Coordinate Geometry

Selected NCERT Questions

- 1. Find the ratio in which the line segment joining the points (-3, 10) and (6, -8) is divided by (-1, 6).
- **Sol.** In Fig. 6.4, let the point P(-1, 6) divides the line joining A(-3, 10) and B(6, -8) in the ratio k: 1 then, the coordinates of P are $\left(\frac{6k-3}{k+1}, \frac{-8k+10}{k+1}\right)$.

But, the coordinates of P are (-1, 6). (Given)

Fig. 6.4
$$\frac{6k-3}{k+1} = -1 \implies 6k-3 = -k-1$$

$$\Rightarrow 6k + k = 3 - 1 \Rightarrow 7k = 2 \Rightarrow k = \frac{2}{7}$$

Hence, the point P divides AB in the ratio 2:7.

- If Q(0, 1) is equidistant from P(5, -3) and R(x, 6) find the value of x. Also, find the distances of QR and PR.
- **Sol.** Since, point Q(0, 1) is equidistant from P(5, -3) and R(x, 6).

Therefore, QP = QR

Squaring both sides, we have, $QP^2 = QR^2$

$$\Rightarrow (5-0)^2 + (-3-1)^2 = (x-0)^2 + (6-1)^2$$

$$\Rightarrow 25 + 16 = x^2 + 25$$

$$\Rightarrow x^2 = 16 \qquad \therefore x = \pm 4$$

Thus, R is (4, 6) or (-4, 6).

Now,
$$QR = \sqrt{(4-0)^2 + (6-1)^2} = \sqrt{16+25} = \sqrt{41}$$
 units

or,
$$QR = \sqrt{(-4-0)^2 + (6-1)^2} = \sqrt{16+25} = \sqrt{41}$$
 units

and
$$PR = \sqrt{(4-5)^2 + (6+3)^2} = \sqrt{1+81} = \sqrt{82}$$
 units

or,
$$PR = \sqrt{(-4-5)^2 + (6+3)^2} = \sqrt{81+81} = 9\sqrt{2}$$
 units

- 3. Find the coordinates of the points which divide the line segment joining A (-2, 2) and B (2, 8) into four equal parts.
- Sol. Let P, Q, R be the points that divide the line segment joining A(-2, 2) and B(2, 8) into four equal parts. (Fig. 6.5)

Since, Q divides the line segment AB into two equal parts, i.e., Q is the mid-point of AB.

$$\therefore$$
 Coordinates of Q are $\left(\frac{-2+2}{2}, \frac{2+8}{2}\right)$ i.e., $(0, 5)$

Now, P divides AQ into two equal parts i.e., P is the mid-point of AQ.

$$\therefore$$
 Coordinates of P are $\left(\frac{-2+0}{2}, \frac{2+5}{2}\right)$ i.e., $\left(-1, \frac{7}{2}\right)$

Again, R is the mid-point of QB.

$$\therefore$$
 Coordinates of R are $\left(\frac{0+2}{2}, \frac{5+8}{2}\right)$ i.e., $\left(1, \frac{13}{2}\right)$.

- 4. Find the coordinates of a point A, where AB is the diameter of circle whose center is O(2, -3) and B(1, 4).
- **Sol.** Let the coordinate of A be (x, y), O(2, -3) be centre of circle and AB be diameter. Since, O is centre of AB.

By section formula

$$2 = \frac{1 \times 1 + 1 \times x}{1 + 1}, -3 = \frac{1 \times 4 + 1 \times y}{1 + 1}$$

$$\Rightarrow \qquad 2 = \frac{1+x}{2}, -3 = \frac{4+y}{2}$$

$$\Rightarrow \qquad x = 4 - 1, y = -6 - 4$$

$$\Rightarrow \qquad x = 3, y = -10$$

Hence, coordinates of A = (3, -10).

