
“He who hasn’t tasted bitter things hasn’t earned sweet things”
-  Gottfried Wilhelm Leibniz

Chapter

8 Differentials and Partial Derivatives

8.1 Introduction

Motivation
 In real life we have to deal with many functions. Many times we have to estimate the change in 
the function due to change in the independent variable. Here are some real life situations.

 • Suppose that a thin circular metal plate is heated uniformly. Then it’s radius increases and 
hence its area also increases. Suppose we can measure the approximate increase in the 
radius. How can we estimate the increase in the area of a circular plate?

 •	 Suppose	water	is	getting	filled	in	water	tank	that	is	in	the	shape	of	an	inverted	right	circular	
cone. In this process the height of the water level changes, the radius of the water level 
changes	 and	 the	 volume	 of	 the	water	 in	 the	 tank	 changes	 as	 time	 changes.	 In	 a	 small	
interval of time, if we can measure the change in the height, change in the radius, how can 
we estimate the change in the volume of the water in the interval?

 • A satellite is launched into the space from a launch pad. A camera is being set up, to 
observe the launch, at a safe distance from the launch pad. As the satellite lifts up, camera’s 
angle	of	elevation	changes.	If	we	know	the	two	consecutive	angles	of	elevation,	within	a	
small interval of time, how can we estimate the distance traveled by the satellite during that 
short interval of time?

 To address these type of questions, we shall use the ideas of derivatives and partial derivatives 
to	find	linear	approximations	and	differentials	of	the	functions	involved.

 In the earlier chapters we have learnt the concept of derivative of a real-
valued function of a single real variable. We have also learnt its applications in 
finding	extremum	of	a	function	on	its	domain,	and	sketching	the	graph	of	a	
function. In this chapter, we shall see one more application of the derivative in 
estimating	values	of	a	function	at	some	point.	We	know	that	linear	functions,	
y mx b= + , are easy to	 work	 with;	 whereas	 nonlinear	 functions	 are	
computationally	a	bit	tedious	to	work	with. Godfried W Leibniz

(1646 - 1716)
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Differentials and Partial Derivatives59

 For instance, if we have two functions, say f x x g x x( ) , ( )= + = −1 2 7  and suppose that we 

want to evaluate these functions at say x = 3 25. . Which one will be easy to evaluate? Obviously, 
g( . )3 25  will be easier to calculate than f ( . )3 25 . If we are ready to accept some error in calculating 
f ( . )3 25 ,	 then	we	 can	 find	 a	 linear	 function	 that	 approximates	 f  near x = 3  and use this linear 

function to obtain an approximate value of f ( . )3 25 .We	 know	 that	 the	 graph	 of	 a	 function	 is	 a	
nonvertical	 line	 if	 and	only	 if	 it	 is	 a	 linear	 function.	Out	of	 infinitely	many	straight	 lines	passing	
through any given point on the graph of the function, only tangent line gives a good approximation to 
the function, because the graph of f looks	 approximately	 a	 straight	 line	 on	 the	 vicinity  
of the point ( , )3 2 .

 Fig. 8.1 Fig. 8.2  Tangent Line
	 From	the	figures	above	it	 is	clear	 that	among	these	straight	 lines,	only	 the	 tangent	 line	 to	 the	
graph of f x( )  at x = 3   gives a good approximation near the point x = 3 . Basically we are “linearizing” 
the given function at a selected point ( , )3 2 . This idea helps us in estimating the change in the function 
value near the chosen point through the change in the input. We shall use “derivative” to introduce 
the concept of “differential” which approximates the change in the function and will also be useful 
in calculating approximate values of a function near a chosen point. The derivative measures the 
instantaneous rate of change where as the differential approximates the change in the function values. 
Also,	differentials	are	useful	later	in	solving	differential	equations	and	evaluating	definite	integrals	by	
the substitution method.

 After learning differentials, we will focus on real valued functions of several variables. For 
functions of several variables, we shall introduce “partial derivatives”, a generalization of the concept 
of “derivative” of real-valued function of one variable. Why should we consider functions of more 
than one variable? Let us consider a simple situation that will explain the need. Suppose that a company 
is	producing	say	pens	and	notebooks.	This	company	is	interested	in	maximizing	its	profit;	then	it	has	
to	find	out	the	production	level	that	will	give	maximum	profit.	To	determine	this,	it	has	to	analyze	its	
revenue,	cost,	and	profit	functions,	which	are,	in	this	case,	functions	of	two	variables	(pen,	notebook).	
Similarly, if we want to consider the volume of a box, then it will be a function of three variables namely 
length, width, and height. Also, the economy of a country depends on so many sectors and hence it 
depends on many variables. Thus it is necessary and important to consider functions involving more 
than one variable and develop the “concept of derivative” for functions of more than one variable. We 
shall also develop the concept of “differential” for functions of two and three variables and consider 
some of its applications. In this chapter, we shall consider only real-valued functions.
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60XII - Mathematics

Learning Objectives

Upon completion of this chapter,  students will be able to
 • calculate the linear approximation of a function of one variable at a point
 • approximate the value of a function using its linear approximation without calculators
 • calculate the differential of a function
 • apply linear approximation, differential in problems from real life situations
 •	 find	partial	derivatives	of	a	function	of	more	than	one	variable
 • calculate the linear approximation of a function of two or more variables
 • determine if a given function of several variables is homogeneous or not
 • apply Euler’s theorem for homogeneous functions.

8.2 Linear Approximation and Differentials

8.2.1 Linear Approximation
 In this section, we introduce linear approximation of a function at a point. Using the linear 
approximation, we shall estimate the function value near a chosen point. Then we shall introduce 
differential of a real-valued function of one variable, which is also useful in applications.

 Let f a b: ( , ) →   be a differentiable function and x a b∈ ( , ) . Since f  is differentiable at x , we 
have

   lim
( ) ( )

∆ →

+ ∆ −
∆x

f x x f x
x0

  =  ′f x( )  ... (1)

 If Dx  is small, then by (1) we have
   f x x f x( ) ( )+ ∆ −  »  ′ ∆f x x( ) ;	 ...	(2)

which is equivalent to
   f x x( )+ ∆  »  f x f x x( ) ( )+ ′ ∆ , ... (3)

where »  means “approximately” equal. Also, observe that as the independent variable changes from 
x  to x x+ ∆ , the function value changes from f x( )  to f x x( )+ ∆ . Hence if Dx  is small and the 
change in the output is denoted by Df  or Dy , then (2) can be rewritten as

   change in the output =  ∆ = ∆ = + ∆ − ≈ ′ ∆y f f x x f x f x x( ) ( ) ( ) .

 Note that (3) helps in approximating the value of f x x( )+ ∆  using f x( )  and ′ ∆f x x( ) . Also, for 
a	fixed	x y x f x f x x x x0 0 0 0, ( ) ( ) ( )( ),= + ′ − ∈ , gives the tangent line for the graph of f  at ( , ( ))x f x0 0  
which gives a good approximation to the function f  near x0 .	This	leads	us	to	define

Definition 8.1 (Linear Approximation)

 Let f a b: ( , ) →   be a differentiable function and x a b0 ∈ ( , ) .	We	define	the	linear	approximation	
L  of f  at x0  by
   L x( )  =  f x f x x x x a b( ) ( )( ), ( , )0 0 0+ ′ − ∀ ∈   ... (4)
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Differentials and Partial Derivatives61

 Note that by (3) and (4) we see that
 f x x( )+ ∆  »  f x f x x( ) ( )+ ′ ∆ ,

which is useful in approximating the value of 
f x x( )+ ∆ .

 Note that linear approximation for f  at 

x0  gives a good approximation to f x( )  if x  

is close to x0 , because

   Error = f x L x f x f x f x x x( ) ( ) ( ) ( ) ( )( )− = − − ′ −0 0 0  ... (5)

approaches zero as x  approaches to x0  by continuity of f  at x0 . Also, if f x mx c( ) = + , then its 
linear approximation is L x mx c m x x mx c f x( ) ( ) ( ) ( )= + + − = + =0 0 , for any point x a b∈ ( , ) . That is, 
the linear approximation, in this case, is the original function itself (is it not surprising?).

Example 8.1
 Find the linear approximation for f x x x( ) ,= + ≥ −1 1, at x0 3= . Use the linear approximation 
to estimate f ( . )3 2 .

Solution

	 We	 know	 from	 (4),	 that	 L x f x f x x x( ) ( ) ( )( )= + ′ −0 0 0 . We have x x0 3 0 2= =, .∆  and hence 

f ( )3 1 3 2= + = . Also,

   ′f x( )  =  1

2 1+ x
 and hence ′ =

+
=f ( )3

1

2 1 3

1

4
.

   Thus, L x( )  =  2 1

4
3

4

5

4
+ − = +( )x x  gives the required linear approximation.

   Now,   f ( . )3 2  =  4 2 3 2
3 2

4

5

4
2 050. ( . )

.
.≈ = + =L .

 Actually, if we use a calculator to calculate we get 4 2 2 04939. .= .

8.2.2 Errors: Absolute Error, Relative Error, and Percentage Error
 When we are approximating a value, there occurs an error. In this section, we consider the error, 
which occurs by linear approximation, given by (4). We shall consider different types of errors. 
Taking	 h x x= − 0 ,  we get x x h= +0 , then (5) becomes

   E h( )  =  f x h f x f x h( ) ( ) ( )0 0 0+ − − ′ . ... (6)

 Note that E( )0 0=  and as we have already observed lim ( )
h
E h

→
=

0
0  follows from the continuity of 

f  at x0 . In addition, if f  is differentiable, then from (1), it follows that

Fig. 8.3
Linear Approximation by Tangent Line

}
f x x( )0 + ∆

f x( )0

∆y

Tangent line
x f x f x x x= + ′ −( ) ( )( )0 0 0

y f x= ( )

( , ( ))x f x0 0

x0 x x0 + ∆O
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   lim
( )

h

E h
h→0

 =  lim ( ) ( )
( )

h

f x h f x
h

f x
→

+ −
− ′ =

0
0 .

 Thus when f  is differentiable at x0 , then the above equation shows that E h( )  actually approaches 
zero faster than h 	approaching	zero.	Now,	we	define

Definition 8.2

 Suppose that certain quantity is to be determined. It’s exact value is called the actual value. 
Some times we obtain its approximate value through some approximation process. In this case, 
we	define

Absolute error = Actual value − Approximate value.

