(b) (n+3)/(n+4)

(c) (n+2)/(n+3)

(d) (n+2)/(n+2.5)

[Based on FMS Delhi, 2004]

17. Manu and Tanu are playing mathematical puzzles. Manu asks Tanu: 'which whole numbers, greater than one, (a) 17

(b) 37

(c) 29

(d) 53

19. When $10^{12} - 1$ is divided by 111, the quotient is:

(a) 9009009

(b) 9000009

(c) 9009009009

(d) 9000000009

20. A number N is defined as the addition of 4 different integers. Each of the four numbers gives a remainder zero when divided by four. The first of the four numbers defined as A is known to be as 4^{61} . The other three numbers arranged in the increasing order and defined as B, C and D are each 4 times more than the previous number. Thus, the number $B = 4 \times A$, similarly $C = 4 \times B$ and also $D = 4 \times C$. Thus the number N so formed is perfectly divisible by:

(a) 11

(b) 10

(c) 3

(d) 13

21. Which of the following is a prime number?

(a) 889

(b) 997

(c) 899

(d) 1147

[Based on FMS Delhi, 2004]

22. A cube is cut into n identical pieces. If it can be done so in only one way, then which of the following could be the value of n?

(a) 179

(b) 203

(c) 143

(d) 267

[Based on IIT Joint Man. Ent. Test, 2004]

23. A gardener has to plant trees in rows containing equal number of trees. If he plants in rows of 6, 8, 10 or 12, then five trees are left unplanted. But if he plants in rows of 13 trees each, then no tree is left. What is the number of trees that the gardener plants?

(a) 485

(b) 725

(c) 845

(d) None of these

[Based on IIT Joint Man. Ent. Test, 2004]

- 24. I think of a number. I double the number, add 6 and multiply the result by 10. I now divide by 20 and subtract the number I first thought of. The result is:
 - (a) Depends upon the number thought
 - (b) 1
 - (c) 2
 - (d) 3

		[Based on CAT, 2002]			[Based on CAT, 2002]
	(c) 120	(d) 180		(c) 559	(d) None of these
	(a) 45	(b) 90		(a) 13	(b) 127
	third number?	number is always less than the	38.	$7^{6n} - 6^{6n}$, where <i>n</i> i	s an integer > 0, is divisible by:
		er is always less than the second number is always less than the		No.WIL SERVE	[Based on CAT, 2002]
	$(n_1, n_2, n_3), (n_2, n_3, n_4)$.	can be generated such that in		(c) 41	(d) 53
	$\dots < n_{10} \dots$ How ma	any triplets of these numbers		(a) 80	(b) 75
31.	If there are 10 positive	real numbers $n_1 < n_2 < n_3$			ined are 2, 1 and 4, respectively. What er if 84 divides the same number?
	(c) 4	(d) 5	37.		f a number successively by 3, 4 and 7,
	(a) 0	(b) 1	25,547		[Based on CAT, 2002]
	when the number is divid			(c) 14	(d) None of these
50.		ler is 2. What is the remainder		(a) 1	(b) 16
30		y 2 the remainder is 1. If it is	36.		ed by 17, the remainder would be:
	(c) 1	(d) 2	mg 131	200	[Based on CAT, 2002]
	(a) 5	(b) 4		(c) 15	(d) More than 15
	is divisible by 169?			(a) Less than 10	(b) 10
29.	What is the smallest value	of <i>n</i> for which $(n^{13} - n)(5^{2n} - 1)$		number he missed v	
	(c) 2	(d) 3			in the sequence during addition. The
	(a) 0	(b) 1		The particle of the second states	the sum as 575. When the teacher wrong, the child discovered he had
					so long his patience permitted. As he
28.	Find the remainder when	$(11^{17^{15}} + 13^{11^{15}})$ is divided by 7:	35.		to add first few natural numbers (that
	(c) 19, 63	(d) 13, 62			[Based on CAT, 2002]
	(a) 14, 42	(b) 42, 28		(c) 43	(d) None of these
	is that?	222		(a) 96	(b) 53
		n of the exercise. Which one		many gold coins the	
		the following pairs of numbers		177	numbers. 'The wife looked puzzled. merchant's wife by finding out how
		same as the one expected by			equals the difference between the
		d the digits of both the numbers tiplication and found that the			then 48 times the difference between
27.	12 (12 pt 12	e multiplication exercise to the			ed, 'well! if I divide the coins into two
		[Based on FMS Delhi, 2003]			to know about him. One day, his wife gold coins do we have?' After pausing
	10	11	34.		d collected many gold coins. He did
	(c) $\frac{7}{10}$	(d) $\frac{8}{11}$			[Based on CAT, 2002]
	4	8		(c) 25	(d) None of these
	(a) $\frac{1}{4}$	(b) $\frac{5}{8}$		(a) 40	(b) 36
	number is:	•		How many did he s	esides. He escaped with one diamond. teal originally?
		erator is increased by 7 and the by 2, we obtain 2. The rational			ch he gave half of the diamonds he had
26.		ational number is 3 more than		T/	vay out, the thief met each watchman,
			33.		al jewellery store hired 3 watchmen to , but a thief still got in and stole some
	(c) 2	(d) 0	22	The owner of a loop	l jawallami store hirad 2 watchman to

32. Number S is obtained by squaring the sum of digits of a

then the two digit number D is:

(a) 24

(c) 34

two-digit number D. If difference between S and D is 27,

(b) 54

(d) 45

[Based on CAT, 2002]

25. Consider a 99-digit number created by writing side by

 $1\; 2\; 3\; 4\; 5\; 6\; 7\; 8\; 9\; 10\; 11\; 12\; 13\; ____\; 53\; 54$

the above number when divided by 8 will leave a

(b) 4

(d) 0

side the first fifty four natural numbers as follows:

remainder:

(a) 6

(c) 2

(a) i	(0) 3	7	SSCOTO MODELLO MANAGEMENTO AND	
(c) 0	(d) 4	is $35\frac{1}{77}$. What v	was the number erased?	
41. Of 128 boxes of	f oranges, each box contains at least 120	(a) 7	(b) 8	
	oranges. The number of boxes containing	(c) 9	(d) None of these	
	r of oranges is at least:		[Based on CAT	20
(a) 5	(b) 103		ng decimal of the form $D = 0$. $a_1 a_2 a_1$	
(c) 6	(d) None of these		a_1 and a_2 lie between 0 and 9. Further is zero. Which of the following numbers	
	[Based on CAT, 2001]		uces an integer, when multiplied by	
42. In a four-digit n	number, the sum of the first two digits is	(a) 18	(b) 108	5
	he last two digits. The sum of the first and	(c) 198	(d) 288	
	al to the third digit. Finally, the sum of the		[Based on CAT	Г, 2000]
	th digits is twice the sum of the other two he third digit of the number?	49. What is the value	e of the following expression?	
(a) 5	(b) 8	$\begin{pmatrix} 1 \\ \end{pmatrix}_{+}$	$\left(\frac{1}{(4^2-1)}\right) + \left(\frac{1}{(6^2-1)}\right) + \left(\frac{1}{(20^2-1)^2}\right)$	_)
(c) 1	(d) 4	(2^2-1)	(4^2-1) (6^2-1) (20^2-1)	1)
	[Based on CAT, 2001]	9	(b) $\frac{10}{19}$	
43. Anita had to do	a multiplication. Instead of taking 35 as	(a) $\frac{9}{19}$	$\frac{(b)}{19}$	
	bliers, she took 53. As a result, the product	. 10	. 11	
went up by 540.	What is the new product?	(c) $\frac{10}{21}$	(d) $\frac{11}{21}$	
(a) 1050	(b) 540		[Based on CAT	Г, 2000]
(c) 1440	(d) 1590		ence of seven consecutive integer	
	[Based on CAT, 2001]		st five integers is n. The average of	fall the
44. m is the smallest	t positive integer such that for any integer	seven integers is (a) n		
	ity $n^3 - 7n^2 + 11n - 5$ is positive. What is	(b) $n + 1$		
the value of m?	70.5	2.6	k is a function of n	
(a) 4	(b) 5			
(c) 8	(d) None of these	(d) $n+\left(\frac{2}{7}\right)$	[Based on CAT	Γ, 2000
	[Based on CAT, 2001]	X1.2		
	eturning from a movie, stopped to eat at a		423×1425 . What is the remainder	r when
	t the front counter. Sita took one-third of	N is divided by 1 (a) 0	(b) 9	
	eturned four because she had a monetary	(c) 3	(d) 6	
5 90 5	atima then took one-fourth of what was	(c) 3	Based on CAT	Г. 20001
	d three for similar reasons. Eswari then remainder but threw two back into the	53 Th. i.e. 240		
	had only 17 mints left when the raid was		41 and 32506, when divided by a leave the same remainder. What	
	mints were originally in the bowl?	value of <i>n</i> ?	icave the same remainder. What	13 1110
(a) 38	(b) 31	(a) 289	(b) 367	
(c) 41	(d) None of these	(c) 453	(d) 307	
	[Based on CAT, 2001]		Based on CAT	C 2000)

46. In a number system, the product of 44 and 11 is 1034.

47. A set of consecutive positive integers beginning with 1

is written on the blackboard. A student came along and

erased one number. The average of the remaining numbers

decimal number system, becomes:

(a) 406

(c) 213

The number 3111 of this system, when converted to the

(b) 1086

[Based on CAT, 2001]

(d) 691

39. If $x^2 < 51$ and $y^2 < 21$ and x and y are integers, then which

40. What is the product of remainders when 6⁴ is divided by

quotient?

(a) 28

(c) -28

 2^4 and 7^5 is divided by 14^2 ?

of the following is the least number which when divided

by the least value of x and least value of y gives a negative

(b) 56

(d) - 56

53. f(a, b, c) = a + b + c and $g(a, b, c) = a \times b \times c$.

Then, how many such integer triplets a, b, c are there for which f(a, b, c) = g(a, b, c)? (a, b, c) are all distinct).