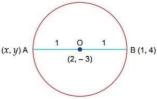


Fig. 6.6

5. In what ratio does the point (-4, 6) divide the line segment joining the points A(-6, 10) and B(3, -8)?

Sol. Let (-4, 6) divide AB internally in the ratio $m_1 : m_2$. Using the section formula, we get

$$(-\,4,\,6) = \left(\frac{3m_1 - 6m_2}{m_1 + m_2}, \frac{-8m_1 + 10m_2}{m_1 + m_2}\right)$$

So,
$$-4 = \frac{3m_1 - 6m_2}{m_1 + m_2} \text{ and } 6 = \frac{-8m_1 + 10m_2}{m_1 + m_2}$$

Now,
$$-4 = \frac{3m_1 - 6m_2}{m_1 + m_2}$$
 gives

$$-4m_1 - 4m_2 = 3m_1 - 6m_2$$
 i.e.,
$$7m_1 = 2m_2$$

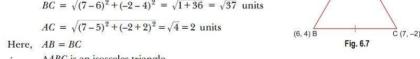
i.e.,
$$m_1:m_9=2:7$$

Verification

Also,
$$\frac{-8m_1 + 10m_2}{m_1 + m_2} = \frac{-8\frac{m_1}{m_2} + 10}{\frac{m_1}{m_2} + 1}$$
 (Dividing throughout by m_2)
$$= \frac{-8 \times \frac{2}{7} + 10}{\frac{2}{5} + 1} = 6$$

Therefore, the point (-4, 6) divides the line segment joining the points A(-6, 10) and B(3, -8) in the ratio 2:7.

6. Check whether (5, -2), (6, 4) and (7, -2) are the vertices of an isosceles triangle.


Sol. Let A(5, -2), B(6, 4) and C(7, -2) be the vertices of a triangle.

Then we have.

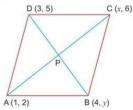
$$AB = \sqrt{(6-5)^2 + (4+2)^2} = \sqrt{1+36} = \sqrt{37} \text{ units}$$

$$BC = \sqrt{(7-6)^2 + (-2-4)^2} = \sqrt{1+36} = \sqrt{37} \text{ units}$$

 \therefore $\triangle ABC$ is an isosceles triangle.

7. If (1, 2), (4, y), (x, 6) and (3, 5) are the vertices of a parallelogram taken in order, find x and y.

Sol. Let A(1, 2), B(4, y), C(x, 6) and D(3, 5) be the vertices of a parallelogram ABCD.


Since, the diagonals of a parallelogram bisect each other.
$$\therefore \qquad \left(\frac{x+1}{2}, \frac{6+2}{2}\right) = \left(\frac{3+4}{2}, \frac{5+y}{2}\right)$$

$$\Rightarrow \qquad \frac{x+1}{2} = \frac{7}{2}$$

$$\Rightarrow \qquad x+1=7 \quad \text{or} \quad x=6$$

$$\Rightarrow$$
 4 = $\frac{5+y}{2}$ or 5 + y = 8 or y = 8 - 5 = 3

Hence, x = 6 and y = 3.

A (5, -2)

Fig. 6.8

Sol. Let the given points be A(4, -1) and B(-2, -3) and points of trisection be P and Q.

Let
$$AP = PQ = QB = k$$

$$PB = PQ + QB = k + k = 2k$$

 $AP : PB = k : 2k = 1 : 2$

Therefore, coordinates of P are

$$\left(\frac{1 \times (-2) + 2 \times 4}{3}, \frac{1 \times (-3) + 2 \times (-1)}{3}\right) = \left(2, -\frac{5}{3}\right)$$

Now,
$$AQ = AP + PQ = k + k = 2k$$

$$AQ: QB = 2k: k = 2:1$$

and, coordinates of Q are

$$\left(\frac{2\times (-2)+1\times 4}{3},\ \frac{2\times (-3)+1\times (-1)}{3}\right)=\left(0,-\frac{7}{3}\right)$$

Hence, points of trisection are $\left(2, -\frac{5}{3}\right)$ and $\left(0, -\frac{7}{3}\right)$.

9. Find the ratio in which the line segment joining A(1, -5) and B(-4, 5) is divided by the x-axis. Also find the coordinates of the point of division.