	 So	(6)	gives	the	absolute	error	that	occurs	by	a	linear	approximation.	Let	us	look	at	an	example	
illustrating the use of linear approximation.

Example 8.2
	 Use	linear	approximation	to	find	an	approximate	value	of	 9 2.  without using a calculator.
Solution

	 We	need	to	find	an	approximate	value	of	 9 2.  using linear approximation. Now by (3), we have 

f x x f x f x x( ) ( ) ( )0 0 0+ ∆ ≈ + ′ ∆ . To do this, we have to identify an appropriate function f , a point x0  

and Dx . Our choice should be such that the right side of the above approximate equality, should be 

computable without the help of a calculator. So, we choose f x x x( ) ,= =0 9  and ∆ =x 0 2. . Then, 

′ =f x( )0

1

2 9
 and hence

   9 2.  »  f f( ) ( )( . )
.

.9 9 0 2 3
0 2

6
3 03333+ ′ = + = .

	 Now	if	we	use	a	calculator,	just	to	compare,	we	find	 9 2 3 03315. .= . We see that our approximation 

is accurate to three decimal places and the error is 3 03315 3 03333 0 00018. . .− = − . [Also note that one 

could choose f x x x( ) ,= + =1 80  and ∆x = 0 2. . So the choice of f  and x0  are not necessarily 
unique].
 So in the above example, the absolute error is 3 03315 3 03333 0.00018.. . . Note that the 
absolute	 error	 says	 how	much	 the	 error;	 but	 it	 does	 not	 say	how	good	 the	 approximation	 is.	 For	
instance, let us consider two simple cases.
 Case 1 : Suppose that the actual value of something is 5  and its approximated value is 4 , then 
the absolute error is 5 4 1− =  .

 Case 2 : Suppose that the actual value of something is 100  and its approximated value is  
95 . In this case, the absolute error is 100 95 5− = .	So	the	absolute	error	in	the	first	case	is	smaller	
when compared to the second case.

	 Among	these	two	approximations,	which	is	a	better	approximation;	and	why?	The	absolute	error	
does not give a clear picture about whether an approximation is a good one or not. On the other hand, 
if	we	calculate	relative	error	or	percentage	of	error	(defined	below),	it	will	be	easy	to	see	how	good	
an	approximation	is.	If	the	actual	value	is	zero,	then	we	do	know	how	close	our	approximate	answer	
is	to	the	actual	value.	So	if	the	actual	value	is	not	zero,	then	we	define,
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Differentials and Partial Derivatives63

Definition 8.3 
 If the actual value is not zero, then 

   Relative error =  Actual value  Approximate value

Actual value

−

   Percentage error =  Relative error ×100 .

 Note: Absolute error has unit of measurement where as relative error and percentage error are units free.
 Note that, in the case of the above examples, 
	 In	the	first	case

 The relative error = =
1

5
0 2. ;	and	the	percentage	error	= × =

1

5
100 20% .

 In the second case

 The relative error = 5

100
;	and	the	percentage	error	= × =

5

100
100 5% .

	 So	the	second	approximation	is	a	better	approximation	than	the	first	one.	Note	that,	in	order	to	
calculate	the	relative	error	or	the	percentage	error	one	should	know	the	actual	value	of	what	we	are	
approximating.
 Let us consider some examples.
Example 8.3
 Let us assume that the shape of a soap bubble is a sphere. Use linear approximation to approximate 
the increase in the surface area of a soap bubble as its radius increases from 5 cm to 5.2 cm. Also, 
calculate the percentage error.
Solution 
 Recall that surface area of a sphere with radius r  is given by S r r( ) = 4 2π . Note that even though 
we can calculate the exact change using this formula, we shall try to approximate the change using 
the linear approximation. So, using (4), we have
   Change in the surface area =  S S S( . ) ( ) ( )( . )5 2 5 5 0 2− ≈ ′

    =  8 5 0 2p( )( . )  =  8p  cm2

 Exact calculation of the change in the surface gives
   S S( . ) ( )5 2 5−  =  108 16 100 8 16 2. .  cm .

   Percentage error =  relative error × =
−

× =100
8 16 8

8 16
100 1 9607

.

.
. %

π π
π

 

Example 8.4
 A right circular cylinder has radius r =10  cm. and height h = 20  cm. Suppose that the radius of 
the cylinder is increased from 10  cm to 10 1.  cm and the height does not change. Estimate the change 
in the volume of the cylinder. Also, calculate the relative error and percentage error.

Solution
 Recall that volume of a right circular cylinder is given by V r h= π 2 , where r  is the radius and h  

is the height. So we have V r r h r( ) = =π π2 220 .

   V V( . ) ( )10 1 10−  »  dV
dt r 10

10 1 10 20 2 10 0 1( . ) ( ( . )) .
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 Thus the estimate for the change in the volume is 40p cm3 .
 Exact calculation of the volume change gives

   V V( . ) ( )10 1 10−  =  2040 2 2000 40 2 3. .π π π− = cm .

   So relative error =  40 2 40

40 2

1

201
0 00497

.

.
.

π π
π
−

= = ;	and	hence

    the percentage error =  relative error × = × =100
1

201
100 0 497. % .

EXERCISE 8.1
 1. Let f x x( ) = 3 . Find the linear approximation at x = 27 . Use the linear approximation to 

approximate 27 23 . .
 2.	 Use	the	linear	approximation	to	find	approximate	values	of

   (i) ( )123
2

3  (ii) 154   (iii) 263  

 3. Find a linear approximation for the following functions at the indicated points.

   (i) f x x x x( ) ,= − + =3

05 12 2   (ii) g x x x( ) ,= + = −2

09 4  

   (iii) h x x
x

x( ) ,=
+

=
1

10  

 4. The radius of a circular plate is measured as 12 65.  cm instead of the actual length 12 5.  cm. 
find	the	following	in	calculating	the	area	of	the	circular	plate:

   (i) Absolute error (ii) Relative error (iii) Percentage error
 5. A sphere is made of ice having radius 10  cm. Its radius decreases from 10  cm to  

9 8.  cm. Find approximations for the following:
   (i) change in the volume   (ii) change in the surface area
 6. The time T ,	taken	for	a	complete	oscillation	of	a	single	pendulum	with	length	 l , is given by 

the equation T
l
g

= 2p , where g  is a constant. Find the approximate percentage error in 

the calculated value of T  corresponding to an error of 2  percent in the value of l .

 7. Show that the percentage error in the n th root of a number is approximately 1
n

 times the 

percentage error in the number 
8.2.3 Differentials
 Here again, we use the derivative concept to introduce “Differential”.	Let	us	take	another	look	
at (1),

   df
dx

 =  lim
( ) ( )

( ) lim
∆ → ∆ →

+ ∆ −
∆

= ′ =
∆
∆x x

f x x f x
x

f x f
x0 0

. ...(7)

 Here df
dx

is a notation, used by Leibniz, for the limit of the difference quotient, which is called the 

differential coefficient of y with respect to x .Will it be meaningful to treat df
dx

 as a quotient of df  

and dx ? In other words, is it possible to assign meaning to df  and dx  so that derivative is equal to 
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the quotient of df  and dx .Well, in some cases yes. For instance, if f x mx c m c( ) , ,= +  are constants, 
then, y f x= ( ) .

   Dy  =  f x x f x m x f x x( ) ( ) ( )+ ∆ − = ∆ = ′ ∆   for all x∈   and Dx  

and hence equality in both (2), and (3). In this case changes in x  and y f( )= 	are	taking	place	along	

straight lines, in which case we have,

   change in 

change in 

f
x

 =  ∆
∆

= ′ = =
y
x

f x df
dx

dy
dx

( ) .

 Thus in this case the derivative df
dx

 is truly a quotient of df dxand ,	if	we	take	df f dy= ∆ =  and 

dx x= ∆ .	This	leads	us	to	define	the	differential	of	 f  as follows:

Definition 8.4
 Let f a b: ( , ) →   be a differentiable function, for x a b∈ ( , )  and  the increment given to x , 
we	define	the	differential	of	 f  by
   df f x x= ′( )∆ . ... (8)

 First we note that if f x x( ) = , then by (8) we get dx f x x x= ′ =( )∆ ∆1  which means that the 
differential dx x= ∆ , which is the change in 
x -axis. So the differential given by (8) is 
same as df f x dx= ′( ) .

 Next we explore the differential for an 
arbitrary differentiable function y f x= ( ) . 
Then ∆f f x dx f x= + −( ) ( )  gives the 
change in output along the graph of 
y f x= ( )  and ′f x( )  gives the slope of the 

tangent line at ( , ( ))x f x . Let dy  or df  
denote the increment in f  along the tangent 

line. Then by the above observation, we 
have  dy f x dx= ′( ) .

	 From	 the	 figure	 it	 is	 clear	 that	 ∆ ≈ = = ′f dy df f x dx( )  and hence ′f x( )  can be viewed 

approximately as the quotient of Df  and Dx . So we may interpret df
dx

 as the quotient of df  and dx . 

Remark

	 We	know	that	derivative	of	a	function	is	again	a	function.	On	the	other	hand,	differential	df  of a 

function f  is not only a function of the independent variable but also depends on the change in the 

input namely dx x= ∆ . So df  is a function of two changing quantities namely x xand d . Observe that 

∆ ≈f df , which can be observed from the Fig. 8.4.

{ }
{

∆y y f t= ( )

f x dx( )+

y f x= ( )

dy f x dx= ′( )

Tangent line

x x+dx
dx

O

Fig. 8.4
Linear Approximation and Differential
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 In the table below we give some functions, their derivatives and their differentials side by side 
for comparative purpose.