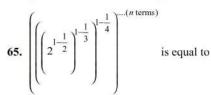
- (a) 0
- (b) Only 1

- (c) 2
- (d) More than 2
- **54.** Let $N = 55^3 + 17^3 72^3$. N is divisible by:
 - (a) Both 7 and 13
- (b) Both 3 and 13
- (c) Both 17 and 7
- (d) Both 3 and 17

[Based on CAT, 2000]

- 55. Which of the following numbers has maximum factors?
 - (a) 36
- (b) 76
- (c) 82
- (d) 191
- **56.** Which of the following numbers has minimum factors?
 - (a) 58
- (b) 88
- (c) 137
- (d) 184
- 57. From 1-90 how many numbers end in 4?
 - (a) 25 per cent
- (b) 30 per cent
- (c) 20 per cent
- (d) 10 per cent
- **58.** From 10–99 both inclusive how many numbers have their unit digit smaller than the other digit?
 - (a) 90
- (b) 45
- (c) 32
- (d) 26

59. If
$$x = \sqrt{\frac{5}{2} + \sqrt{\frac{13}{4} + 6\sqrt{\frac{5}{2} + \sqrt{\frac{13}{4} + 6\sqrt{\dots \text{ to infinite terms,}}}}}$$


then x =

- (a) $\frac{3+\sqrt{2}}{2}$
- (b) $\frac{3+\sqrt{5}}{2}$
- (c) $\frac{2\sqrt{5}}{3}$
- (d) $\frac{3\sqrt{5}+1}{2}$
- **60.** The number of people in a row is equal to the number of rows in a playground. If total number of people in the playground is 19044, find the number of rows:
 - (a) 128
- (b) 138
- (c) 148
- (d) 158
- **61.** Let *R* be the remainder when 35n + 1 is divided by 7. Which of the following statements are true?
 - I. R = 4, when n is even.
 - II. R = 5, when n is even.
 - III. R = 6, when n is odd.
 - IV. R = 3, when n is odd.
 - (a) I and III
- (b) II and III
- (c) II and IV
- (d) I and IV
- **62.** If 2x 1 is an odd number and 3y 1 is an even number, which of the following is/are necessarily even?

- I. $x^2 2y + 2$
- II. $v^2 2x + 3$
- III. $4x^2 y 1$
- (a) I only
- (b) II only
- (c) I and II
- (d) II and III
- 63. Which of the following statements is/are true?
 - I. $n^p n$ is divisible by p where n and p are integers.
 - II. $n^p n$ is divisible by p where n is a whole number and p is a natural number.
 - III. $n^p n$ is divisible by p where n is an integer and p is a prime number.
 - (a) Only I
- (b) Only II
- (c) Only III
- (d) I and III
- 64. A two-digit number is four times the sum of the two digits. If the digits are reversed, the number so obtained is 18 more than the original number. What is the original number?
 - (a) 36
- (b) 24

(c) 48

(d) None of these

- (a) $(2)^{\frac{1}{n+1}}$
- (b) 2^n
- $\binom{n}{2n+1}$
- (d) $2^{\log n}$
- **66.** The number 311311311311311311 is:
 - (a) Divisible by 3 but not by 11
 - (b) Divisible by 11 but not by 3
 - (c) Divisible by both 3 and 11
 - (d) Neither divisible by 3 nor by 11

[Based on SNAP, 2007]

- **67.** If $p = 23^n + 1$, then which of the following is correct about p?
 - (a) p is always divisible by 24.
 - (b) p is never divisible by 24.
 - (c) p is always divisible by 22.
 - (d) p is never divisible by 22.
- **68.** A three-digit number 4a3 is added to another three-digit number 984 to give the four-digit number 13b7, which is divisible by 11. Then, (a + b) is:
 - (a) 10
- (b) 11
- (c) 12
- (d) 15

69.	h, t and u with $h > $ reversed is subtra	ber has, from left to right, the digits u. When the number with the digits acted from the original number, the difference is 4. The next two digits, are:
	(a) 5 and 9	(b) 9 and 5
	(c) 5 and 4	(d) 4 and 5
		[Based on FMS, 2011]
70.	changed to four, yo	tem the base is ten. If the base were ou would count as follows:
		12, 13, 20, 21, 22, 23, 30,
	The twentieth num	ber would be:
	(a) 110	(b) 104
	(c) 44	(d) 38
		[Based on FMS, 2011]
71.		umber of two digits is decreased by the per formed by reversing the digits, then ways divisible by:
	(a) 9	
	(b) the product of t	the digits.
	(c) the sum of the	digits.
	(d) the difference of	of the digits.
		[Based on FMS, 2011]
72.		aced after a two-digit number whose unit's digit is <i>u</i> , the new number is:
	(a) $10t + u + 1$	
	(b) $100t + 10u + 1$	
	(c) $1000t + 10u $	1
	(d) $t + u + 1$	
		[Based on FMS, 2011]
73.	A number n is sai	id to be perfect, if the sum of all its

divisors (excluding n itself) is equal to n. An example of

(b) 15

(d) 6

(b) 1

(d) 3

74. For how many integers n, $\frac{n}{20-n}$ is the square of an

75. Let p be any positive integer and 2x + p = 2y, p + y = x and x + y = z. For what value of p would x + y + z attain its

[Based on XAT, 2006]

[Based on XAT, 2007]

perfect number is:

(a) 9

(c) 21

integer?

(a) 0

(c) 2

maximum value?

[Based on XAT, 2007]

78. Four digits of the number 29138576 are omitted so that the result is as large as possible. The largest omitted digit is:

(a) 9 (b) 8

(b) 1

(d) 3

76. Let S be the set of rational numbers with the following

(a) S contains all rational numbers in the interval 0 < x

(b) S contains all rational numbers in the interval $-1 \le x$

(c) S contains all rational numbers in the interval $-1 \le x$

(d) S contains all rational numbers in the interval -1 < x

77. We define a function f on the integers f(x) = x/10, if x is divisible by 10, and f(x) = x + 1 if x is not divisible by 10. If $A_0 = 1994$ and $A_{n+1} = f(A_n)$, what is the smallest n such

(b) 18

(d) 1993

II. If $x \neq S$, then both $\frac{1}{x+1} \in S$ and $\frac{x}{x+1} \in S$

Which of the following is true?

[Based on XAT, 2007]

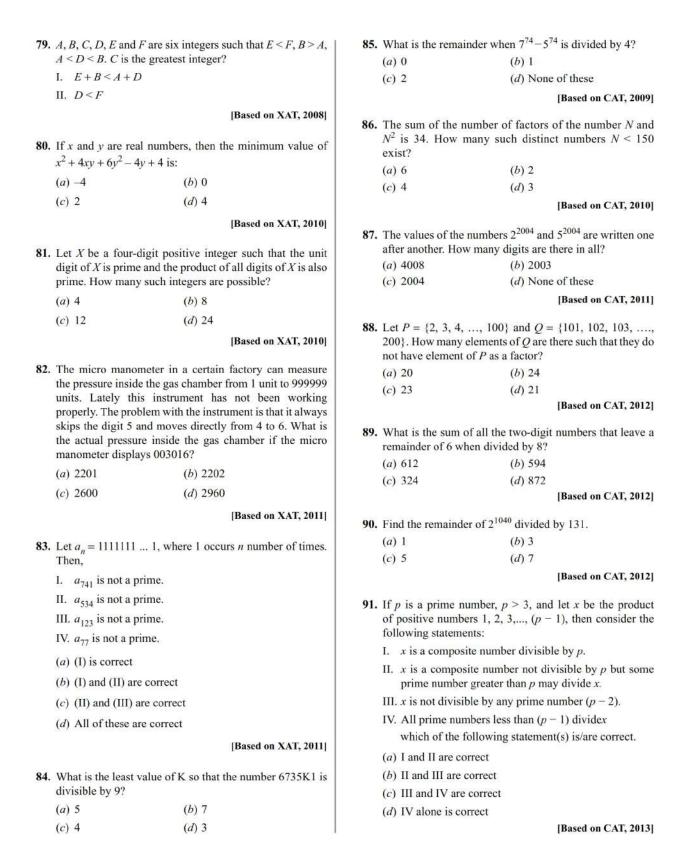
[Based on XAT, 2007]

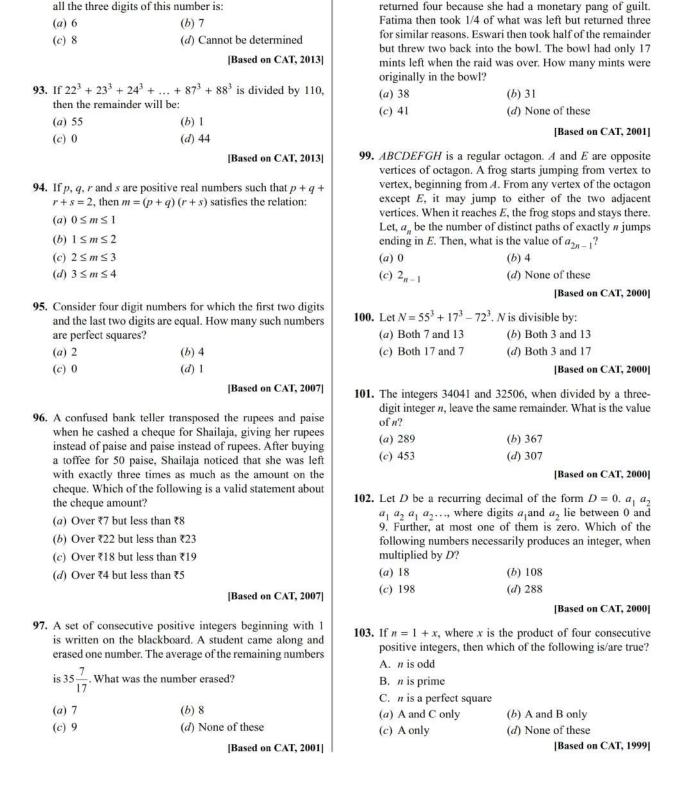
(a) 0

(c) 2

properties:

I. $\frac{1}{2} \in S$;


that $A_n = 2$? (a) 9


(c) 128

(c) 7 (d) 5 [Based on XAT, 2008]

Directions (Q. 79): The question given below is followed by two statements labelled as I and II. You have to decide if these statements are sufficient to conclusively answer the question. Choose the appropriate answer from options given below:

- (a) If Statement I alone is sufficient to answer the question.
- (b) If Statement II alone is sufficient to answer the question.
- (c) If Statement I and Statement II together are sufficient but neither of the two alone is sufficient to answer the question.
- (d) If either Statement I or Statement II alone is sufficient to answer the question.
- (e) Both Statement I and Statement II are insufficient to answer the question.