Sol. Let the required ratio be k:1. Then, the coordinates of the point of division is

$$P\left(\frac{-4k+1}{k+1}, \frac{5k-5}{k+1}\right).$$

Since, this point lies on x-axis. Therefore its y-coordinate is zero.

i.e.,
$$\frac{5k-5}{k+1} = 0$$

$$\Rightarrow 5k - 5 = 0$$

$$5k = 5$$
 or $k = \frac{5}{5} = 1$

Thus, the required ratio is 1:1 and the point of division is $P\left(\frac{-4\times1+1}{1+1}, \frac{5\times1-5}{1+1}\right)$

i.e.,
$$P\left(-\frac{3}{2}, 0\right)$$

10. Find the area of a rhombus if its vertices (3, 0), (4, 5), (-1, 4) and (-2, -1) are taken in order.

Sol. Let A(3,0), B(4,5), C(-1,4) and D(-2,-1) be the vertices of a rhombus.

Therefore, its diagonals

$$AC = \sqrt{(-1-3)^2 + (4-0)^2}$$
 $= \sqrt{16+16}$ $= \sqrt{32} = 4\sqrt{2}$
and $BD = \sqrt{(-2-4)^2 + (-1-5)^2}$ $= \sqrt{36+36}$ $= \sqrt{72} = 6\sqrt{2}$

$$\therefore$$
 Area of rhombus $ABCD = \frac{1}{9} \times (Product of length of diagonals)$

$$=\frac{1}{2} \times AC \times BD = \frac{1}{2} \times 4\sqrt{2} \times 6\sqrt{2} = 24$$
 sq units.

Multiple Choice Questions

(a) (3,5)

(a) $2\sqrt{ab}$

(a) $a^2 + b^2$

(a) -2

(a) (2,0)

(a) 6 units

(a) They are multiple of 3.

Choose and write the correct option in the following questions.

(b) (3, -5)

2. The distance between the points (0, 0) and (a - b, a + b) is

(b) $a^2 - b^2$

(b) 3 units

(b) (0, 2)

7. The distance between the points A(0, 6) and B(0, -2) is

(b) 8 units

is true about the all possible x coordinates of point N?

(b) 2

5. The distance of the point P(2, 3) from the x-axis is

(b) $\sqrt{2a^2 + ab}$

1. The co-ordinate of the point which is reflection of the point (-3, 5) in X-axis are

3. The distance between the points $(a \cos \theta + b \sin \theta, 0)$ and $(0, a \sin \theta - b \cos \theta)$ is

4. If the distance between the points (2, -2) and (-1, x) is 5, one of the values of x is

6. The coordinate of point P on X-axis equidistant from the points A(-1, 0) and B(5, 0) is

8. The distance between two points, M and N, on a graph is given as $\sqrt{10^2 + 7^2}$. The coordinates of point M are (-4, 3). Given that the point N lies in the first quadrant, which of the following

(c) (-3, -5)

(c) $2\sqrt{a^2+b^2}$

(c) $\sqrt{a^2 + b^2}$

(c) -1

(c) 1 units

(c) (3,0)

(c) 4 units

(b) They are multiple of 4.

[CBSE 2020 (30/2/1)]

[CBSE 2020 (30/C/1)]

[CBSE 2020 (30/1/1)]

[NCERT Exemplar]

[NCERT Exemplar]

[CBSE 2020 (30/2/1)]

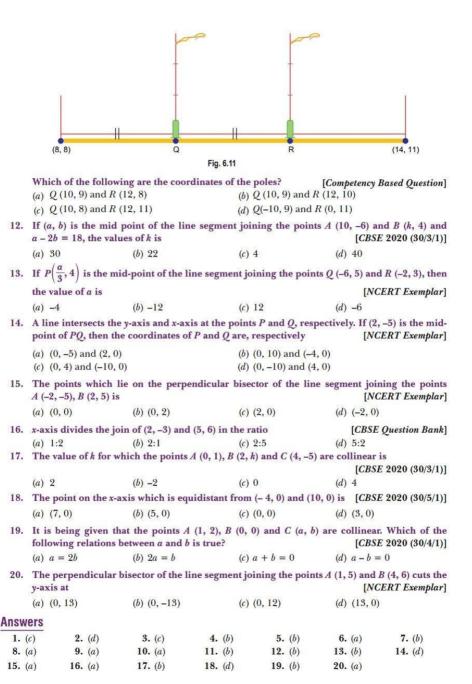
[NCERT Exemplar]

[Competency Based Question]

(d) (-3,5)

(d) $\sqrt{2a^2+2b^2}$

(d) $\sqrt{a^2-b^2}$


(d) 1

(d) 5 units

(d) (2,2)