S.
No.

Function Derivative Differential

1 f x xn( ) =  ′ = −f x nxn( ) 1  df nx dxn= −1  

2 f x x x( ) cos( )= +2 7  f x x x x( ) sin( )( )2 7 2 7  df x x x dx= − + +sin( )( )2 7 2 7  

3 f x x( ) cot( )= 2  f x x x( ) cosec2 ( )2 2  dxdf x xcosec2 ( )2 2  

4
f x x( ) sin–1( )�

 
′ =

−
f x

x
( )

1

1 2
 df

x
dx=

−

1

1 2
 

5 f x x( ) tan= −1  ′ =
+

f x
x

( )
1

1 2
 df

x
dx=

+
1

1 2
 

6 f x ex x( ) = − +3 5 7  ′ = −− +f x e xx x( ) ( )
3 5 7 23 5  df e x dxx x= −− +3 5 7 23 5( )  

7 f x x( ) log( )= +2 1  ′ =
+

f x x
x

( )
2

12
 df x

x
dx=

+
2

12
 

	 Next	we	look	at	the	properties	of	differentials.	These	results	easily	follow	from	the	definition	of 
differential and the rules for differentiation. We give a proof for (5) below and the other proofs are left 
as exercises.

Properties of Differentials
 Here we consider real-valued functions of real variable.

 (1) If f  is a constant function, then df = 0 .

 (2) If f x x( ) =  identity function, then df dx=1 .

 (3) If f  is differentiable and c∈ , then d cf cf x dx( ) ( )= ′ .

 (4) If f g,  are differentiable, then d f g df dg f x dx g x dx( ) ( ) ( )+ = + = ′ + ′ .

 (5) If f g,  are differentiable, then d fg fdg gdf f x g x f x g x dx( ) ( ( ) ( ) ( ) ( )) .

 (6) If f g,  are differentiable, then d f g gdf fdg
g

g x f x f x g x
g x

dx( / )
( ) ( ) ( ) ( )

( )
=

−
=

′ − ′
2 2

, where 

g x( ) ¹ 0 .

 (7) If f g,  are differentiable and h f g=  	is	defined,	then	 dh f g x g x dx= ′ ′( ( )) ( ) .

 (8) If h x e f x( ) ( )= , then dh e f x dxf x= ′( ) ( ) .

 (9) If f x( ) > 0  for all x  and g x f x( ) log( ( ))= , then dg f x
f x

dx=
′( )

( )
. 
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Example 8.5
 Let f g a b, : ( , ) →   be differentiable functions. Show that d fg fdg gdf( ) = + .

Solution
 Let f g a b, : ( , ) →   be differentiable functions and h x f x g x( ) ( ) ( )= . Then h , being a product 

of differentiable functions, is differentiable on ( , )a b 	.	So	by	definition	 dh h x dx= ′( ) . Now by using 

product rule we have ′ = ′ + ′h x f x g x f x g x( ) ( ) ( ) ( ) ( ) . 

 Thus dh h x dx= ′( )  =  ( ( ) ( ) ( ) ( )) ( ) ( ) ( ) ( )f x g x f x g x dx f x g x dx f x g x dx′ + ′ = ′ + ′

    =  f x dg g x df fdg gdf( ) ( )+ = +

Example 8.6
 Let g x x x( ) sin= +2 . Calculate the differential dg .

Solution
 Note that g  is differentiable and ′ = +g x x x( ) cos2 .
 Thus dg x x dx= +( cos )2 .

Example 8.7
 If the radius of a sphere, with radius 10  cm, has to decrease by 0 1.  cm, approximately how much 
will its volume decrease?

Solution 
	 We	 know	 that	 volume	 of	 a	 sphere	 is	 given	 by	 V r=

4

3

3π ,  where r > 0  is the radius. So the 

differential dV r dr= 4 2π  and hence

   ∆ ≈V dV  =  4 10 2 3p( ) (9.9-10)cm  
    =   4 10 0 12 3( . ) cm  
    =  − 40 3π cm .

 Note that we have used dr = −( . )9 9 10 cm,  because radius decreases from 10 to 9.9. Again the 

negative sign in the answer indicates that the volume of the sphere decreases about 40 3cm .

EXERCISE 8.2
 1. Find differential dy  for each of the following functions :

   (i) y x
x

=
−
−

( )1 2

3 4

3

  (ii) y x= +( sin( )) /3 2 2 3  (iii) y e xx x2 5 7 2cos ( )1  

 2. Find df  for f x x x( ) = +2 3  and evaluate it for
   (i) x = 2  and dx = 0 1.   (ii) x = 3  and dx = 0 02.

 3. Find Df  and df  for the function f  for the indicated values of  and compare

   (i) f x x x x x dx( ) ; , .= − = = =3 22 2 0 5∆

   (ii) f x x x x x dx( ) ; . , .= + + = − = =2 2 3 0 5 0 1∆

 4. Assuming log .10 0 4343e = ,	find	an	approximate	value	of	 log10 1003 .
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 5.	The	trunk	of	a	tree	has	diameter	30	cm.	During	the	following	year,	the	circumference	grew	
6 cm. 

  (i)  Approximately, how much did the tree’s diameter grow?
  (ii) What is the percentage increase in area of the tree’s cross-section?
 6. An egg of a particular bird is very nearly spherical. If the radius to the inside of the shell is 5 

mm	and	radius	to	the	outside	of	the	shell	is	5.3	mm,	find	the	volume	of	the	shell	approximately.
 7. Assume that the cross section of the artery of human is circular. A drug is given to a patient 

to dilate his arteries. If the radius of an artery is increased from 2 mm to 2.1 mm, how much 
is cross-sectional area increased approximately?

 8. In a newly developed city, it is estimated that the voting population (in thousands) will 
increase according to V t t t t( ) ,= + − ≤ ≤30 12 0 82 3  where t  is the time in years. Find the 

approximate change in voters for the time change from 4 to 4
1

6
  year.

 9. The relation between the number of words y  a person learns in x  hours is given by 

y x x= ≤ ≤52 0 9,  . What is the approximate number of words learned when x  changes 

from
   (i) 1 to 1.1 hour? (ii) 4 to 4.1 hour?
 10.	A	circular	plate	expands	uniformly	under	the	influence	of	heat.	If	it’s	radius	increases	from	

10.5	 cm	 to	 10.75	 cm,	 then	find	 an	 approximate	 change	 in	 the	 area	 and	 the	 approximate	
percentage change in the area.

 11.	A	coat	of	paint	of	thickness	0 2.  cm is applied to the faces of a cube whose edge is 10  cm. 
Use	the	differentials	to	find	approximately	how	many	cubic	centimeters	of	paint	is	used	to	
paint this cube. Also calculate the exact amount of paint used to paint this cube.

8.3 Functions of Several Variables
 Recall that given a function f  of x ;	we	sketch	the	graph	of	 y f x= ( )  to understand it better. 
Generally, the graph of y f x= ( )  gives a curve in the xy -plane. Also, the derivative ′f a( )  of f  at 
x a=  represents the slope of the tangent at x a= , to the graph of f . In the introduction we have seen 
the need for considering functions of more than one variable. Here we shall develop some concepts 
to understand functions of more than one variable. First we shall consider functions of two variables. 
Let F x y( , )  be a function of x  and y . To obtain graph F , we graph z F x y= ( , )  in the xyz -space. 
Also, we shall develop the concepts of continuity, partial derivatives of a function of two variables.
	 Let	us	look	at	an	example,	 g x y x y( , ) ,= − −30 2 2  for x y, ∈ . Given a point ( , )x y ∈2 , then 
z x y= − −30 2 2  gives the z  coordinate of the point on the graph. Thus the point ( , , )x y x y30 2 2− −  
lies 30 2 2− −x y  high just above the point ( , )x y  in xy -plane. For instance, for ( , )2 3 2∈ , the point 
( , , ) ( , , )2 3 30 2 3 2 3 172 2− − =  lies on the graph of g .	If	we	fix	the	value	 y = 3 , then g x x( , )3 212= − +  
which is a function that depends only on x 	variable;	so	its	graph	must	be	a	curve.	Similarly,	if	we	fix	
value x = 2 , then we have g y y( , )2 26 2= −  which is a function that depends only on y . In each case 
the graph, as the resulting function being quadratic, will be a parabola. The surface we obtain from 
z g x y= ( , )  is called paraboloid.
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z = 30 - x2 - y2

z = 30 - x2 - y2

y = 3 x = 2

 Note that g x x( , )3 21 2= − 	represents	a	parabola;	which	is	obtained	by	intersecting	the	surface	of	
z x y= − −30 2 2  with the plane y = 3  [see Fig. 8.5). Similarly g y y( , )2 26 2= − 	represents	a	parabola;	
which is obtained by intersecting the surface of z x y= − −30 2 2  with the plane x = 2  [see Fig. 8.6). 
Following graphs describes the above discussion.

 Fig. 8.5 Fig. 8.6 
 In the same way, given a function F  of a two variables say x y, , we can visualize it in the three 
space by considering the equation z F x y= ( , ) . Generally, this will represent a surface in 3 .

8.3.1 Recall of Limit and Continuity of Functions of One Variable
	 Next	we	shall	look	at	continuity	of	a	function	of	two	variables.	Before	that,	it	will	be	beneficial	
for	us	to	recall	the	continuity	of	a	function	of	single	variable.	We	have	seen	the	following	definition	
of continuity in XI Std.
 A function f a b: ( , ) →   is said to be continuous at a point x a b0 ∈ ( , )  if the following hold:

 (1) f 	is	defined	at	 x0 . (2) lim ( )
x x

f x L
→

=
0

 exists       (3) xL
0

	 The	key	idea	in	the	continuity	lies	in	understanding	the	second	condition	given	above.	We	write	

lim ( )
x x

f x L
→

=
0

 whenever the value f x( )  gets closer and closer to L  as x  gets closer and closer to x0 .

	 To	make	it	clear	and	precise,	let	us	rewrite	the	second	condition	in	terms	of	neighbourhoods.	This	
will	help	us	when	we	talk	about	continuity	of	functions	of	two	variables.

Definition 8.5 (Limit of a Function)

 Suppose that f a b: ( , ) →   and x a b0 ∈ ( , ) . We say that f  has a limit L  at x x= 0  if for every 

neighbourhood ( , ),L L− + >ε ε ε 0  of L , there   exists  a  neighbourhood ( , ) ( , ),x x a b0 0 0− + ⊂ >δ δ δ  

of x0  such that
f x L L( ) ( , )∈ − +ε ε  whenever x x x x∈ − +( , ) \{ }0 0 0δ δ .

 The above condition in terms of neighbourhoods can also be equivalently stated using modulus 
(or absolute value) notation as follows:
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 such that | ( ) |f x L  whenever 0 0< − <| |x x δ .