98. Three friends, returning from a movie, stopped to eat at a

restaurant. After dinner, they paid bill and noticed a bowl

of mints at the front counter. Sita took 1/3 of the mints, but

92. A three-digit number which on being subtracted from

another three-digit number consisting of the same digits

in reverse order gives 594. The minimum possible sum of

	N 2002 SI	stem, ii at	= <i>cco</i> > 300, then the			2 - 7 - 0
	value of b is:				integral value of	$\frac{16n + (n+6)}{2}$?
	(a) 1	(b) 0				n
	(c) 5	(d) 6			(a) 2	(b) 3
			[Based on CAT, 1999]		(c) 4	(d) None of these
106.	A hundred digit number i	s formed by	writing first 54 natural			[Based on CAT, 1997]
100.	numbers in front of each					(2)
	Find the remainder when			114.	If n is any odd nu	mber greater than 1, then $n(n^2 - 1)$ is:
	(a) 1	(b) 7			(a) divisible by 9	6 always
	(c) 2	(d) 0			(b) divisible by 48	8 always
	(0) 2	(4)	[Based on CAT, 1998]		(c) divisible by 24	4 always
			[Dascu on CA1, 1990]		(d) None of these	
107.	A certain number wh	en divided	by 899 leaves the		* *	[Based on CAT, 1996]
	remainder 63. Find th	e remaind	er when the same is			
	divided by 29.			115.	If a number 77495	58A96B is to be divisible by 8 and 9, the
	(a) 5	(b) 4				of A and B will be:
	(c) 1	(d) Can	not be determined		(a) 7 and 8	(b) 8 and 0
			[Based on CAT, 1998]		(c) 5 and 8	(d) None of these
			Section in the Section in		* 06 15 15 15 15 15 15 15 15 15 15 15 15 15	[Based on CAT, 1996]
108.	What is the digit in the u	ınit's place	of 2 ⁵¹ ?			[Based on CA1, 1990]
	(a) 2	(b) 8		116.	Three consecutive	e positive even numbers are such that
	(c) 1	(d) 4		110.		mber exceeds double the third by 2, the
			[Based on CAT, 1998]		third number is:	
89794727	1 v v v v v v v v v v v v v v v v v v v	12122	10 00 00 00 00 00 00 00 00 00 00 00 00 0		(a) 10	(b) 14
109.	n^3 is odd. Which of th	e followin	g statement(s) is (are)		(c) 16	(d) 12
	true?					[Based on CAT, 1995]
	A. n is odd					[Based on CA1, 1995]
	B. n^2 is odd			117	The remainder of	btained when a prime number greater
	C. n^2 is even		8	117.	than 6 is divided b	[[[[[[[[]]]] [[[[]]] [[[]] [[]] [[]] [
	(a) A only	(b) B or	VQ-7-0.		(a) 1 or 3	(b) 1 or 5
	(c) A and B only	(<i>d</i>) A ar	nd C only		(c) 3 or 5	(d) 4 or 5
			[Based on CAT, 1998]		(6) 3 01 3	Martin Edwards-Ti-
110	X7 : 1 C.1 C II .					[Based on CAT, 1995]
110.	Which of the following		200			553 . 453
	(a) $7^{3^2} = (7^3)^2$	(b) 7^{3^2}	$>(7^3)^2$	118.	The value of ${55^2}$	55 45 45 ² is:
	$(c) 7^{3^2} < (7^3)^2$	(d) Non	e of these		(CONTRACTOR AND ACTION ACTION
	(Secretary Secretary Secre		[Based on CAT, 1997]		(a) 100	(b) 105
					(c) 125	(d) 75
111.	If m and n are integer	rs divisible	by 5, which of the			[Based on CAT, 1995]
	following is not necessa			440	mt 1 0	
	(a) $(m-n)$ is divisible by			119.		positive integers not greater than 100,
	(b) $(m^2 - n^2)$ is divisible					sible by 2, 3 or 5, is:
	(c) $(m+n)$ is divisible by	y 10			(a) 26	(b) 18
	(d) None of these				(c) 31	(d) None of these
			[Based on CAT, 1997]			[Based on CAT, 1993]

112. P and Q are two positive integers such that PQ = 64.

113. If n is an integer, how many values of n will give an

(a) 20

(c) 16

Which of the following cannot be the value of P + Q?

(b) 65

(d) 35

[Based on CAT, 1997]

104. The remainder when 7^{84} is divided by 342 is:

(b) 1

105. Let a, b, c be distinct digits. Consider a two-digit number 'ab' and a three-digit number 'ccb', defined under the

usual decimal number system, if $ab^2 = ccb > 300$, then the

(d) 341

[Based on CAT, 1999]

(a) 0

(c) 49

- 120. What are the last two digits of 7^{2008} ?
 - (a) 21

- (b) 61
- (c) 01
- (d) 41

[Based on CAT, 2008]

- 121. After distributing the sweets equally among 25 children, 8 sweets remain. Had the number of children been 28, 22 sweets would have been left after equal distribution. What was the total number of sweets?
 - (a) 328
- (b) 348
- (c) 358
- (d) Data inadequate

[Based on SNAP, 2013]

- **122.** Consider four natural numbers: x, y, x + y and x y. Two statements are provided below:
 - I. All four numbers are prime numbers.
 - II. The arithmetic mean of the numbers is greater than 4. Which of the following statements would be sufficient to examine the sum of the four numbers?

- (a) Statement I
- (b) Statement II
- (c) Statement I and Statement II
- (e) Either Statement I or Statement II
- **123.** How many whole numbers between 100 and 800 contain the digit 2?
 - (a) 200
- (b) 214
- (c) 220
- (d) 240
- (e) 248

[Based on XAT, 2013]

- **124.** p, q and r are three non negative integers such that p + q + r = 10. The maximum value of pq + qr + pr + pqr is:
 - $(a) \ge 40 \text{ and } < 50$
- $(b) \ge 50 \text{ and } < 60$
- $(c) \ge 60 \text{ and } < 70$
- $(d) \ge 70 \text{ and } < 80$

[Based on XAT, 2013]

Answer Keys

DIFFICULTY LEVEL-1

1. (a)	2. (d)	3. (b)	4. (c)	5. (c)	6. (b)	7. (a)	8. (d)	9. (a)	10. (d)	11. (a)	12. (d)	13. (d)
14. (b)	15. (b)	16. (d)	17. (a)	18. (b)	19. (c)	20. (a)	21. (c)	22. (d)	23. (d)	24. (a)	25. (b)	26. (d)
27. (d)	28. (a)	29. (b)	30. (<i>d</i>)	31. (<i>d</i>)	32. (a)	33. (c)	34. (c)	35. (a)	36. (d)	37. (b)	38. (b)	39. (<i>d</i>)
40. (d)	41. (d)	42. (b)	43. (a)	44. (d)	45. (b)	46. (d)	47. (b)	48. (c)	49. (b)	50. (<i>d</i>)	51. (d)	52. (b)
53. (<i>d</i>)	54. (a)	55. (<i>d</i>)	56. (b)	57. (c)	58. (c)	59. (c)	60. (d)	61. (c)	62. (a)	63. (a)	64. (b)	65. (c)
66. (d)	67. (b)	68. (a)	69. (a)	70. (a)								

DIFFICULTY LEVEL-2

1.	(b)	2. (c)	3. (b)	4. (d)	5. (a)	6. (d)	7. (a)	8. (d)	9. (c)	10. (d)	11. (d)	12. (c)	13. (b)
14.	(d)	15. (d)	16. (d)	17. (b)	18. (c)	19. (c)	20. (b)	21. (b)	22. (a)	23. (c)	24. (d)	25. (c)	26. (b)
27.	(d)	28. (b)	29. (d)	30. (<i>d</i>)	31. (c)	32. (b)	33. (b)	34. (d)	35. (<i>d</i>)	36. (a)	37. (d)	38. (b)	39. (a)
40.	(c)	41. (a)	42. (a)	43. (<i>d</i>)	44. (d)	45. (d)	46. (a)	47. (a)	48. (c)	49. (c)	50. (b)	51. (c)	52. (d)
53.	(d)	54. (d)	55. (a)	56. (c)	57. (<i>d</i>)	58. (b)	59. (b)	60. (b)	61. (a)	62. (d)	63. (c)	64. (b)	65. (a)
66.	(d)	67. (d)	68. (a)	69. (b)	70. (a)	71. (b)	72. (b)	73. (d)	74. (c)	75. (a)	76. (a)	77. (a)	78. (d)
79.	(a)	80. (c)	81. (a)	82. (a)	83. (<i>d</i>)	84. (a)	85. (a)	86. (b)	87. (d)	88. (<i>d</i>)	89. (b)	90. (a)	91. (d)
92.	(c)	93. (a)	94. (a)	95. (d)	96. (c)	97. (a)	98. (d)	99. (d)	100. (d)	101. (d)	102. (c)	103. (a)	104. (b)
105.	(a)	106. (a)	107. (a)	108. (b)	109. (c)	110. (b)	111. (c)	112. (d)	113. (c)	114. (c)	115. (b)	116. (b)	117. (b)
118.	(a)	119. (a)	120. (c)	121. (c)	122. (a)	123. (b)	124. (c)						

Explanatory Answers

DIFFICULTY LEVEL-1

1. (a) Let x be the number,

$$\therefore$$
 $(x+12)+6=112 \Rightarrow \frac{x+12}{6}=112$

$$\Rightarrow$$
 $x = 112 \times 6 - 12$

$$\Rightarrow$$
 $x = 672 - 12 = 660$

$$\therefore \text{ Correct answer} = \frac{x+12}{6}$$

$$=\frac{660}{6}+12=110+12=122.$$

- **2.** (d) $(n+1)^2 = n^2 + 2n + 1$.
- 3. (b) Last 2 digits of (125)⁵²¹ will be 25.

To find the last two digits of (521)125, we need to consider (21)125 only.

The last 2 digits for different powers of 21 are:

$$(21)^1 \to 21$$

$$(21)^2 \to 41$$

$$(21)^3 \to 61$$

It is a cycle of 5 for the last two digits.

$$(21)^4 \rightarrow 81$$
$$(21)^5 \rightarrow 01$$

$$(21)^6 \to 21$$

So, 125 being divisible by 5, the last 2 digits of $(521)^{125}$ will be 01.

Thus,
$$25 \times 01 = 25$$

Therefore, last two digits of N are 25.

4. (c) Let the three-digit number be 100x + 10y + z

$$\therefore (100x + 10y + z) - (x + y + z) = 99x + 9y$$
$$= 9 (11x + y)$$

which is always divisible by 9.

5. (c) Let x must be subtracted from 14, 17, 34 and 42 such that

$$(14-x)(42-x)=(17-x)(34-x) \Rightarrow x=2.$$

6. (b)
$$125^{125} - 25^{25} = 5^{375} - 5^{50} = 5^{50}(5^{325} - 1)$$
.

Now 5325 - 1 is not divisible by 5. Hence, the highest power of 5 that is contained in the given expression is 50.

7. (a) No. of women in the room = $\frac{2}{5} \times 120 = 72$

No. of married people =
$$\frac{2}{5} \times 120 = 80$$

No. of unmarried people = 40

No. of men in the room = 48

If all the men are supposed to be married, then number of married women could be 80 - 48 = 32

.. Maximum number of unmarried women could be

$$72 - 32 = 40$$
.