(d) 2 units

	(c) They are multip	le of 5.	(d) They are mult	iple of 6.
9.		he point which is equ	idistant from the three $ \begin{array}{c} B \\ (2v. 0) \end{array} $	vertices of the triangle shown
		F	ig. 6.10	
	(a) (x, y)	(b) (y, x)	(c) $\left(\frac{x}{2}, \frac{y}{2}\right)$	(d) $\left(\frac{y}{2}, \frac{x}{2}\right)$
10.	The end points of d	iameter of circle are (2, 4) and (-3, -1). The	radius of the circle is
	(a) $\frac{5\sqrt{2}}{2}$ units	(b) $5\sqrt{2}$ units	(c) $3\sqrt{2}$ units	(d) $\frac{\pm 5\sqrt{2}}{2}$ units
11.	Sales and the sales of the sale	nstalled on an elevate ing points of the road	Charles to see the second seco	6.11 The diagram also shows

Very Short Answer Questions

Each of the following questions are of 1 mark.

1. Find the distance of a point p(x, y) from the origin.

[CBSE 2018 (30/1/1)]

Sol.

3)	Distance between (x,y) and (0,0).	
	=> \ (x1-x2)2+ (x1-x2)2	
	= J(X-0) + (Y-0)*	
	= X=+A=.	
	The distance is July 2.	[Topper's Answer 2018

2. If the distance between the points (4, k) and (1, 0) is 5, then what can be the possible values of k?
[CBSE Delhi 2017]

Sol. Using distance formula $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$, we have

$$\Rightarrow \sqrt{(4-1)^2 + (k-0)^2} = 5 \qquad \Rightarrow \qquad 9 + k^2 = 25$$

$$\Rightarrow \qquad k^2 = 16 \qquad \Rightarrow \qquad k = \pm 4$$

3. Find the coordinates of a point A, where AB is a diameter of the circle with centre (-2, 2) and B is the point with coordinates (3, 4). [CBSE 2019 (30/1/2)]

Sol. Let co-ordinate of point A be (x, y).

$$\therefore -2 = \frac{x+3}{2} \qquad \Rightarrow x+3 = -4 \qquad \Rightarrow x = -7$$
and $2 = \frac{y+4}{2} \qquad \Rightarrow y+4 = 4 \qquad \Rightarrow y = 0$

 \therefore Co-ordinate of A are (-7, 0).

4. Find the positive value of m, if the distance between the points A (5, -3) and B (13, m) is 10 units.

[CBSE 2019 (30/3/2)]

Sol.

6.	Given, A = 5,-3 B = 13,m	
	B = 13,7m	- American A
	AB = 1 byents	
	Using distance formula;	
	$\int (13-5)^2 + (m+3)^2 = 10$	
	$\int ((3-5)^{2} + (m+3)^{2} = 10$ on squaring;	
	82+6m+3)2 = 100	
	\$ (m+3)2 = 100-64	
	* J(m+3)2 = 136	
	* (m+3) = +6	
	Considering only positive palue;	
	9M = 6-3	
	∋[m = 3]	[Topper's Answer 2019]

- 5. If the centroid of triangle formed by points P(a, b), Q(b, c) and R(c, a) is at the origin, what is the value of a + b + c?
- Sol. Centroid of $\triangle PQR = \left(\frac{a+b+c}{3}, \frac{b+c+a}{3}\right)$ Given $\left(\frac{a+b+c}{3}, \frac{b+c+a}{3}\right) = (0,0)$ $\Rightarrow a+b+c=0$
 - 6. The coordinates of the points P and Q are respectively (4, -3) and (-1, 7). Find the abscissa of a point R on the line segment PQ such that $\frac{PR}{PO} = \frac{3}{5}$. [Competency Based Question]

Sol.

i.e., R divides PQ in the ratio 3:2.

Abscissa of
$$R = \frac{3 \times (-1) + 2 \times 4}{3 + 2} = \frac{-3 + 8}{5} = 1$$

Short Answer Questions-I

Each of the following questions are of 2 marks.

1. Prove that the points (3, 0), (6, 4) and (-1, 3) are the vertices of a right isosceles triangle.

[CBSE (AI) 2016]

Sol.