 This means whenever x x¹ 0  and is within δ  distance from x0 , then f x( )  is within  distance 
from L .	Following	figures	explain	the	interplay	between	ε  and δ . 

 Fig. 8.7 Fig. 8.8 
	 We	also	know,	from	XI	Std,	that	a	function	 f 	defined	in	the	neighbourhood	of	 x0  except possibly 

at x0  has a limit at x0  if the following hold :

 (1) lim ( )
x x

f x L
→ +

=
0

1  (right hand limit) exists (2) lim ( )
x x

f x L
→ −

=
0

2  (left hand limit) exists

 (3) L1 = L2.

 Let 
0

0( ) , lim ( )
x x

f x L and f x L
→

= = (say). Then the function f  is continuous at x= x0  if L = L1 = L2 .Note that in the 

limit and continuity of a single variable functions, neighbourhoods play an important role. In this case 

a neighbourhood of a point x0 ∈ 	looks	like	 ( , )x r x r0 0− + , where r > 0 . In order to develop limit 

and	continuity	of	functions	of	two	variables,	we	need	to	define	neighbourhood	of	a	point	 ( , )u v ∈2 .  

So, for ( , )u v ∈2  and r > 0 , a r -neighbourhood of the point ( , )u v  is the set

B u v x y x u y v rr (( , )) {( , ) | ( ) ( ) }= ∈ − + − <

2 2 2 2 .

 So a r -neighbourhood of a point ( , )u v  is an open disc with centre ( , )u v  and radius r > 0 . If the 
centre is removed from the neighbourhood, then it is called a deleted neighbourhood.

8.4 Limit and Continuity of Functions of Two Variables
Definition 8.6 (Limit of a Function)

 Suppose that A x y a x b c y d F A( , ) , , :� �2 . We say that F  has a limit L at 

( , )u v  if the following hold :
 For every neighboourhood ( , ),L L− + >e e e 0 , of L , there exists a δ -neighbourhood 
B u v Aδ (( , )) ⊂  of ( , )u v  such that ( , ) (( , )) \{( , )}, ( ) ( , )x y B u v u v f x L L∈ > ⇒ ∈ − +d d e e0 .
 We denote this by lim ( , )

( , ) ( , )x y u v
F x y L

→
=  if such a limit exists.
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Fig. 8.9 Limit of a function

 When compared to the case of a function of single variable, for a function of two variables, there is 
a subtle depth in the limiting process. Here the values of F x y( , )  should approach the same value L ,  
as ( , )x y  approaches ( , )u v  along every possible path to ( , )u v  (including paths that are not straight 
lines). Fig.8.9 explains the limiting process.

 All the rules for limits (limit theorems) for functions of one variable also hold true for 
functions of several variables.

	 Now,	following	the	idea	of	continuity	for	functions	of	one	variable,	we	define	continuity	of	a	
function of two variables.

Definition 8.7 (Continuity)

 Suppose that A x y a x b c y d F A= < < < <{ } ⊂ →( , ) , , : 

2 . We say that F  is continuous 

at ( , )u v  if the following hold :

 (1) F 	is	defined	at	 ( , )u v   (2) lim ( , )
( , ) ( , )x y u v

F x y L
→

=  exists (3) L F u v= ( , ) .

y

O x
a b

F

�

f x y( , )0 0 ��

f x y( , )0 0

f x y( , )0 0 ��

( , )x y0 0

d

c

�2

Fig. 8.10 Continuity of a function
Remark
	 (1)	 In	Fig.	8.10	taking	 L F x y= ( , )0 0  will illustrate continuity at ( , )x y0 0 .
 (2) Continuity for f x x xn( , , , )1 2  	is	also	defined	similarly	as	defined	above.
  Let us consider few examples as illustrations to understand continuity of functions of two 
variables.

Example 8.8

 Let f x y x y
x y

( , ) =
− +
+ +

3 5 8

12 2
 for all ( , )x y ∈2 . Show that f  is continuous on 2 .

y

O x
a b

F

�

L( , )x y0 0

L ��

L ��

d

c

�2
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Solution
Let ( , )a b ∈2  be an arbitrary point. We shall investigate continuity of f  at ( , )a b . 
That	is,	we	shall	check	if	all	the	three	conditions	for	continuity	hold	for	 f  at ( , )a b .

To	check	first	condition,	note	that	 f a b a b
a b

( , ) =
− +
+ +

3 5 8

12 2
	is	defined.	

Next	we	want	to	find	if	 lim ( , )
( , ) ( , )x y a b

f x y
→  

exists or not.

So we calculate lim ( )
( , ) ( , )x y a b

x y a b
→

− + = − +3 5 8 3 5 8  and lim ( )
( , ) ( , )x y a b

x y a b
→

+ + = + + ≠2 2 2 21 1 0 .

Thus, by the properties of limits, we see that

lim ( , )
lim ( )

lim( , ) ( , )

( , ) ( , )

( , ) ( , )

x y a b

x y a b

x y a b

f x y
x y

→

→

→

=
− +3 5 8

(( )
( , )

x y
a b
a b

f a b
2 2 2 21

3 5 8

1+ +
= − +

+ +
=  = L exists.

Now we note that lim ( , ) ( , )
, ( , )x y a b

f x y L f a b
→

= = . Hence f 	 satisfies	 all	 the	 three	 conditions	 for	

continuity of f  at ( , )a b . Since ( , )a b  is an arbitrary point in 2 , we conclude that f  is continuous 
at every point of 2 .

Example 8.9
 Consider f x y xy

x y
( , ) =

+2 2
 if ( , ) ( , )x y ¹ 0 0  and f ( , )0 0 0= . Show that f  is not continuous at 

( , )0 0  and continuous at all other points of 2 .

Solution
 Note that f 	is	defined	for	every	 ( , )x y ∈2 .	First	let	us	check	the	continuity	at	 ( , ) ( , )a b ¹ 0 0 . 

Let us say, just for instance, ( , ) ( , )a b = 2 5 . Then f ( , )2 5
10

29
= . Then, as in the above example, we 

calculate lim ( )
( , ) ( . )x y

xy
→

= =
2 5

2 5 10  and lim
( , ) ( . )x y

x y
→

+ = + = ≠
2 5

2 2 2 22 5 29 0 .

Hence   lim
( , ) ( , )x y

xy
x y→ +

=
2 5 2 2

10

29
.

 Since f xy
x yx y

( , ) lim
( , ) ( , )

2 5
10

29 2 5 2 2
= =

+→
, it follows that f  is continuous at ( , )2 5 .

 Exactly by similar arguments we can show that f  is continuous at every point  
( , ) ( , )a b ¹ 0 0 .	Now	let	us	check	the	continuity	at	 ( , )0 0 . Note that f ( , )0 0 0= 	by	definition.	Next	we	

want	to	find	if	 lim
( , ) ( , )x y

xy
x y→ +0 0 2 2

 exists or not.

	 First	let	us	check	the	limit	along	the	straight	lines	 y mx= , passing through ( , )0 0 .

lim lim
( )

( , )
( , ) ( , )x y x

xy
x y

mx
m x

m
m

f
→ →+

=
+

=
+

≠
0 0 2 2 0

2

2 2 21 1
0 0 , if m 0.

 So for different values of m , we get different values m
m1 2+

 and hence we conclude that 

lim
( , ) ( , )x y

xy
x y→ +0 0 2 2

 does not exist. Hence f  cannot be continuous at ( , )0 0 .
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Example 8.10

 Consider g x y x y
x y

( , ) =
+

2 2

2 2
 if ( , ) ( , )x y ¹ 0 0  and g( , )0 0 0= . Show that g  is continuous on 2 .

Solution
 Observe that the function g 	is	defined	for	all	 ( , )x y ∈2 .	It	is	easy	to	check,	as	in	the	above	

examples, that g  is continuous at all point ( , ) ( , )x y ¹ 0 0 .	Next	we	shall	check	the	continuity	of	 g  at 

( , )0 0 . For that we see if g  has a limit L  at ( , )0 0  and if L g= =( , )0 0 0 . So we consider

   g x y g( , ) ( , )− 0 0  =  2
0

2 22

2 2

2

2 2 2 2

2 2

2 2

x y
x y

x y
x y

xy x
x y

x y x
x y

x
+

− =
+

=
+

≤
+
+

≤
( )

  ... (9)

	 Note	 that	 in	 the	final	step	above	we	have	used	 2 2 2xy x y≤ +  (which follows by considering 

0 2≤ −( )x y ) for all x y, ∈ . Note that ( , ) ( , )x y → 0 0  implies x → 0 . Then from (9) it follows that 

lim ( , )
( , ) ( , )x y

x y
x y

g
→ +

= =
0 0

2

2 2

2
0 0 0 ;	which	proves	 that	 g is continuous at ( , )0 0 . So g  is continuous at 

every point of 2 .

EXERCISE 8.3
 1. Evaluate lim ( , )

( , ) ( , )x y
g x y

→ 1 2
, if the limit exists, where g x y x xy

x y
( , ) =

−
+ +

3

3

2

2 2
.

 2. Evaluate lim cos
( , ) ( , )x y

x y
x y→

+
+ +











0 0

3 2

2
. If the limit exists.

 3. Let f x y y xy
x y

( , ) = −
−

2

 for ( , ) ( , )x y ¹ 0 0 . Show that lim ( , )
( , ) ( , )x y

f x y
→

=
0 0

0 .

 4. Evaluate lim cos
sin

( , ) ( , )x y

xe y
y→











0 0
, if the limit exists.

 5. Let g x y x y
x y

( , ) =
+

2

4 2
 for ( , ) ( , )x y ¹ 0 0  and f ( , )0 0 0= .

   (i) Show that lim ( , )
( , ) ( , )x y

g x y
→

=
0 0

0  along every line y mx m= ∈,  .

   (ii) Show that lim ( , )
( , ) ( , )x y

g x y k
k→

=
+0 0 21

 along every parabola y kx k= ∈2 0, \{ } .

 6.  Show that f x y x y
y

( , ) =
−
+

2 2

2 1
 is continuous at every ( , )x y ∈2 .