8. (d)
$$x = 2 + 2^{2/3} + 2^{1/3} \Rightarrow x > 2$$

For,
$$x = 2$$
, $x^3 - 6x^2 + 6x = -4$

For,
$$x = 3$$
, $x^3 - 6x^2 + 6x = -9$

- $x^3 6x^2 + 6x < 0$.
- 9. (a) 248 in the scale of 7 is written as 503. In scale 9, it is
- **10.** (d) Given expression = $\frac{x}{2} + \frac{x+1}{2}$

$$=\frac{2x+1}{2}=x+\frac{1}{2}=[x].$$

11. (a) 5 3 6 4 7 is a multiple of 11 because the difference of the sum of the digits in the odd places and the sum of the digits in the even places is divisible by 11, because

$$(5+6+7)-(3+4)=11$$

- .. Total number of five-digit multiples of 11
 - = 3! (Permutation of 5, 6 and 7 in the odd places) × 2! (Permutation of 3 and 4 in the even places) $= 6 \times 2 = 12.$

12. (d)
$$\frac{3600}{450} = 8 = 2^3$$
.

- 13. (d) 1024.
- **14.** (b) $7^3 = 343$, when divided by 342, leaves a remainder

 $7^4 = 2401$, when divided by 342, leaves a remainder

 $7^5 = 16807$, when divided by 342, leaves a remainder

 $7^6 = 117649$, when divided by 342, leaves a remainder

And so on.

i.e.,

- .. 784, when divided by 342, will leave a remainder
- **15.** (b) Let the digits be a and b such that the number is 10a + b

$$ab = 14 \text{ and } 10a + b + 45$$

= $10b + a$

i.e.,
$$9a - 9b = -45$$

i.e., $a - b = -5$

$$\therefore (a+b)^2 = (a-b)^2 + 4ab = 81$$

$$\Rightarrow a+b=9$$

$$\Rightarrow a=2, b=7$$

 $\Rightarrow \qquad a = 2, b = 3$ ∴ The number is 27.

16. (d) Divisor = $12 \times Quotient$

Divisor = $5 \times Remainder$

Remainder = 48

 \Rightarrow Divisor = 240,

:. Quotient = 20

Hence,

Dividend = $240 \times 20 + 48 = 4848$.

- **17.** (a) Divisors of 88 are 2, 4, 8, 11, 22, 44 Divisors of 91 are 7 and 13 Divisors of 99 are 3, 9, 11, 33.
- 18. (b) $1 + \frac{1}{10} = \frac{11}{10}$ $1 \times \frac{1}{10} = \frac{1}{10}$ $\therefore \text{ Sum} = \frac{11}{10} = 11 \times \frac{1}{10} = 11 \times \text{Product.}$
- **19.** (c) m(n+0)(p-q) is even $\Rightarrow m$ must be even.
- **20.** (a) A number divisible by 99 must be divisible by 9 as well as 11.
 - :. 114345 is divisible by both.
- **21.** (c) Let the numbers be x, y and z.

$$x + y = 45$$
, $y + z = 55$ and $3x + z = 90$
 $y = 45 - x$,
 $z = 55 - y = 55 - (45 - x) = 10 + x$
 \therefore $3x + 10 + x = 90$
or, $x = 20$
 $y = 45 - 20 = 25$
 $z = 10 + 20 = 30$

.. Third number is 30.

22. (d) Let the two-digit number = xy

$$\therefore \qquad 2(10x + y) = 9(10y + x)$$

$$\Rightarrow \qquad 88y - 11x = 0 \tag{1}$$

Also, $x + y = 9 \tag{2}$

Solving Eqs. (1) and (2), we get

x = 8 and y = 1

So, the number is 81.

23. (d) Let the numbers be 3x and x.

$$3x + x = 36$$

$$\Rightarrow 4x = 36$$

$$\Rightarrow x = 9.$$

24. (*a*) Eliminated numbers are 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 51, ..., 60

So, total eliminated numbers are 20

- .. 40 numbers would remain.
- **25.** (*b*) Required numbers are 509, 519, 529, 539, 549, 559, 569, 579, 589, 590, 591, 592, ..., 1598.
- **26.** (d) Let the total number of swans be x.

The number of swans playing on shore $=\frac{7}{2}\sqrt{x}$ Number of remaining swans =2

$$\therefore \qquad x = \frac{7}{2}\sqrt{x} + 2$$

$$\Rightarrow \qquad (x-2) = \frac{7}{2}\sqrt{x}$$

27. (d)

Thumb	Index	Middle	Ring	Little
1	2	3	4	6
9 ←	8	7	6	
	10	11	12	13
17 ←	16	15	14	
	18	19	20	21
25 ←	24	23	22	
	26	27	28	29
33 ←	32	31	30	

From the above counting pattern, we find that every multiple of 8 comes on index finger and moves towards thumb therefore, the last multiple of 8 which appears on index finger will be $\frac{1994}{8} \Rightarrow 1992$

Hence, 1994 will be on ring finger.

- **28.** (a) Total number of men = 5180 + 4 = 5184
 - \therefore Number of men in first row = $\sqrt{5184}$ = 72.
- 29. (b) Let total number of votes cast be x.

Total number of counted votes = $\frac{2}{3}x$

Votes that candidate got = $\frac{5}{6} \times \frac{2}{3} x = \frac{5}{9} x$

Votes still need to win = $\frac{3}{4}x - \frac{5}{9}x = \frac{7}{36}x$

Remaining uncounted votes = $\frac{1}{3}x$

- \therefore Required part = $\frac{7}{36} \times \frac{3}{1} = \frac{7}{12}$.
- **30.** (d) Required sum = 3000 + 30 = 3030.
- **31.** (d) Let the whole number be x.

$$\therefore \qquad x = \frac{1}{6}(x+20)$$

$$\Rightarrow \qquad 6x = x+20$$

 \Rightarrow 5x = 20

 \Rightarrow x = 4.

- **32.** (a) Let the number be (765x + 42)When this number is divided by 17, then quotient will be (45x + 2) and remainder will be 8
- 33. (c) Production in third year = 6000 Production in seventh year = 7000
 - ... Production in fourth year = 1000

i.e., Production increases @ 250 scooters every year.

.. Production in tenth year

$$= (7000 + 250 \times 3) = 7750.$$

34. (c) Let the number of girls and boys be x and y.

Then,
$$x-1=y$$

and $xy = 272$
 $\Rightarrow x(x-1) = 272$
 $\Rightarrow x^2-x-272=0$
 $\Rightarrow (x+17)(x-16)=0$
 $\Rightarrow x=16.$

35. (a) Let there were x friends, then contribution of one friend = $\frac{96}{}$

If four friends have left, then contribution of each

friend =
$$\frac{96}{x-4}$$

$$\therefore \frac{96}{x-4} - \frac{96}{x} = 4 \Rightarrow x = 12$$

Hence, number of friends who attended the picnic = 12 - 4 = 8.

36. (d) Number of boxes used

$$=\frac{17+13}{24}=\frac{30}{24}=\frac{5}{4}=1\frac{1}{4}$$

Since, the number of boxes used should be a whole number, hence the number of boxes used is 2.

- **37.** (b) There are four prime numbers, *viz.*, 7, 1, 13, 29.
- 38. (b) Let the number be abc; so the six-digit number is abcabc. Now, the sum of alternate digits is:

(i)
$$a + c + b$$

(ii)
$$b + a + c$$

Both being equal, the six-digit number is definitely divisible by 11.

39. (d) Let x, y and z be the digits at the hundredth place, ten's place and unit's place respectively.

$$\therefore \quad x + y + z = 16 \tag{1}$$

$$y = 3z \tag{2}$$

$$z = \frac{1}{4}x\tag{3}$$

$$\therefore \qquad (2) \Rightarrow y = \frac{3}{4}x \tag{4}$$

Using (3) and (4) in (2), we get

$$x + \frac{3}{4}x + \frac{1}{4}x = 16$$

$$\Rightarrow$$
 $x = 8$

$$\therefore \qquad \qquad y = 6, z = 2$$

Hence, the number is 862.

40. (d)
$$\frac{1}{3}K = \frac{1}{4}K + 3$$

 $\Rightarrow K = 36.$

41. (d)
$$\frac{29}{12} + \frac{15}{16} = \frac{116 + 45}{48} = \frac{161}{48} = 3\frac{17}{48}$$

42. (*b*)
$$7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$$

= $2^4 \times 3^2 \times 5^1 \times 7^1$

Thus, the least perfect square which is divisible by 7! should be $(2^4 \times 3^2 \times 5^1 \times 7^1)(5^1 \times 7^1)$ i.e., $5040 \times 35 = 176400$.

- **43.** (a) If the square of any natural number n leaves a remainder of 1 when divided by 24, that natural number must be of the form $6p \pm 1$ (since n must be divisible by neither 2 nor 3) where p is a natural number.
 - \therefore the two digit numbers must be of the form $6p \pm 1$, There are 15 two-digit numbers in the form 6p + 1 and the same number of two digit numbers in the form
 - .. a total of 30 two-digit numbers satisfy the given condition.
- **44.** (d) If we put consecutive negative integers as x = -1, v = -2 and z = -3, then from option (d),

$$(-1+2)(-2+3) = 1 \times 1$$

= 1 (Positive integer).

45. (b) Let the second number be 3x, so that the first number is 6x and the third one is 2x.

$$\therefore 6x + 3x + 2x = 132$$

$$\Rightarrow 11x = 132 \text{ or, } x = 12$$
Second number = $3x = 3 \times 12 = 36$.

46. (d) Let the unit digit be
$$y$$
 and tens digit be x .

The number = 10x + yOn interchanging the digits, the number = 10y + x

$$\therefore 10x + y - 10y - x = 27$$

٠.

$$\Rightarrow$$
 $x-y=3$

(already given in the question)

Now, $y \ne 0$ and the set of digits satisfying the condition are (9, 6), (8, 5), (7, 4), (6, 3), (5, 2), (4, 1)

.. We can not reach on a distinct answer.

- **47.** (b) 2n + 5m = 50
 - \therefore Possible value of *n* and *m* are:

Hence, least difference between 5 and 8 is 3.

- **48.** (c) Divide 7231 by 45, the remainder is 31
 - \therefore Required number = 45 31 = 14.
- **49.** (b) Let a two-digit number = 48

When unit digit is halved = 4

Ten's digit is doubled = 8

∴ Number = 84

Hence, digit in the unit's place is twice the digit in the ten's place.

50. (d) According to question

$$16 \times 4 = 64$$
 $64 \times 1 = 64$ $8 \times 8 = 64$ $7 \times 5 = 35$ $(16+4)=20$ $(64+1)=65$ $(8+8)=16$ $(7+5)=12$

- **51.** (d) ab > 0 because a and b both are positive.
- **52.** (b) n must be divisible by 35.
- **53.** (*d*) Let the number be 253

Which unit place is 2

- .. Digit at 100 place of original number is 2.
- **54.** (a) x and y are natural numbers

We know that for any natural number p,

$$p^n + p$$
 is even

and, $p^n - p$ is even

When, we multiply an even number to any natural number the resultent number is even.

- **55.** (d) (I) Product of 4 positive numbers cannot be zero.
 - (II) a can be odd or even, b can be odd or even, c is even,
 p is odd. We cannot definitely say that a + b +
 c + p is odd.
 - (III) $(b^2 + c^2) (p^2 a^2)$, here $b^2 + c^2$ can be odd or even, $(p^2 a^2)$ can be odd or even.

(IV)
$$a(p-c) + a(c+b) = a[p-c+c+b]$$

Where a is divisible by 5

So, a(p-c) + a(c+b) will be divisible by 5

So, only (IV) is correct.

56. (b) x is a factor of y

$$y = ax$$
 (Suppose)

x is a multiple of z

$$\therefore$$
 $x = bz$ (Suppose)

(a)
$$\frac{xy}{z}$$
 = by, it is an integer

(b)
$$\frac{y+z}{x} = \frac{ax+z}{x}$$
, it is not an integer

(c)
$$\frac{yz}{x} = az$$
, it is an integer

(d)
$$\frac{x+y}{z} = \frac{bz + abz}{z} = (b+ab)$$
, it is an integer.

57. (c) Given that unit digit of $a^2 = 9$

and,
$$(a+1)^2 = 4$$

i.e., unit digit of a must be 3

$$\therefore$$
 Unit digit of $(a+2)^2$

$$\Rightarrow \qquad (3+2)^2 = 5^2$$

i.e., 5.

58. (c) After dividing 10 by 7,

we get remainder n-4

i.e.,
$$7-4=3$$
.

59. (c) We see that $4^2 + 6^2 = 52$ when divided by 25, remainder is 2.

$$4^3 + 6^3 = 280$$
, divide by 25, remainder is 5

$$4^4 + 6^4 = 1552$$
, divide by 25, remainder is 2

When taking m odd, the remainder is 5

When taking m even, the remainder is 2

Hence, remainder = 5.

60. (d) Unit's digit in 102 is 2.

The digit in the unit's place of 102^{51} will be same as in

$$2^{51}$$
 or, $2^3 = 8$. [: $51 = 4.12 + 3$]

- **61.** (c) Divide 9269 by 73, the remainder is 71
 - .. 71 is the required least number.
- **62.** (*a*) Divide 15463 by 107, the remainder is 55, therefore, the number to be added = 107 55 = 52.

63. (a)
$$a+b < c+d$$
 (1)

$$b + c < d + e \tag{2}$$

$$c + d < e + a \tag{3}$$

$$d + e < a + b \tag{4}$$

From (1) and (4),

$$a+b+d+e < c+d+a+b$$

$$\Rightarrow$$
 $e < c$

From (2) and (4),

$$b+c+d+e < d+e+a+b$$

$$\Rightarrow$$
 $c < a$

$$a+b+c+d < c+d+e+a$$

$$\Rightarrow$$
 $b < e$.

64. (b)
$$z^{x+y} = 10, z^{y+z} = 20$$

$$2^{x+z} = 30$$

$$\Rightarrow 2^{z+y} \times 2^{y+z} \times 2^{z+x} = 10 \times 20 \times 30 = 6000$$

$$\Rightarrow 2^{2(x+y+z)} = 6000$$

$$\Rightarrow 2^{2(y+z)} = 400$$

$$\Rightarrow 2^{2(y+z-y-z)} = \frac{6000}{400} = 15$$

$$\Rightarrow 2^{2x} = 5$$

$$\Rightarrow 2^{x} = \sqrt{15}$$

- **65.** (c) Dividing 5000 by 73, the remainder is 36. The number greater than 5000 is obtained by adding to 5000 the difference of divisor and the remainder.
 - .. The required number

$$= 5000 + (73 - 36)$$
$$= 5037.$$

66. (d) Let the numbers be a and b.

Then,
$$a+b = 100 \text{ and}, a-b = 37$$

$$\therefore a^2 - b^2 = (a+b)(a-b)$$

$$= 100 \times 37 = 3700.$$

67. (b)
$$50000 = 79 \times \text{quotient} + 43759$$

$$\therefore$$
 50000 - 43759 = 79 × quotient

or,
$$6241 = 79 \times \text{quotient}$$

$$\therefore$$
 Required number of times = $\frac{6241}{79}$ = 79.

68. (a) On dividing 58701 by 567

Remainder =
$$300 > \frac{1}{2}$$
 (567)

:. Integer nearest to 58701 and divisible by 567

$$=58701 + (567 - 300)$$

$$= 58701 + 267 = 58968.$$

69. (a) The least no. of six figures is 100000.

On dividing 100000 by 357, remainder = 40

:. Least number of six figures which is divisible by

$$357 = 100000 + (357 - 40)$$
$$= 100317$$

 \therefore Required number = 100317 - 5555 = 94762.

70. (a) Let the least value to be given to * be x

Then,
$$x + 4 + 7 = 5 + 3 + 5$$

 $x = 2$

DIFFICULTY LEVEL-2

1. (b) a, b, c and d are four integers such that a + b + c + d = 4m + 1.

Minimum possible value of $a^2 + b^2 + c^2 + d^2$ is when a, b, c and d are as close to each other as possible. Since RHS is not the multiple of 4, as, b, c and d can not be equal to m.

Hence the numbers may be of the form, m, m, m and m + 1.

$$a^2 + b^2 + c^2 + d^2 = 4m^2 + 2m + 1.$$

(c) We have to find the number of three-digit numbers in which the digit at ten's place is greater than the digit at unit's and hundred's places. That is.

Hundred	Ten	Unit
x	v	Z

The following chart shows the number of ways in which it can be formed.

Number of ways in which unit's place, i.e., x can be filled	Digit at ten's place, i.e., y	Number of ways in which unit's place, i.e., y can be filled
1 (i.e., 1)	2	2 (i.e., 0, 1)
2 (i.e., 1, 2)	3	3 (i.e., 0, 1, 2)
2000		
8 (i.e., 1, 2, 3, 8)	9	9(i.e., 0, 1, 2,9)

.. Total no. of possible three-digit numbers

$$= (1 \times 2) + (2 \times 3) + (3 \times 4) + (4 \times 5)$$

+ ... + (7 \times 8) + (8 \times 9) = 240.

3. (b) Product $(n-1)(n-2) \dots 3 \times 2 \times 1$ is not divisible by n if n is 4 or a prime number.

We have to find the number of primes in

$$12 \le n \le 40$$
.

 \therefore No. of positive integers in the range $12 \le n \le 40$ is 7.

4. (d) Take any arbitrary value of
$$x$$
 and y

Let,
$$x = 2$$
 (prime number)

$$y = 50$$
 (composite number)

Going through the options,

(a), (b) and (c) are wrong because
$$y - x$$
, xy and $\frac{x + y}{x}$

are even integers for x = 2 and y = 50

- .. None of the statements are true.
- **5.** (a) The set of prime numbers 3, 5, 7 is the only set which satisfies the given condition.
- **6.** (*d*) If 4^2 is divided by 6, remainder is 4 If 4^3 is divided by 6, remainder is 4

If 496 is divided by 6, remainder is 4.

- 7. (a) After 5^4 , the remainder left when 5^n is divided by 1000 is 125 when n is odd and 625 when n is even. Hence, the remainder is 125.
- **8.** (d) For every integer a, a + (-a) = 0. Therefore, by pairing 1 with -1, 2 with -2, and so on, one can see that in order for the sum to be zero, a list of consecutive integers must contain the same number of positive integers as negative integers, in addition to the integer '0'. Therefore, the list has an odd number of consecutive integers and their average will also be 0.
- **9.** (c) No. of Spades = 1No. of Diamonds = 2No. of Hearts = 4No. of Clubs = 6.
- 10. (d) No. of balls in Red Box = 18No. of balls in Blue Box = 36No. of balls in Green Box = 54.
- 11. (d) The given product contains 5^{106} and 2xwhere. x > 106
 - :. There will be 106 zeroes in the product, because zero will come only by multiplying 2 and 5.
- 12. (c) Such numbers are 56, 67, 78 and 89 Sum of these numbers = 290.
- 13. (b) $20 \times 21 \times 22 \times 23 \times 24 = 5100480$ $25 \times 26 \times 27 \times 28 = 491400$ $29 \times 30 = 870$.
- 14. (d) Sum of the prime numbers between 10 and 40 = 11 +13 + 17 + 19 + 23 + 29 + 31 + 37 = 180.

15. (d)
$$\sum_{n=1}^{100} i^n = (i + i^2 + i^3 + i^4) + (i^5 + i^6 + i^7 + i^8) + \dots + (i^{97} + i^{98} + i^{99} + i^{100})$$
$$= (i - 1 - i + 1) + (i - 1 - i + 1) + \dots$$
$$= 0 + 0 + \dots + 0 = 0.$$

16. (d) Let the five consecutive even numbers 2n, 2n + 2, 2n + 4, 2n + 6, 2n + 8 be respectively equal to a, b, c, d and e, where n is a natural number.

> Then, v, w, x, y and z are equal to 2n + 1, 2n + 3, 2n+5, 2n+7, 2n+9.

$$\Rightarrow N = \frac{2n+2n+2+2n+4+2n+6+2n+8}{2n+1+2n+3+2n+5+2n+7+2n+9}$$
$$= \frac{10n+20}{10n+25} = \frac{n+2}{n+2.5}.$$

17. (b) For the number to be divisible by 3, the sum of the digits of a number should be divisible by 3. Also, for the number to be divisible by 9, the sum of the digits

of a number should be divisible by 9. Hence options (c) and (d) are ruled out as all the given numbers are not divisible by 9 (because the sum of their digits is not divisible by 9). Option (b) is the answer as 3 and 37 are factors of 111 and 111 is the divisor of all the given numbers.

18. (c) The prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, etc.

> The numbers 5, 11, 17, 23, 29 form an increasing sequence for which 29 is the fifth term.

> > =9009009009.