 7. Let g x y e x
x

y

( , )
sin

= , for x ¹ 0  and g( , )0 0 1= . Show that g  is continuous at ( , )0 0 .
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8.5 Partial Derivatives
 In this section, we shall see how the concept of derivative for functions of one variable may be 
generalized to real-valued function of several variables. First we consider functions of two variables. 
Let A x y a x b c y d= < < < <{ } ⊂( , ) , 

2 , and F A: →   be a real-valued function. Suppose that 

( , )x y A0 0 ∈ ;	and	we	are	interested	in	finding	the	rate	of	change	of	 F  at ( , )x y0 0  with respect to the 
change only in the variable x . As we have seen above F x y( , )0  is a function of x  alone and it will 
represent a curve obtained by intersecting the surface z F x y= ( , )  with y y= 0  plane. So we can 
discuss the slope of the tangent to the curve z F x y= ( , )0  at x x= 0 	by	finding	derivative	of	 F x y( , )0  
with respect to x  and evaluating it at x x= 0 .	Similarly,	we	can	find	the	slope	of	the	curve	 z F x y= ( , )0  
at y y= 0 	by	finding	derivative	of	 F x y( , )0  with respect to y  and evaluating it at y y= 0 . These are 
the	key	ideas	that	motivate	us	to	define	partial	derivatives	below.

 Fig. 8.11 Fig. 8.12

Definition 8.8

 Let A x y a x b c y d F A= < < < <{ } ⊂ →( , ) , , : 

2  and ( , )x y A0 0 ∈ .

 (i) We say that F  has a partial derivative with respect to x  at ( , )x y A0 0 ∈  if

   lim
( , ) ( , )

h

F x h y F x y
h→

+ −
0

0 0 0 0   ... (10)

  exists. In this case, the limit value is denoted by ∂
∂
F
x
x y( , )0 0 .

 (ii) We say F  has a partial derivative with respect to y  at ( , )x y A0 0 ∈  if

   lim
( , ) ( , )

k

F x y k F x y
k→

+ −
0

0 0 0 0   ... (11)

  exists. In this case, the limit value is denoted by ∂
∂
F
y
x y( , )0 0 .

Remarks
	 1.	Partial	derivatives	for	functions	of	three	or	more	variables	are	defined	exactly	in	a	similar	

manner.
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 2. We read ∂F  as “partial F ” and ∂x  as “partial x ”. And we read ∂
∂
F
x

 as “partial F  by 

partial x ”. It is also read as “dho F  by dho x ”.

 3. Similarly, we read ∂
∂
F
x

 as “partial F  by partial y ” or as “dho F  by dho y .

 4. Sometimes ∂
∂
F
x
x y( , )0 0  is also denoted by F x yx ( , )0 0  or ∂

∂
F
x
x y( , )( , ). ( , ) ( , ),x y y

F
y

x y F x y
0 0 0 0 0 0 Similarly  is denoted by  or

�
�

  
�
�
F
y

x y
x y

( , )
( , )0 0

 

( , ). ( , ) ( , ),x y y
F
y

x y F x y
0 0 0 0 0 0 Similarly  is denoted by  or

�
�

  
�
�
F
y

x y
x y

( , )
( , )0 0

	 5.	An	important	thing	to	notice	is	that	while	finding	partial	derivative	of	 F  with respect to x , 
we treat the y 	variable	as	a	constant	and	find	derivative	with	respect	to	 x . That is, except 
for	the	variable	with	respect	to	which	we	find	partial	derivative,	all	other	variables	are	treated	
as constants. That is why we call it as “partial derivative”.

 6. If F  has a partial derivative with respect to x  at every point of A , then we say that ∂
∂
F
x
x y( , )  

exists on A . Note that in this case ∂
∂
F
x
x y( , ) 	is	again	a	real-valued	function	defined	on	 A .

 7. In the light of ( )4 , it is easy to see that all the rules (Sum, Product, Quotient, and Chain rules) 
of differentiation and formulae that we have learnt earlier hold true for the partial differentiation 
also.

 Recall that for a function of one variable, differentiability at a point always implies continuity at 

that point. For a function F  of two variables x y, 	we	have	defined	 ∂
∂
F
x
u v( , )  and ∂

∂
F
y
u v( , ) . Do the 

existence of partial derivatives of F  at a point ( , )u v  implies continuity of F  at ( , )u v ? Following 
example illustrates that this may not necessarily happen always.

Example 8.11
 Let f x y( , ) = 0  if xy¹ 0  and f x y( , ) =1  if xy = 0 .

 (i) Calculate : 
∂
∂

∂
∂

f
x

f
y

( , ), ( , )0 0 0 0 .

 (ii) Show that f  is not continuous at ( , )0 0 .

Solution
 Note that the function f 	takes	value	1 on the x y, -axes and 0  everywhere else on 2 . So let us 
calculate

   ∂
∂
f
x

( , )0 0  =  lim ( , ) ( , )
lim

h h

f h f
h h→ →

+ −
=

−
=

0 0

0 0 0 0 1 1
0 ;

   ∂
∂
f
y

( , )0 0  =  lim ( , ) ( , )
lim

k k

f k f
k k→ →

+ − = − =
0 0

0 0 0 0 1 1
0 .

This completes (i).
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Now for (ii) let us calculate the limit of f  as ( , ) ( , )x y → 0 0  along the line y x= . Then 

lim ( , )
( , ) ( , )x y

f x y
→

=
0 0

0 ;	because	along	the	line	 y x=  when x f x y≠ =0 0, ( , ) , But f ( , )0 0 1 0= ≠ ;	hence	

f  cannot be continuous at ( , )0 0 .

Example 8.12
 Let F x y x y y x( , ) = + +3 2 7  for all ( , )x y ∈2 . Calculate ∂

∂
−

F
x

( , )1 3  and ∂
∂

−
F
y

( , )2 1 .

Solution

 First we shall calculate ∂
∂
F
x
x y( , ) , then we evaluate it at ( , )−1 3 . As we have already observed, 

we	find	the	derivative	with	respect	to	 x  holding y  as a constant. That is,

   ∂
∂

= ∂ + +
∂

F
x
x y x y y x

x
( , )

( )3 2 7  =  ∂
∂

+ ∂
∂

+ ∂
∂

( ) ( ) ( )x y
x

y x
x x

3 2 7

    =  3 02 2x y y+ +

    =  3 2 2x y y+ .

 So ∂
∂

− = − + =
F
x

( , ) ( )1 3 3 1 3 3 182 2 .

	 Next	similarly	we	find	partial	derivative	with	respect	to	y.

   ∂
∂

= ∂ + +
∂

F
y
x y x y y x

y
( , )

( )3 2 7  =  ∂
∂

+ ∂
∂

+ ∂
∂

( ) ( ) ( )x y
y

y x
y y

3 2 7

    =  x yx3 2 0+ +

    =  x yx3 2+ .

 Hence we have ∂
∂

− = − + − = −
F
y

( , ) ( ) ( )( )2 1 2 2 1 2 123 .

Note that in the above example ∂
∂

= +
F
x
x y x y y( , ) 3 2 2 , which is again a function of two variables. So 

we	can	take	the	partial	derivative	of	this	function	with	respect	to	 x  or y .	For	instance,	if	we	take	

G x y x y y( , ) = +3 2 2 ,	 then	we	find	 ∂
∂

=
G
x

xy6 . Since G x y F
x

( , ) =
∂
∂

, we have ∂
∂

=
∂
∂

∂
∂







 =

G
x x

F
x

xy6 . 

We denote this as ∂
∂

2

2

F
x

;	which	is	called	the	second order partial derivative of F  with respect to x  . 

Also, ∂
∂

= +
G
y

x y3 22 . Since G x y F
x

( , ) =
∂
∂

, we have ∂
∂

=
∂
∂

∂
∂







 = +

G
y y

F
x

x y3 22 . We denote this as 

∂
∂ ∂

2F
y x

;	which	is	called	the	mixed partial derivative of F  with respect to x y, . Similarly we can also 

calculate ∂
∂

∂
∂









 = +

x
F
y

x y3 22 .
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 Also, if we differentiate ∂
∂
F
y
x y( , )  partially with respect to y  we obtain ∂

∂

2

2

F
y

;	which	is	called	the	

second order partial derivatives of F  with respect to y . So for any function F 	defined	on	any	subset	 
{(x,y) | a < x < b, c < y < d} ⊂ 2  we have the following notation :

   ∂
∂

2

2

F
x

 =  ∂
∂

∂
∂







= ∂
∂ ∂

= ∂
∂

∂
∂







=
x

F
x

F F
x y x

F
y

Fxx xy,
2

   ∂
∂ ∂

2F
y x

 =  ∂
∂

∂
∂







= ∂
∂

= ∂
∂

∂
∂







=
y

F
x

F F
y y

F
y

Fyx yy,
2

2
 

 All the above are called second order partial derivatives of F .	Similarly	we	can	define	higher	

order partial derivatives. For example, ∂
∂ ∂

=
∂
∂

∂
∂

∂
∂



















3

2

F
y x y y

F
x

, and ∂
∂ ∂ ∂

= ∂
∂

∂
∂

∂
∂













3F
x y x x y

F
x

. 

 Next we shall see more examples on partial differentiation.

Example 8.13

 Let f x y xy ex y( , ) sin( )= + +2 53

 for all ( , )x y ∈2 . Calculate ∂
∂

∂
∂

f
x

f
y

, , ∂
∂ ∂

2 f
y x

 and ∂
∂ ∂

2 f
x y

.

Solution
 First we shall calculate ∂

∂
f
x
x y( , ) . Note that f  is a sum of two functions and so

   ∂
∂
f
x

 =  ∂
∂

+
∂
∂ ( )+

x
xy

x
ex ysin( )2 53

 

    =  cos( ) ( ) ( )xy
x
xy e

x
x yx y2 2 5 33

5
∂
∂

+
∂
∂

++

    =  cos( )xy y e xx y2 2 5 23

3+ + .

 Similarly,

   ∂
∂
f
y

 =  ∂
∂

+
∂
∂ ( )+

y
xy

y
ex ysin( )2 53

 

    =  cos( ) ( ) ( )xy
y
xy e

y
x yx y2 2 5 33

5
∂
∂

+
∂
∂

++

    =  cos( )xy xy ex y2 52 5
3

+ + .

 Next we consider,

   ∂
∂ ∂

2 f
y x

 =  ∂
∂

∂
∂







 =

∂
∂

+( )+

y
f
x y

y xy x ex y2 2 2 53
3

cos( )

    =  ∂
∂

+
∂
∂ ( )+

y
y xy

y
x ex y( cos( ))2 2 2 53

3

    =  2 2 3 52 2 2 2 53

y xy y xy xy x ex ycos( ) sin( )+ −( ) + +

    =  2 2 152 3 2 2 53

y xy xy xy x ex ycos( ) sin( )− + + . 
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Finally, 

   ∂
∂ ∂

2 f
x y

 =  ∂
∂

∂
∂








 =

∂
∂

+( )+

x
f
y x

xy xy ex ycos( )2 52 5
3

    =  − + + +sin( ) cos( )xy y xy xy y e xx y2 2 2 5 22 2 5 3
3

    =  2 2 152 3 2 2 53

y xy xy xy x ex ycos( ) sin( )− + + .

Note	that	we	have	first	used	sum	rule,	then	in	the	next	step	we	have	used	chain	rule.	In	the	third	step,	
product rule is used. Also, we see that f fxy yx= . Is it a coincidence? or is it always true? Actually, 

there are functions for which f fxy yx¹  at some points. The following theorem gives conditions under 

which f fxy yx= .

Theorem 8.1 (Clairaut’s Theorem)
 Suppose that A x y a x b c y d= < < < <{ } ⊂( , ) | , 

2 , F A: →  .  If fxy  and f yx  exist in A  are 
continuous in A , then f fxy yx=  in A .

We omit the discussion on the proof at this stage.

Example 8.14

 Let w x y xy e
y

y

( , ) = +
+2 1

 for all ( , )x y ∈2 . Calculate ∂
∂ ∂

2w
y x

 and ∂
∂ ∂

2w
x y

.

Solution

 First we calculate ∂
∂

=
∂
∂

+
∂

+










∂
w
x
x y xy

x

e
y
x

y

( , )
( )

2 1
. 

 This gives ∂
∂

= +
w
x
x y y( , ) 0  and hence ∂

∂ ∂
=

2

1
w
y x

x y( , ) . On the other hand,

   ∂
∂
w
y
x y( , )  =  ∂

∂
+
∂

+










∂
( )xy
y

e
y
y

y

2 1
.

    =  x y e e y
y

y y

+
+ −

+
( )

( )

2

2 2

1 2

1
.

 Hence ∂
∂ ∂

=
2

1
w
x y

x y( , ) .

Definition 8.9

 Let A x y a x b c y d= < < < <{ } ⊂( , ) | , 

2 . A function u A: → 

2  is said to be harmonic in 

A 	if	it	satisfies	 ∂
∂

+
∂
∂

= ∀ ∈
2

2

2

2
0

u
x

u
y

x y A, ( , ) . This equation is called Laplace’s equation.

Laplace’s	equation	occurs	in	the	study	of	many	natural	phenomena	like	heat	conduction,	electrostatic 
field,	fluid	flows	etc.
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Example 8.15
 Let u x y e xy( , ) cos( )= −2 2  for all ( , )x y ∈2 . Prove that u  is a harmonic function in 2 .

Solution
 We need to show that u 	 satisfies	 the	 Laplace’s	 equation	 in	 2 . Observe that 

u x y e xx
y( , ) ( )sin( )= −−2 2 2  and hence u x y e xxx

y( , ) ( )( ) cos( )= −−2 2 2 2 .

Similarly, u x y e xy
y( , ) ( ) cos( )= −−2 2 2  and u x y e xyy

y( , ) ( )( ) cos( )= − − −2 2 22 .

Thus, u u e x e xxx yy
y y+ = − + =− −4 2 4 2 02 2cos( ) cos( ) .

EXERCISE 8.4
 1. Find the partial derivatives of the following functions at the indicated points.

   (i) f x y x xy y x( , ) , ( , )= − + + + −3 2 5 2 2 52 2  

   (ii) g x y x y x( , ) , ( , )= + + + −3 5 2 1 22 2  

   (iii) h x y z x xy z x( , , ) sin( ) , , ,= + 





2 2
4

1
p   

   (iv) G x y e x yx y( , ) log( ), ( , )= + −+3 2 2 1 1  

 2.	For	each	of	the	following	functions	find	the	 f fx y, , and show that f fxy yx= .

  (i) f x y x
y x

( , )
sin

=
+
3  (ii) f x y x

y
( , ) tan=











−1  (iii) f x y x xy( , ) cos( )= −2 3

 3. If U x y z x y
xy

z y( , , ) =
+

+
2 2

23 ,	find	 ∂
∂

∂
∂

U
x

U
y

, , and ∂
∂
U
z

.

 4. If U x y z x y z( , , ) log( )= + +3 3 3 ,	find	 U
x

U
y

U
z

.

 5.	For	each	of	the	following	functions	find	the	 g g gxy xx yy, ,  and gyx .

   (i) g x y xe x yy( , ) = + 3 2   (ii) g x y x y( , ) log( )= +5 3

   (iii) g x y x xy y x( , ) cos( )= + − +2 3 7 5

 6. Let w x y z
x y z

x y z( , , ) , ( , , ) ( , , )=
+ +

≠1
0 0 0

2 2 2
. Show that ∂

∂
+
∂
∂

+
∂
∂

=
2

2

2

2

2

2
0

w
x

w
y

w
z

. 

 7. If V x y e x y y yx( , ) ( cos sin )= − , then prove that ∂
∂

+
∂
∂

=
2

2

2

2
0

V
x

V
y

.

 8. If w x y xy xy( , ) sin( )= + , then prove that 
2 2w

y x
w

x y
.
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 9. If v x y z x y z xyz( , , ) = + + +3 3 3 3 , show that ∂
∂ ∂

=
∂
∂ ∂

2 2v
y z

v
z y

.

 10.	A	firm	produces	two	types	of	calculators	each	week,	 x  number of type A  and y  number of 

type B .	 The	 weekly	 revenue	 and	 cost	 functions	 (in	 rupees)	 are	

R x y x y xy x y( , ) . . .= + + − −80 90 0 04 0 05 0 052 2  and C x y x y( , ) = + +8 6 2000  respectively.

	 	 	 (i)	Find	the	profit	function	P x y( , ) , 

   (ii) Find ∂
∂
P
x

( , )1200 1800  and ∂
∂
p
y

( , )1200 1800  and interpret these results. 

8.6 Linear Approximation and Differential of a function of several variables
 Earlier in this chapter, we have seen that linear approximation and differential of a function of 
one variable. Here we introduce similar ideas for functions of two variables and three variables. In 
general	for	functions	of	several	variables	these	concepts	can	be	defined	similarly.

Definition 8.10

 Let A x y a x b c y d F A= < < < <{ } ⊂ →( , ) | , , : 

2 , and ( , )x y A0 0 ∈ .

 (i) The linear approximation of F  at ( , )x y A0 0 ∈ 	is	defined	to	be

  F x y F x y F
x

x x( , ) ( , ) ( )0 0 0
y y( )0

x y( , )0 0

F
y x y( , )0 0

  ... (12)

 (ii) The differential of F 	is	defined	to	be

  dF F
x
x y dx F

y
x y dy=

∂
∂

+
∂
∂

( , ) ( , ) , ... (13)

  where dx x= ∆  and dy y= ∆ ,

Here we shall outline the linear approximations and differential for the functions of three variables. 
Actually,	we	can	define	linear	approximations	and	differential	for	real	valued	function	having	more	
variables, but we restrict ourselves to only three variables.

Definition 8.11

 Let A x y z a x b c y d e z f F A= < < < < < <{ } ⊂ →( , , ) | , , , : 

3  and ( , , )x y z A0 0 0 ∈ .

 (i) The linear approximation of F  at ( , , )x y z A0 0 0 ∈ 	is	defined	to	be

      F x y z F x y z F
x

x x F
y

y
x y z x y z

( , , ) ( , , ) ( ) (
( , , ) ( , , )

= + ∂
∂

− + ∂
∂0 0 0 0

0 0 0 0 0 0

−− + ∂
∂

−y F
z

z z
x y z

0 0

0 0 0

) ( );
( , , )

 

      ...(14)
 (ii) The differential of F 	is	defined	by

   dF F
x
x y z dx F

y
x y z dy F

z
x y z dz=

∂
∂

+
∂
∂

+
∂
∂

( , , ) ( , , ) ( , , ) , ...(15)) 

  where dx x dy y= =∆ ∆,  and dz z= ∆ ,
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Geometrically, in the case of function f  of one 

variable, the linear approximation at a point x0  

represents the tangent line to the graph of y f x= ( )  at 

x0 . Similarly, in the case of a function F  of two 

variables, the linear approximation at a point ( , )x y0 0  

represents the tangent plane to the graph of z F x y= ( , )  

at ( , )x y0 0 .

Example 8.16
 If w x y z x y y z z x x y z( , , ) , , ,= + + ∈2 2 2

 ,	find	the	differential	 dw .

Solution
	 First	let	us	find	w wx y, , and wz .

 Now w xy z w yz xx y= + = +2 22 2,  and w zx yz = +2 2 .

 Thus,by (15), the differential is
dw xy z dx yz x dy zx y dz= + + + + +( ) ( ) ( )2 2 22 2 2 .

Example 8.17
 Let U x y z x xy z x y z( , , ) sin , , ,= − + ∈2 3  . Find the linear approximation for U  at  

( , , )2 1 0− .

Solution
 By (14), linear approximation is given by

 L x y z U x y z U
x

x x U
y

y
x y z x y z

( , , ) ( , , ) ( ) (
( , , ) ( , , )

= + ∂
∂

− + ∂
∂0 0 0 0

0 0 0 0 0 0

−− + ∂
∂

−y U
z

z z
x y z

0 0

0 0 0

) ( )
( , , )

.

 Now U x y U xx y= − = −2 ,  and U zz = 3cos .

 Here ( , , ) ( , , )x y z0 0 0 2 1 0= − , hence U Ux y( , , ) , ( , , )2 1 0 5 2 1 0 2− = − = −  and Uz ( , , )2 1 0 3− = .

 Thus L x y z x y z x y z( , , ) ( ) ( ) ( )= + − − + + − = − + −6 5 2 2 1 3 0 5 2 3 6  is the required linear 

approximation for U  at ( , , )2 1 0− .