19. (c)
$$10^{12} - 1 = (10^6 - 1)(10^6 + 1)$$
$$= (10^3 - 1)(10^3 + 1)(10^6 + 1)$$
$$= 999 \times 1001 \times 1000001$$
Therefore,
$$= \frac{10^{12} - 1}{111} = \frac{999 \times 1001 \times 1000001}{111}$$
$$= 9 \times 1001 \times 1000001$$

20. (b)
$$N = 4^{61} + 4^{62} + 4^{63} + 4^{64}$$

= $4^{61}(1 + 4 + 16 + 64) = 4^{61} \times 85$
= $4^{61} \times 5 \times 17 = 4^{60} \times 4 \times 5 \times 17$
= $4^{60} \times 2 \times 17 \times 10$

Hence, it is divisible by 10.

21. (*b*)
$$889 = 7 \times 127$$
 $899 = 29 \times 31$ $1147 = 31 \times 437$.

22. (a) 179 is a prime number.

$$203 = 7 \times 29$$

 $143 = 11 \times 13$
 $267 = 3 \times 89$.

- 23. (c) Multiple of 120 + 5, which is divisible by 13.
- **24.** (*d*) Let n be the number.

Then, the result is

$$= \left\lceil \frac{\{(2n+6)10\}}{20} \right\rceil - x = \frac{2n+6-2n}{2} = 3.$$

25. (c) By the rules of divisibility, we know that any number is divisible 8, if the last three digits of the number is also divisible by 8.

> In the given number last three digits are 354. So, the remainder is 2.

26. (b) Let the rational number be
$$\frac{p}{q}$$

$$\therefore \qquad q = p + 3$$

$$\therefore \qquad \frac{p+7}{p+3-2} = 2 \Rightarrow p+7 = 2p+2$$

$$\Rightarrow \qquad p = 5$$

$$\Rightarrow \text{ Given rational number} = \frac{5}{8}.$$

27. (d) Let the two numbers be ab and xy.

$$\therefore (100a + b) \times (100x + y) = (100b + a) + (100y + x)$$

$$\Rightarrow 10000ax + 100ay + 100bx + by$$

$$= 10000by + 100bx + 100ay + ax$$

$$\Rightarrow$$
 9999 $ax = 9999by$

$$\Rightarrow$$
 $ax = by$

Now, check from the options

For option (*d*):
$$a = 1, b = 3, x = 6, y = 2$$

$$\therefore ax = 1 \times 6 = 6 \text{ and by } = 3 \times 2 = 6$$

Hence, ax = by.

28. (b) When 17¹⁵ is divided by 6

$$\frac{(18-1)^{15}}{6}$$
, remainder = 5

:. 1715 can be written as 6K + 5

$$\therefore \frac{11^{6K+5}}{7} = \frac{(7+4)^{6K+5}}{7} = \frac{4^{6K+5}}{7}$$
$$= \frac{16 \times (4^3)^{2K+1}}{7} = \frac{16 \times (63+1)^{2K+1}}{7}$$

Remainder = $2 \times 1 = 2$

$$\frac{13^{11^{15}}}{7} = \frac{(14-1)^{\text{odd}}}{7} \implies \text{Remainder} = 6$$

- ∴ Remainder when 111715 + 131715 is divided by 7 is 1.
- **29.** (d) $n^{13} n$ is divisible by 13 for all $n \in$ whole numbers 52n 1 is divisible by 13 for even n.

The smallest even number is 2.

- \therefore When n = 2, the expression is divisible by 169.
- **30.** (*d*) When a number is divided by 6 possible remainders are 1, 2, 3, 4, 5 (x = 6y + remainder). But only odd numbers are possible as with even numbers the remainder when divided by 2 would be 0.

Of 1, 3, 5 only for 5, division by 3 has remainder 2.

- \therefore Remainder when divided by 6 = 5.
- **31.** (c) Total possible arrangements = $10 \times 9 \times 8$

Now three numbers can be arranged among themselves in = 3! ways = 6 ways.

Given condition is satisfied by only 1 out of 6 ways.

Hence, required number of arrangements.

$$=\frac{10\times9\times8}{6}=120.$$

32. (b) Check choices

$$54 \Rightarrow S = (5+4)^2 = 81$$

 $\Rightarrow S - D = 81 - 54 = 27.$

33. (b) Escaped with 1

Before 3rd watchman, he had $(1 + 2) \times 2 = 6$

Before 2nd watchman, he had $(6+2) \times 2 = 16$

Before 1st watchman, he had $(16 + 2) \times 2 = 36$.

34. (d) Let the no. of gold coins = x + y

$$48 (x - y) = x^2 - y^2$$

$$\Rightarrow$$
 48 $(x-y) = (x-y)(x+y)$

$$\Rightarrow$$
 $x + y = 48$.

35. (d)
$$575 = \frac{n^2 + n}{2} - x$$

$$\Rightarrow 1150 = n^2 + n - 2x$$

For,
$$n = 34$$
,

$$40 = 2x$$

$$x = 20.$$

36. (a)
$$(2^4)^{64} = (17-1)^{64} = 17n + (-1)^{64}$$

Hence, remainder = 1.

37. (*d*) $3 \{4 (7x + 4) + 1\} + 2 = 84x + 53$

Therefore, remainder is 53.

38. (b)
$$7^{6n} - 6^{6n}$$

Put
$$n = 1$$

$$7^6 - 6^6 = (7^3 - 6^3)(7^3 + 6^3)$$

This is a multiple of $7^3 - 6^3 = 127$.

39. (a) Here the least value of $x = \sqrt{49} = -7$

and the least value of $y = \sqrt{16} = -4$

So, the least number here which when divided by -7 and -4 gives a negative quotient in each case is 28

since
$$\frac{28}{-7} = -4$$
 and $\frac{28}{-4} = -7$.

40. (c) Since $64 \div 24 = 1296 \div 16 = 81$ and remainder 0.

So, we need not calculate the remainder in second case as the product will be 0.

41. (a) Since he has to put minimum 120 oranges and maximum 144 oranges, i.e., 25 oranges need to be filled in 128 boxes with same number of oranges in the boxes.

Therefore, total $125 = 25 \times 5$ oranges could be filled in the boxes, i.e., 25 in each of the 5 boxes which would be the minimum and have the same number of oranges.

Hence, the answer is 5.

42. (a) Let the 4-digit number be abcd.

Then,
$$a+b=c+d$$
 (1)

$$b + d = 2(a + c)$$
 (2)

and,
$$a+d=c$$
 (3)

From Eqs. (1) and (3), b = 2d

From Eqs. (1) and (2), 3b = 4c + d

$$\Rightarrow 3(2d) = 4c + d$$

$$\Rightarrow 5d = 4c$$

$$\Rightarrow c = \frac{5}{4}d$$

Now d can be 4 or 8. But if d = 8, then c = 10 is not possible. So, d = 4, which gives c = 5.

43. (d) Let the number be x

Increase in product =
$$53x - 35x = 18x$$

$$\Rightarrow 18x = 540 \Rightarrow x = 30$$

Raised product = $53 \times 30 = 1590$.

44. (d) Let, $y = n^3 - 7n^2 + 11n - 5$

At
$$n = 1, y = 0$$

$$(n-1)(n^2-6n+5) = (n-1)^2(n-5)$$

Now, $(n-1)^2$ is always positive.

Also, for n < 5, the expression gives a negative quantity. Therefore, the least value of n will be 6. Hence, m = 6.

45. (d) Let there be x mints originally in the bowl.

Sita took
$$\frac{1}{3}$$
, but returned 4

So, now the bowl has $\frac{2}{3}x + 4$ mints.

Fatima took $\frac{1}{4}$ of remainder, but returned 3

So, the bowl has
$$\frac{3}{4} \left(\frac{2}{3} x + 4 \right) + 3$$
 mints.

Eswari took half of remainder that is

$$\frac{1}{2} \left[\frac{3}{4} \left(\frac{2}{3} x + 4 \right) + 3 \right]$$
. She returns 2, so the bowl now

has
$$\frac{1}{2} \left[\frac{3}{4} \left(\frac{2}{3} x + 4 \right) + 3 \right] + 2 = 17 \Rightarrow x = 48.$$

46. (a) The product of 44 and 11 is 484

Here,
$$3x^3 + 4x^2 + 1x^1 + 4 \times x^0 = 484$$

$$\Rightarrow 3x^3 + 4x^2 + x = 480$$

This equation is satisfied only when x = 5.

In decimal system, the number 3111 can be written as 406.

47. (a) Let the highest number be n.

Then,
$$\frac{n(n+1)}{2} - x = 35\frac{7}{77} = \frac{602}{17}$$
,

where x is the number erased.

Hence, n = 69 and x = 7 satisfy the above conditions.

48. (c) 99 × $D = a_1 a_2$. Hence, $D = \frac{a_1 a_2}{99}$. So, D must be multiplied by 198 as 198 is a multiple of 99.

49. (c)
$$\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \frac{1}{19.21}$$

$$= \frac{1}{2} \left(1 - \frac{1}{3} \right) + \frac{1}{2} \left(\frac{1}{3} - \frac{1}{5} \right) + \frac{1}{2} \left(\frac{1}{5} - \frac{1}{7} \right) + \dots + \frac{1}{2} \left(\frac{1}{19} - \frac{1}{21} \right)$$

$$= \frac{1}{2} - \frac{1}{42} = \frac{(21 - 1)}{42} = \frac{20}{42} = \frac{10}{21} = \frac{10}{21}.$$

50. (b) Use any 7 consecutive numbers to check the answers.

$$n = \frac{(1+2+3+4+5)}{5} = 3$$
, average of 7 integers is

$$k = \frac{(1+2+3+4+5)}{7} = 4$$
. So $k = n+1$.

51. (c) $N = 1421 \times 1423 \times 1425$. When divided by 12, it shall

look like
$$\frac{[(1416+5)\times(1416+7)\times(1416+9)]}{12}$$

Now the remainder will be governed by the term $5 \times 7 \times 9$, which when divided by 12 leaves the remainder 3.

52. (d) Let r be the remainder. Then, 34041 - r and 32506 - r are perfectly divisible by n. Hence, their difference should also be divisible by the same.

$$(34041 - r) - (32506 - r) = 1535$$

which is divisible by only 307.

- **53.** (*d*) Any triplet of the form (-n, 0, n) satisfies the given condition, e.g., (-2, 0, 2).
- **54.** (d) N can be written either $(54+1)^3 + (18-1)^3 72^3$ or $(51+4)^3 + 17^3 (68+4)^3$.

The first form is divisible by 3, and the second by 17.

55. (a)
$$36 = 2 \times 2 \times 3 \times 3$$

Hence, divisors of

$$36 = 1, 2, 3, 4, 6, 9, 12, 18, 36, i.e., 9 in all.$$

 $76 = 2 \times 2 \times 19$

Hence, divisors of

$$76 = 1, 2, 4, 19, 38, 76, i.e., 6 in all.$$

 $82 = 2 \times 41$

Hence, divisors of

$$82 = 1, 2, 41, 82, i.e., 4 in all$$

$$191 = 1 \times 191$$

Hence, divisors of

$$191 = 1, 191, i.e., 2 in all.$$

56. (c)
$$58 = 2 \times 29$$

Hence, divisors of

$$58 = 1, 2, 29, 58, i.e., 4 in all$$

$$88 = 2 \times 2 \times 2 \times 11$$

Hence, divisors of

$$88 = 1, 2, 4, 8, 11, 22, 44, 88, i.e., 8 in all$$

$$137 = 1 \times 137$$

Hence, divisors of

$$137 = 1, 137, i.e., 2 in all$$

Hence, divisors of

$$184 = 1, 2, 4, 8, 23, 46, 92, 184, i.e., 8 in all.$$

57. (d) Total number of numbers, which end with 4 = 9

Total numbers from 1 to 90 = 90

Therefore, required percentage = $\frac{9}{90}$ = 10%

- 58. (b) There are 99 10 + 1 = 90 two digit numbers in all. We can have 0–9 digits at unit's place. For 0 in unit's place we can have 1–9 digits at tens place, i.e., we have 9 choices. For 1 in unit's place we have 8 choices and so on. Hence, total numbers satisfying given condition = 9 + 8 + . . . + 1 = 45.
- 59. (b) Squaring both sides of the given equation

$$x^2 = \frac{5}{2} + \sqrt{\frac{13}{4} + 6x}$$

$$\Rightarrow \qquad x^2 - \frac{5}{2} = \sqrt{\frac{13}{4} + 6x}$$

$$\Rightarrow \qquad \left(x^2 - \frac{5}{2}\right)^2 = \frac{13}{4} + 6x$$

(Squaring both sides again)

Going by the choices, only $x = \frac{3 + \sqrt{5}}{2}$ satisfies the equation above.

60. (b) Assume the number of rows be n.

Then, $n \times n = 19044$ or. n = 138.

61. (a) $n = 0 \Rightarrow 3^{5^0} + 1 = 4, n = 1 \Rightarrow 3^{5^1} + 1 = 244$

The remainders can be seen to be R = 4, when n = 0, i.e., even and R = 6 when n = 1, i.e., odd. Therefore, I and III are true.

62. (d) 2x - 1 is an odd number.

 \Rightarrow x can be either odd or even.

3y - 1 is an even number.

 \Rightarrow v is an odd number.

I. In $x^2 - 2y + 2$, 2y is even, but x^2 can be either odd or even, so we can not say whether $x^2 - 2y + 2$ is odd or even.

II. In $y^2 - 2x + 3$, y^2 is odd, 2x is even and 3 is odd $\Rightarrow y^2 - 2x + 3$ is even.

III. In $4x^2 - y - 1$, $4x^2$ is even, y is odd and 1 is odd $\Rightarrow 4x^2 - y - 1$ is even.

63. (c) For any integer n, $n^3 - n$ is divisible by 3, $n^5 - n$ is divisible by 5, $n^{11} - n$ is divisible by 11 but $n^4 - n$ is not necessarily divisible by 4. Thus, statement III is true.

64. (*b*) All the options satisfy the first condition. So, testing the options for second condition, only option (*b*), i.e., 24 satisfies the second condition, i.e., 24 + 18 = 42.

65. (a) The given expression = $2^{\frac{1}{2} \times \frac{2}{3} \times ... \frac{n}{n+1}} = (2)^{\frac{1}{n+1}}$

66. (d) The number is neither divisible by 3 nor by 11.

67. (*d*) *p* may or may not be divisible by 24. But, *p* is never divisible by 22 because

$$23^{n} + 1 = (22 + 1)^{n} + 1 = 22k + 2.$$

68. (a) 4 a 3 $\frac{984}{13b7}$

As 13 b 7 is divisible by 11

$$\therefore \qquad a=1 \text{ and, } b=9$$

$$\therefore$$
 $a+b=1+9=10.$

The difference between a three-digit number and its reverse is always a multiple of 99. The only multiple of 99 and less than 1000 that ends in 4 is 594. Thus, the remaining two-digits in that order are 9 and 5.

70. (a) In base 4, the 20th number will be

$$=4^{2}(1)+4^{1}(1)+4^{0}(0)=110.$$

71. (b) Let the two-digit numbers = xy

The square of $xy = (10x + y)^2$

The square of the number formed by reversing the digits of $xy = (10y + x)^2$

$$(10x + y)^2 - (10y + x)^2 = 99(x^2 - y^2)$$

= 99(x - y)(x + y)

Thus, it will always be divisible by 9, the sum of the digits as well as the difference of the digits. But, it is not divisible by their product *xy*.

72. (b) The value of the three-digit number tu 1

$$= 100t + 10u + 1$$
.

73. (d) Factors of 6 are 1, 2, 3. Now 1 + 2 + 3 = 6.

74. (c) By hit and trial, we see that n = 10 and n = 16 satisfy the conditions.

75. (a) Given, 2x + p = 2y, p + y = xand, x + y = z $\Rightarrow x + y + z = 2z = 2(x + y)$ So, p = x - y = 2(y - x)

The condition is satisfied only when x = y

Then, p = 0

76. (a) We know that for any rational number,

$$\frac{1}{x+1} < 1$$

and,
$$\frac{x}{x+1} < 1$$

Hence, (a) is the correct answer.

- 77. (a) $A_0 = 1994$, which is not divisible by 10. Hence, $f(A_0) = A_0 + 1 = 1995$. Since, $A_{m+1} = f(A_m) \Rightarrow A_1 = f(A_0) = 1995$, similarly $A_2 = 1996$, $A_3 = 1997$, $A_4 = 1998$, $A_5 = 1999$, $A_6 = 2000$, which is divisible by 10. Hence, $f(A_6) = \frac{2000}{10} = 200 = A_7$ similarly $A_8 = 20$ and $A_9 = 2$.
- **78.** (*d*) Four digits of the number 29138576 are omitted so that result is large.
 - .. Omitted digits are 1, 2, 3, 5

Hence, the largest omitted digit is 5.

79. (a) $A \le B$ $A \le D \le B$, C is the greatest integer.

- ∴ With the help of 1st statement E + B < A + D, the result can be obtained.
- 80. (c) $x^2 + 4xy + 6y^2 4y + 4$ $= (x)^2 + 22x2y + (2y)^2 + (\sqrt{2}y)^2$ $-2\sqrt{2}y\sqrt{2} + (\sqrt{2})^2 + 2$ $= (x + 2y)^2 + (\sqrt{2}y - \sqrt{2})^2 + 2$

Now, on putting the value of x = -2 and y = 1, we get the minimum value of expression.

- **81.** (a) Numbers can be 1112, 1113, 1115, 1117.
- **82.** (a) The metre skips all the numbers in which there is a 5. From 0000 to 0099, 5 occurs 10 times in the tens place and 10 times in the units place, (which includes the number 55).
 - ∴ It occurs in a total of 10 + 10 1 numbers, i.e., 19 numbers. Similarly, from 0100 to 0199, from 0200 to 0299, 0300 to 0399 from 0400 to 0499, 0600 to 0699, ... 0900 to 0999. It occurs in 8 (19) numbers. From 0500 to 0599, there are 100 numbers. The micromanometer reading could change from 0499 to 0600.

Total number of numbers skipped from 0000 to 0999

$$= 19(9) + 100 = 271$$

Similarly, from 1000 to 1999 and from 2000 to 2999, 271 + 271 numbers are skipped. Finally, 3005 and 3015 are also skipped.

- \therefore Total number of skips = 271 (3) + 2 = 815
- \therefore Actual pressure = 3016 815 = 2201.
- **83.** (d) I has 741 ones, II has 534 ones and III has 123 ones. Sum of the digits of each of I, II, and III is divisible by 3.
 - I, II, III are all divisible by 3 and hence not prime. Choice (d) follows, since only this supports that all these three are not prime.

84. (a) 6+7+3+5+K+1=22+K

The least number greater than 22 and divisible by 9 is 27.

$$\therefore \qquad 27 = 22 + K$$

$$\Rightarrow \qquad K = 5.$$

85. (a) We know that,

 $a^n - b^n$ is divisible by (a + b) and (a - b) if n is even. Therefore, $7^{74} - 5^{74}$ is divisible by 12 and 2, and as a result by 4.

86. (b) We know that number of factors in a perfect square is always even. So factors in N^2 is an even number.

Now, factors of
$$N^2 = 34$$
 – an even number = even number

So, N is a perfect square too.

Now to find out the actual values of N, we consider that if the factors of N are of form $a^x \times b^y$ then factors of N^2 will be $a^{2x} \times b^{2y}$

So, sum of factors will be (x + 1)(y + 1) + (2x + 1)(2y + 1) = 34. Only value which satisfies this equation is x = 2, y = 2.

(x, y are obviously positive integers)

For N < 150, we have only N = 36 and N = 100 (check for perfect squares)

So, the answer is 2.

87. (d) Total number of digits when 2¹ and 5¹ are written side by side

$$(25) = (1+1)$$

Total numbers of digits when 2² and 5² are written one after another

$$(425) = (2+1)$$

Total number of digits when 2³ and 5³ are written one after another

$$(8125) = (3 + 1)$$
 and so on

Therefore, the total number of digits when 2^{2004} and 5^{2004} are written one after another

$$2004 + 1 = 2005$$

- **88.** (*d*) We have to find the number of prime numbers from 101 to 200, which is 21.
- **89.** (b) The numbers are of the from 8n + 6

Therefore, sum of all such numbers is

$$\sum_{n=1}^{11} (8n+6) = 6(11) + 8\left(\frac{11}{2}\right)(12) = 594.$$

90. (a) We have

$$\frac{2^{1040}}{131} = \frac{(2^8)^{130}}{131} = \frac{(256)^{130}}{131}$$

The remainder is 1.

Shortcut: Whenever a^n is divided by (n + 1), where n + 1 is prime and relatively prime to a, the remainder is always 1.

91. (d) Clearly Statements I and II are wrong, since when p is prime number so it does not have any factor. Therefore, x = 1.2....(p - I) is not divisible by p or any prime number greater than p. Statement III is wrong, as 1.2.3.4.5.6 is divisible by 5.

But Statement IV is correct.

92. (c) Let x, y and z be the hundredth, tens and unit digits of the original number.

We are given,

$$(100z + 10y + x) - (100x + 10y + z) = 594$$

$$\Rightarrow 99(z - x) = 594 \Rightarrow (z - x) = 6$$

So, the possible values of (x, z) are (1, 7), (2, 8) and (3, 9)

As the ten digits can have any values from 0, 1, 2, ..., 9, \therefore Minimum values for their sum = x + y + z = 1 + 0 + 7 = 8.