EXERCISE 8.5
 1. If w x y x xy y x y( , ) , ,= − + ∈3 23 2  ,	find	the	linear	approximation	for	w  at ( , )1 1− .

 2. Let z x y x y xy x y( , ) , ,= + ∈2 43  . Find the linear approximation for z  at ( , )2 1− .

 3. If v x y x xy y x y R( , ) , ,= − + + ∈2 21

4
7 ,	find	the	differential	 dv .

Fig. 8.13
Linear Approximation by Tangent Plane
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Fig. 8.14

W x t y t( ( ), ( ))

dW
dt

∂W
∂x

dx
dt

∂W
∂y

dy
dt

� �

dx
dt

dy
dt

∂W
∂x

∂W
∂y

x y

 4. Let V x y z xy yz zx x y z( , , ) , , ,= + + ∈ . Find the differential dV .

8.6.1 Function of Function Rule
 Let F  be a function of two variables x y, . Sometimes these variables may be functions of a 

single variable having same domain. In this case, the function F  ultimately depends only on one 

variable. So we should be able to treat this F  as a function of single variable and study about dF
dt

. In 

fact, this is not a coincidence, it can be proved that

Theorem 8.2
Suppose that W x y( , )  is a function of two variables x y,  having 

partial derivatives ∂
∂

∂
∂

W
x

W
y

, . If both the variables x y,  are 

differentiable functions of a single variable t , then W  is a differentiable 

function of t  and

   
dW
dt

W
x
dx
dt

W
y
dy
dt

=
∂
∂

+
∂
∂

 ...(16)

 Let us consider an example illustrating the above theorem.

Example 8.18

 Verify the above theorem for F x y x y xy( , ) = − +2 22 2  and  
x t t y t t t( ) cos , ( ) sin , [ , ]= = ∈ 0 2π .

Solution

 Let F(x,y) = x2 – 2y2 + 2xy and x(t) = cost, y(t) = sint.

 Then F x y t t t t( , ) cos sin cos sin= − +2 22 2  and thus F  has becomes a function of one variable 
t . So by using chain rule, we see that

   dF
dt

 =  2 4 2 2 2cos ( sin ) sin cos ( sin cos )t t t t t t− − + − +

    =  − + − +6 2 2 2cos sin ( sin cos )t t t t .
 On the other hand if we calculate

   ∂
∂

+
∂
∂

F
x
dx
dt

F
y
dy
dt

 =  ( ) ( )2 2 2 4x y dx
dt

x y dy
dt

+ + −

    =  2 2 2(cos sin )( sin ) (cos sin )(cos )t t t t t t+ − + −

    =  − + − +6 2 2 2cos sin ( sin cos )t t t t  

    =  dF
dt

.
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Example 8.19
 Let g x y x yx x y x t e y t t tt( , ) sin( ), ( ) , ( ) ,= − + + = = ∈2 3 2    . Find dg

dt
.

Solution
 We shall follow the tree diagram to calculate.

So	first	we	need	to	find	 ∂
∂

∂
∂

g
x

g
y

dx
dt

, ,   and dy
dt

.

Now ∂
∂

= − + + ∂
∂

= − + + =g
x

x y x y g
y

x x y dx
dt

e t2 3 3cos( ), cos( ),   and dy
dt

t= 2 .

Thus
   dg

dt
 =  

∂
∂

+ ∂
∂

g
x
dx
dt

g
y
dy
dt

 

    =  2 3 23x y x y e x x y tt− + +( ) + − + +( )( )cos( ) cos( )

    =  ( cos( )) ( cos( ))( )2 3 23 2 3 2 3 3 3 2e t e t e e e t tt t t t t− + + + − + +

    =  6 3 3 2 26 2 3 3 3 2 3 3 2e t e e e t te t e tt t t t t t− + + − + +cos( ) cos( ) .
 Also, some times our W x y( , )  will be such that x x s t= ( , ) , and y y s t= ( , )  where s t, ∈ . Then 
W  can be considered as a function that depends on s  and t . If x y,  both have partial derivatives with 
respect to s t,  and W  has partial derivatives with respect to x yand , then we can calculate the partial 
derivatives of W  with respect to s  and t  using the following theorem.

Theorem 8.3
 Suppose that W x y( , )  is a function of two variables x y,  

having partial derivatives ∂
∂

∂
∂

W
x

W
y

, . If both variables x = x(s,t) 

and y = y(s,t), where s t, ∈ , have partial derivatives with 
respect to both s and t, then 

 ∂
∂
W
s

 =  ∂
∂

∂
∂
+
∂
∂

∂
∂

W
x
x
s

W
y
y
s

, ... (17)

 ∂
∂
W
t

 =  ∂
∂

∂
∂
+
∂
∂

∂
∂

W
x
x
t

W
y
y
t

. ... (18)

We omit the proof. The above theorem is very useful. For instance, consider the situation in which 
x r= cosθ , and y r= ≥sin ,θ 0  and θ ∈ , (change from cartesian co-ordinate to polar  
co-ordinate system). The above theorem can be generalized for functions having n  number of variables.
 Let us consider an example.

Example 8.20
 Let g x y y x x r s y r s r s( , ) , , , ,= + = − = + ∈2 2 22 2

 . Find ∂
∂

∂
∂

g
r

g
s

, .

Solution
 Here again we shall use the tree diagram to calculate ∂

∂
∂
∂

g
r

g
s

,

	 Hence	we	find		 ∂
∂
g
x

 =  2 2 2 1 2x g
y

x
r

x
s

y
r

r, , , ,    
∂
∂

= ∂
∂

= ∂
∂

= − ∂
∂

=  , and ∂
∂

=
y
s

2 .

Fig. 8.15
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 Now ∂
∂
g
r

 =  ∂
∂

∂
∂

+ ∂
∂

∂
∂

= + = −g
x
x
r

g
y
y
r

x r r s2 2 2 2 12 4( ) ( ) .

 also, ∂
∂
g
s

 =  ∂
∂

∂
∂

+ ∂
∂

∂
∂

= − + = − +g
x
x
s

g
y
y
s

x s r2 1 2 2 2 4 4( ) ( ) .

EXERCISE 8.6

 1. If u x y x y xy x et( , ) ,= + =2 43   and y t= sin , 	find	 du
dt

 and evaluate it at t = 0 .

 2. If u x y z xy z x t y t z e du
dt

t( , , ) , sin , cos , ,= = = = +2 3 21   find .

 3. If w x y z x y z x e y e tt t( , , ) , , sin= + + = =2 2 2    and z e tt= cos ,	find	 dw
dt

.

 4. Let U x y z xyz x e y e t z t tt t( , , ) , , cos , sin ,= = = = ∈− −     . Find dU
dt

.

 5. If w x y x xy y x e y s ss( , ) , , cos ,= − + = = ∈6 3 23 2     ,	find	 dw
ds

, and evaluate at s = 0 ,

 6. If z x y x xy x t y se tt( , ) tan ( ), , , s,= = = ∈−1 2   . Find ∂
∂
z
s

 and ∂
∂
z
t

 at s = t = 1.

 7. Let U x y e yx( , ) sin= , where x st y s t s t= = ∈2 2, , ,    . Find ∂
∂

∂
∂

U
s

U
t

,  and evaluate  
them at s = t = 1.

 8. Let z x y x x y( , ) = −3 2 33 , where x se y se s tt t= = ∈−, , ,  . Find ∂
∂
z
s

 and ∂
∂
z
t

.

 9. W x y z xy yz zx x u v y uv z u v u v( , , ) , , , , ,= + + = − = = + ∈    . Find ∂
∂

∂
∂

W
u

W
v

, , and 

evaluate them at 1

2
1,







 .

8.6.2 Homogeneous Functions and Euler’s Theorem

Definition 8.12

 (a) Let A x y a x b c y d F A= < < < < ⊂ →{( , ) | , } , :   

2 , we say that F  is a homogeneous 

function on A , if there exists a constant p  such that F x y F x yp( , ) ( , )λ λ λ=  for all λ∈  

and sutitably restricted λ, x, y, such that ( , )λ λx y A∈ . This constant p  is called degree of F .

 (b) Let B x y z a x b c y d u z v G B= < < < < < < ⊂ →{( , , ) | , , } , :    

3 , we say that G  is a 

homogeneous function on B , if there exists a constant p such that G x y z G x y zp( , , ) ( , , )λ λ λ λ=  

for all λ∈  and sutitably restricted λ, x, y, z, such that ( , , )λ λ λx y z B∈ . This constant p  

is called degree of G . 
 Note: Division by any variable may occur, to avoid division by zero, we say that λ, x, y, z are 
sutitably restricted real numbers.
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 These types of functions are important in Ordinary differential equations (Chapter 10). Let us 
consider some examples.
 Consider F x y( , )  =  x y xy x y3 3 2 22 5− + ∈, ( , )  . Then

   F x y( , )λ λ  =  ( ) ( ) ( )( ) ( )λ λ λ λ λx y x y x y xy3 3 2 3 3 3 22 5 2 5− + = − +

and hence F  is a homogeneous function of degree 3.
 On the other hand, 
   G x y( , )  =  e yx2

3+ 2  is not a homogeneous function because,

   G x y( , )λ λ  =  e y G x yx p( ) ( ) ( , )λ λ λ
2

3 2+ ≠  
 for any λ ≠1 and any p .

Example 8.21

 Show that F x y x xy y
x y

( , ) =
+ −

+

2 25 10

3 7
 is a homogeneous function of degree 1. 

Solution

 We compute

   F x y( , )λ λ  =  ( ) ( )( ) ( )λ λ λ λ
λ λ

λ
λ

λx x y y
x y

x xy y
x y

2 2 2 2 25 10

3 7

5 10

3 7

+ −
+

= + −
+







= FF x y( , )

for all λ∈ . So F  is a homogeneous function of degree 1.
We state the following theorem of Leonard Euler on homogeneous functions.

Definition 8.13 (Euler)
Suppose that A x y a b c y d F A= < < <{ } ⊂ →( , ) | , , :   

2 2 . If F  is having continuous partial 
derivatives and homogeneous on A , with degree p , then

 x F
x
x y y F

y
x y pF x y x y A∂

∂
+ ∂

∂
= ∀ ∈( , ) ( , ) ( , ) ( , )  .