93. (a) We have

$$22^{3} + 23^{3} + 24^{3} + 87^{3} + 88^{33}$$

$$= (22^{3} + 88^{3}) + (23^{3} + 87^{3}) + (24^{3} + 86^{3}) + (54^{3} + 56^{3}) + 55^{3}$$

Now, all the terms except 553 is divisible by 110

[Shortcut: $a^n + b^n$ is divisible by (a + b) when n is an odd number.]

Therefore, the required remainder when the given expression is divided by 110 is 55.

94. (a) Let $p + q = \alpha$ and $r + s = \beta$

Given: p + q + r + s = 2

So, $\alpha + \beta = 2$ and $\alpha \beta > 0$

Since $AM \ge GM$

$$\Rightarrow \frac{\alpha + \beta}{2} \ge \sqrt{\alpha \beta}$$
$$\Rightarrow 1 \ge \sqrt{\alpha \beta}$$

On squaring both sides, we get

$$1 \ge \sqrt{\alpha \beta}$$

$$\Rightarrow \alpha \beta = m \le 1$$

$$\therefore 0 \le m \le 1$$

- **95.** (*d*) Any four digit number in which the first two digits and last two digits are equal will be of the form $11 \times (100 + b)$ i.e., it will be a multiple of 11 like 1122, 3366, 2244, ... Now, let the required, number be *aabb*. Since, *aabb* is a perfect square, the only pairs, of values *a* and *b*, that satisfy the above mentioned condition is a = 7 and b = 4. Hence, 7744 is a perfect square.
- **96.** (c) Suppose the cheque for Shailaja is of ₹X and Y paise It is given that

$$3 \times (100X + Y) = (100Y + X) - 50$$
$$300X + 3Y = 100Y + X - 50$$
$$299X = 97Y - 50$$
$$\therefore Y = \frac{299X + 50}{97}.$$

Now, the value of Y should be an integer. For X = 18, Y is an integer 56. Hence, option (c) is the correct choice

97. (a) Let the last number of the series be n and number erased be x, then

$$\frac{\frac{n(n+1)}{2} - x}{n-1} = \frac{602}{17}$$

$$\Rightarrow \frac{n(n-1) - 2x}{2(n-1)} = \frac{602}{17}$$

From the options, we find that x = 7, n is an integer i.e., 69.

98. (d) Let x mints were originally in the bowl.

Number of mints before Eswari took = $\left(x - \frac{x}{2}\right) + 2 = 17$ $\Rightarrow x = 30$

Number of mint before Fatima took = $\left(x - \frac{x}{4}\right) + 3 = 30$ $\Rightarrow x = 36$

Number of mint before Sita took = $\left(x - \frac{x}{3}\right) + 4 = 36$ $\Rightarrow x = 48$

Hence, there were 48 mints originally.

99. (*d*) The frog can move either clockwise or anticlockwise in order to reach point *E*. In any case number of jumps required is 4.

For, n = 4, $a_{2n-1} = a_{8-1} = 7$.

100. (d) $N = 55^3 + 17^3 - 72^3 = (54+1)^3 + (18-1)^3 - 72^3$ = $(51+4)^3 + 17^3 - (68+4)^3$

These two different forms of given expressions are divisible by 3 and 17 both.

101. (d) Let the common remainder be x.

Then, the numbers (34041 - x) and (32506 - x) would be completely divisible by n. Hence, the difference of the numbers i.e., (34041 - x) and (32506 - x) will also be divisible by n or (34041 - x - 32506 + x) = 1535 will also be divisible by n.

Now, using options, we find that 1535 is divisible by 307.

102. (c) $D = 0.a_1 a_2$ $100D = a_1 a_2 \cdot \overline{a_1 a_2}$ $\therefore 99D = a_1 a_2 \implies D = \frac{a_1 a_2}{99}$

.. $99D = a_1 a_2 \implies D = \frac{1}{99}$. Required number should be the multiple of 99.

Hence, 198 is the required number.

103. (a) We have,

$$x = 1 \times 2 \times 3 \times 4 = 24$$

(We have taken the four consecutive integers to be 1, 2, 3 and 4)

 \therefore n=1+24=25, we find that n is odd and a perfect square. This is true for any set of four consecutive positive integers.

104. (b) According to the remainder theorem, the following expression will have the same remainder.

$$\frac{(7)^{84}}{342}$$
 or $\frac{(7^3)^{28}}{342}$ or $\frac{(343)^{28}}{(342)}$ \Rightarrow Remainder = 1.

105. (a) $(ab)^2 = ccb$. The greatest possible value of 'ab' to be 31. Since $(31)^2 = 961$ and ccb > 300, 300 < ccb < 961, so 18 < ab < 31. So, the possible value of ab that satisfies $(ab)^2 = ccb$ is 21. So, $(21)^2 = 441$

$$\therefore a = 2, b = 1 \text{ and } c = 4.$$

106. (a) We know that any number is divisible by 8, if the number formed by the last three digits is divisible by 8. And the same rule will be applicable to find the remainder.

> Now, the last three digits in the hundred digit number of the form 1234567891011121314...is 545. Therefore, the remainder when 545 is divided by 8 is 1.

107. (a) Dividend = Divisor \times Quotient + Remainder = 899Q + 63

Dividend =
$$29 \times 31Q + 29 \times 2 + 5 = 29(31Q + 2) + 5$$
.

- **108.** (b) Unit digit in $(2)^4 = 6$, $(2)^8 = 6$, $(2)^{16} = 6$. Hence, 2 has a cyclicity of four. Hence, unit digit in $(2)^{48} = 6$ Therefore, unit digit in $(2)^{51} = (2)^{48} \times (2)^3 = 6 \times 8 \implies 8$
- **109.** (c) If n^3 is odd, then n and n^2 will be odds. It can be checked for any odd integer. If n = 3, $n^2 = 9$, $n^3 = 27$.
- **110.** (b) $7^{3^2} = 7^9$ and $(7^3)^2 = 7^6$. Hence, clearly $7^9 > 7^6$.
- 111. (c) Let m = 10 and n = 5, then (m n) = (10 5) = 5, which is divisible by 5 $(m^2 n^2) = (100 25) = 75$, which is divisible by 5
- **112.** (d) (P, Q) may be any of the following: (1, 64), (2, 32), (4, 16), (8, 8). Hence, P + Q cannot be 35

(m+n) = (10+5) = 15, which is divisible by 10.

113. (c) $\frac{(16n^2 + 7n + 6)}{n} = 16n + 7 + \left(\frac{6}{n}\right).$

Since *n* is an integer, hence for the entire expression to become an integer $\left(\frac{6}{n}\right)$ should be an integer. And

 $\left(\frac{6}{n}\right)$ can be integer for n = 1, 2, 3, 6. Hence, n will have four values.

114. (c) Let us solve the question for any two odd numbers greater then 1 i.e., 3 and 5 then

$$n(n^2 - 1)$$
 for $n = 3 = 3 \times 8 = 24$
 $n(n^2 - 1)$ for $n = 5 = 5 \times 24 = 120$

From the options, we find that both the numbers are divisible by 24.

115. (*b*) The number 77958*A*96*B* is divisible by 8 if 96*B* divisible by 8. And 96*B* is divisible by 8 if *B* is either 0 or 8

Now to make the same number divisible by 9, sum of all the digits should be divisible by 9. Hence, (55 + A + B) is divisible by 9 if (A + B) is either 0 or 8 \Rightarrow either A = 0 and B = 8 or A = 8 and B = 0

Since, the number is divisible by both A and B. Hence, A and B may take either values i.e., 8 or 0

116. (b) Let the three even numbers be (x-2), x, (x+2) Then, we are given

$$3(x-2)-2(x+2) = 2$$

$$\Rightarrow 3x-6-2x-4 = 2$$

$$\Rightarrow x = 12$$

- \therefore The third number = (12 + 2) = 14.
- 117. (b) Let us solve the question for some prime numbers greater than 6 i.e., 7, 11, 13 and 7. If these numbers are divided by 6, the remainder is always either 1 or 5.

118. (a)
$$\frac{55^3 + 45^3}{55^2 - 55 \times 45 + 45^2}$$
$$= \frac{(55 + 45)(55^2 - 55 \times 45 + 45^2)}{(55^2 - 55 \times 45 + 45^2)}$$
$$= (55 + 45)$$
$$= 100.$$

(a) There are 50 odd numbers less than 100 which are not divisible by 2.Out of these 50, 17 numbers are divisible by 3

Out of remaining, 7 numbers are divisible by 5 Hence, numbers which are not divisible by 2, 3, and 5 = (50-17-7) = 26

120. (c) The last two digits of the number in the expansion is $(7)^4 = 01(2401)$ and if the power of 7 is any multiple of 4, the last two digits will not change

i.e.,
$$(7)^4 = 2401 \Rightarrow 01$$

$$(7)^8 = 5764801 \Rightarrow 01$$

Since, power of 7, i.e., 2008 is a multiple of 4, the last two digits of $(7)^{2008}$ will be 01.

121. (c) Let the total number of sweets be (25x + 8)

Then (25x + 8) - 22 is divisible by 28

 \Leftrightarrow (25x - 14) is divisible by 28 \Leftrightarrow 28x - (3x + 14) is divisible by 28

 \Leftrightarrow (3x + 14) is divisible by 28 \Leftrightarrow x = 14

 \therefore Total number of sweets = $(25 \times 14 + 8) = 358$

122. (a) Considering Statement I:

x	y	x + y	x - y
5	2	7	3

Since this the only possible solution, Statement I is sufficient.

Considering Statement II:

x	y	x + y	x-y
5	2	8	2
6	4	10	2

Since no unique solution is possible, Statement II is not sufficient.

123. (*b*) Between 100 and 199, there will be 19 numbers which contain '2'. They are as follows:

100, 112, 120–129 (10 numbers), 132, 142, 152, 162, 172, 182, 192

Similar would be the case for 300 - 339, 400 - 499, 500 - 599, 600 - 699

For 200-299, all 100 numbers will have 2

 \therefore Total number of numbers containing '2' = $19 \times 6 + 100 = 114 + 100 = 214$.

124. (c) As p, q, r are non-negative integers, the maximum will be achieved when the value of each variable is close to each other.

i.e., p, q are 3, 3, 4 (not necessarily in the same order). Hence the value of

 $pq + qr + pr + pqr = 3 \times 3 + 3 \times 4 + 3 \times 4 + 3 \times 3 \times 4$ = 9 + 12 + 12 + 36 = 69.