 Suppose that B x y z a x b c y d u z v F B= < < < < < <{ } ⊂ →( , , ) | , , , :    

3 3 . If F  is having 
continuous partial derivatives and homogeneous on B , with degree p , then

   x F
x
x y z y F

y
x y z z F

z
x y z pF x y z x y z∂

∂
+ ∂

∂
+ ∂

∂
= ∀( , , ) ( , , ) ( , , ) ( , , ) ( , , )  ∈∈B .

We omit the proof. The above theorem is also true for any homogeneous function of n variables;	and 
is	useful	in	certain	calculations	involving	first	order	partial	derivatives.

Example 8.22

 If u x y
x y

=
+
+











−sin 1 , Show that x u
x

y u
y

u∂
∂

+
∂
∂

=
1

2
tan .

Solution
 Note that the function u  is not homogeneous. So we cannot apply Euler’s Theorem for u . 

However, note that f x y x y
x y

u( , ) sin=
+
+

= 	is	homogeneous;	because

Chapter 8 Differentials and Partial Derivatives.indd   85 26-02-2020   17:02:58



86XII - Mathematics

f tx ty tx ty
tx ty

t f x y x y t( , ) ( , ), , ,/=
+
+

= ∀ ≥1 2 0  .

 Thus f  is homogeneous with degree 1

2
, and so by Euler’s Theorem we have

   x f
x
y f
y

∂
∂

+
∂
∂

 =  1
2
f x y( , ) .

 Now substituting f u= sin  in the above equation, we obtain

   x u
x

y u
y

∂
∂

+
∂
∂

(sin ) (sin )  =  1

2
sin u

   x u u
x

y u u
y

cos cos
∂
∂

+
∂
∂

 =  1

2
sin u  ... (19)

 Dividing both sides by cosu  we obtain

   x u
x

y u
y

∂
∂

+
∂
∂

 =  1

2
tan u .

 Note: 
	 Solving	this	problem	by	direct	calculation	will	be	possible;	but	will	involve	lengthy	calculations.

EXERCISE 8.7

 1. In each of the following cases, determine whether the following function is homogeneous or 
not.	If	it	is	so,	find	the	degree.

   (i) f x y x y x( , ) = + +2 36 7  (ii) h x y x y y x y
x y

( , ) =
− +
+

6 9

2020 2019

2 3 5 4

2 2

π  

   (iii) g x y z
x y z
x y

( , , ) =
+ +
+

3 5

4 7

2 2 2

  (iv) U x y z xy y z
xy

( , , ) sin= + −





2 22
.

 2. Prove that f x y x x y xy y( , ) = − + +3 2 2 32 3 	 is	 homogeneous;	 what	 is	 the	 degree?	 Verify	

Euler’s Theorem for f .

 3. Prove that g x y x y
x

( , ) log= 





 	is	homogeneous;	what	is	the	degree?	Verify	Euler’s	Theorem 

for g .

 4. If u x y x y
x y

( , ) =
+
+

2 2

, prove that x u
x

y u
y

u∂
∂

+
∂
∂

=
3

2
.

 5. If v x y x y
x y

( , ) log=
+
+











2 2

, prove that x v
x
y v
y

∂
∂
+

∂
∂

=1.

 6. If w x y z x y y xz y z
x y

( , , ) log=
+ −

+










5 7 753 4 2 4 3 4

2 2
,	find	 x w

x
y w
y

z w
z

∂
∂

+ ∂
∂

+ ∂
∂

 .
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EXERCISE 8.8

Choose the correct or the most suitable answer from the given four alternatives :
 1. A circular template has a radius of  10 cm. The measurement of radius has an approximate 

error of 0.02 cm. Then the percentage error in calculating area of this template is
  (1) 0.2% (2) 0.4% (3) 0.04% (4) 0.08%
 2.	 The	percentage	error	of	fifth	root	of	31	is	approximately	how	many	times	the	percentage	

error in 31?

  (1) 1

31
  (2) 1

5
 (3) 5 (4) 31

 3. If u x y ex y( , ) = +2 2

, then ∂
∂
u
x

 is equal to 

  (1) ex y2 2+   (2) 2xu  (3) x u2   (4) y u2  

 4. If v x y e ex y( , ) log( )= + , then ∂
∂
+
∂
∂

v
x

v
y

 is equal to

  (1) e ex y+     (2) 1
e ex y+

    (3) 2    (4) 1

 5. If w x y x xy( , ) ,= > 0 , then ∂
∂
w
x

 is equal to

  (1) x xy log  (2) y xlog   (3) yxy−1  (4) x ylog

 6. If f x y exy( , ) = , then ∂
∂ ∂

2 f
x y

 is equal to

  (1) xyexy  (2) ( )1+ xy exy   (3) ( )1+ y exy  (4) ( )1+ x exy

 7. If we measure the side of a cube to be 4 cm with an error of 0.1 cm, then the error in our 
calculation of the volume is

  (1) 0.4 cu.cm (2) 0.45 cu.cm (3) 2 cu.cm (4) 4.8 cu.cm
 8. The change in the surface area S x= 6 2  of a cube when the edge length varies from x0  to 

x dx0 +  is

  (1) 12 0x dx+   (2) 12 0x dx   (3) 6 0x dx   (4) 6 0x dx+  

 9. The approximate change in the volume V of a cube of side x  metres caused by increasing 

the side by 1%  is
  (1) 0 3 3. xdxm   (2) 0 03 3. xm   (3) 0 03 2 3. x m   (4) 0 03 3 3. x m

 10. If g x y x y y x t et( , ) , ( )= − + =3 5 22 2  and y t t( ) cos= , then dg
dt

 is equal to

  (1) 6 5 42e t t tt + −sin cos sin  (2) 6 5 42e t t tt − +sin cos sin

  (3) 3 5 42e t t tt + +sin cos sin  (4) 3 5 42e t t tt − +sin cos sin
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 11. If f x x
x

( ) =
+1

, then its differential is given by

  (1) −
+
1

1 2( )x
dx   (2) 1

1 2( )x
dx

+
  (3) 1

1x
dx

+
  (4) −

+
1
1x
dx  

 12. If u x y x xy y( , ) = + + −2 3 2019 , then ∂
∂ −

u
x ( , )4 5

 is equal to

  (1) −4   (2) −3   (3) −7   (4) 13

 13. Linear approximation for g x x( ) cos=  at x = π
2

 is

  (1) x + π
2

  (2) − +x π
2

  (3) x − π
2

  (4) − −x π
2

 

 14. If w x y z x y z y z x z x y( , , ) ( ) ( ) ( )= − + − + −2 2 2 , then ∂
∂

+
∂
∂

+
∂
∂

w
x

w
y

w
z

 is

  (1) xy yz zx+ +   (2) x y z( )+   (3) y z x( )+   (4) 0

 15. If f x y z xy yz zx( , , ) = + + , then f fx z−  is equal to

  (1) z x−   (2) y z−   (3) x z−   (4) y x−  

SUMMARY
 • Let f a b: ( , ) ®   be a differentiable function and x a b0 Î ( , )  then linear approximation L 

of f at x0  is given by
  L x f x f x x x x a b( )= + ′( ) −( )∀ ∈( )( ) ,0 0 0

 • Absolute error =Actual value – Approximate value

  Relative error= Absolute error

Actual value

  Percentage error= ×Relative error 100

  (or)

  Absolute error

Acutal value
100´

 • Let f a b: ,( )→   be a differentiable function. For x a b∈( ),  and Dx  the increment given 

to x, the differential of f	is	defined	by	 df f x x= ′( )∆ .

 • All the rules for limits (limit theorems) for functions of one variable also hold true for 

functions of several variables.

 • Let A x y a x b c y d F A= ( ) < < < <{ }⊂ →, , , : 

2  and x y A0 0,( )∈ .
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  (i) F has a partial derivative with respect to x at x y A0 0,( )∈  if lim
, ,

h

F x h y F x y
h→

+( )− ( )
0

0 0 0 0   

exists and it is denoted by ∂
∂ ( )

F
x x y0 0,

.

  F has a partial derivative with respect to y at x y A0 0,( )∈  if lim
, ,

k

F x y k F x y
k→

+( )− ( )
0

0 0 0 0  

exists	and	limit	value	is	defined	by	 ∂
∂ ( )

F
y x y0 0,

.

 • Clariant’s Theorem: Suppose that A x y a x b c y d= ( ) < < < <{ }⊂, , 

2 , F A: ®  . If 

fxy  and f yx  exist in A and are continuous in A, then f fxy yx=  in A.

 • Let A x y a x b c y d= ( ) < < < <{ }⊂, , 

2 . A function U A: ®   is said to be harmonic 

in A	if	it	satisfies	 ∂
∂
+
∂
∂
= ∀( )∈

2

2

2

2
0

u
x

u
y

x y A, , . This equation is called Laplace’s equation.

 • Let A x y a x b c y d= ( ) < < < <{ }⊂, , 

2 , F A: ®   and x y A0 0,( )∈ .

  (i) The linear approximation of F at x y A0 0,( )∈ 	is	defined	to	be

  L x y F x y F
x

x x F
y

y y
x y x y

, ,
, ,

( )= ( )+ ∂
∂

−( )+ ∂
∂

−( )
( ) ( )

0 0 0 0

0 0 0 0

  (ii) The differential of F	is	defined	to	be	dF F
x
dx F

y
dy=

∂
∂

+
∂
∂

 where ∆x dx=  and ∆y dy= .

 • Suppose w is a function of two variables x, y where x and y are functions of a single variable 

‘t’ then dw
dt

w
x
dx
dt

w
y
dy
dt

=
∂
∂
⋅ +

∂
∂
⋅

 • Suppose w is a function of two variables x and y where x and y are functions of two variables 

s and t then, ∂
∂
=
∂
∂
⋅
∂
∂
+
∂
∂
⋅
∂
∂

w
s

w
x

x
s

w
y

y
s

,  ∂
∂
=
∂
∂
⋅
∂
∂
+
∂
∂
⋅
∂
∂

w
t

w
x

x
t

w
y

y
t

 • Suppose that A x y a x b c y d= ( ) < < < <{ }⊂, , 

2 , F A: ® 

2 . If  F is having continuous 

partial derivatives and homogeneous on A, with degree p, then x F
x

y F
y

pF∂
∂
+
∂
∂
= .
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