8)-	Let A - (3,0); B = (6,4) and C = (-1,3).
	Applying distance formula - AB = $\sqrt{(6-3)^2 + (4-0)^2} = \sqrt{3^2 + 4^2} = \sqrt{25} = 5$ with
	$AB = \sqrt{(6-3)^{-1}(4-6)^2} = \sqrt{3+4^2} = \sqrt{25} = 5 \text{ unu}$
	$BC = \sqrt{(G+1)^2+(4-3)^2} = \sqrt{7^2+1^2} = \sqrt{49+1} = \sqrt{50} = 5\sqrt{2}$ with
	$AC = \sqrt{(3+1)^2 + (0-3)^2} = \sqrt{25} = 5 \text{ unit.}$
	Since,
	AB = AC = Sunit
	DABC is isscilles triangle.
	Olso, AB+AC
	a) 5 4 5
	25+25=50= BC2 = (5/2)2 =) AB+AC=BC
3	
	There, by convuse of Pythagenes Theorem, -1 ABC is right angled triangle [Topper's Answer 201

- If the point A (0, 2) is equidistant from the points B(3, p) and C(p, 5), find p. Also find the length of AB.
 [CBSE Delhi 2014]
- **Sol.** Given that A(0, 2) is equidistant from B(3, p) and C(p, 5).

$$\therefore AB = AC$$

$$AB^{2} = AC^{2}$$

$$\Rightarrow (3-0)^{2} + (p-2)^{2} = (p-0)^{2} + (5-2)^{2}$$

$$\Rightarrow 3^{2} + p^{2} + 4 - 4p = p^{2} + 9 \qquad \Rightarrow 4 - 4p = 0$$

$$\Rightarrow 4p = 4 \qquad \Rightarrow p = 1$$
Length of $AB = \sqrt{(3-0)^{2} + (1-2)^{2}} = \sqrt{3^{2} + (-1)^{2}} = \sqrt{9+1} = \sqrt{10}$ units

3. If the point P(x, y) is equidistant from the points A(a + b, b - a) and B(a - b, a + b). Prove that bx = ay.

[CBSE (AI) 2016]

Sol. Given,
$$PA = PB$$
 or $(PA)^2 = (PB)^2$
 $(a + b - x)^2 + (b - a - y)^2 = (a - b - x)^2 + (a + b - y)^2$
 $\Rightarrow (a + b)^2 + x^2 - 2ax - 2bx + (b - a)^2 + y^2 - 2by + 2ay$
 $= (a - b)^2 + x^2 - 2ax + 2bx + (a + b)^2 + y^2 - 2ay - 2by$
 $\Rightarrow 4ay = 4bx$ or $bx = ay$

4. If the distances of P(x, y) from A(5, 1) and B(-1, 5) are equal, then prove that 3x = 2y.

[CBSE (AI) 2017]

Sol.	8.	PA = PB
		.: PA2 = PB2
		by distance formula,
		(5-x)2 + (1-4)2= (-1-x)2 + (5-4)2
		=> (5-x)2 + (1-y)2 = (1+x)2 + (5-y)2
		25-10x+x2+x-2y+y1=x+2x+xx+25-10y+yx
		-102 -24 = 22 -104
		84 = 12x
	0	47(24) = 4(3x)
		- ∴ 3α = 2y
		Hence, proved. [Topper's Answer 2017]

5. If two adjacent vertices of a parallelogram are (3, 2) and (-1, 0) and the diagonals intersect at (2, -5), then find the coordinates of the other two vertices. [CBSE (F) 2017]

Sol. Let other two coordinates are (x, y) and (x', y').

Hence proved.

∴ O is mid point of AC and BD.
∴
$$2 = \frac{x+3}{2}$$

⇒ $x = 1$
and, $-5 = \frac{2+y}{2}$
⇒ $y = -12$
Again, $\frac{-1+x'}{2} = 2$
⇒ $x' = 5$
and $\frac{0+y'}{2} = -5$ ⇒ $y' = -10$

(2, -5) (3, 2) (-1, 0) Fig. 6.13

Hence, co-ordinates are (1, -12) and (5, -10).

 Point P and Q trisect the line segment joining the points A (-2, 0) and B (0, 8), such that P is nearer to A. Find the co-ordinates of points P and Q. [CBSE 2019(30/3/1)]

Sol.
$$P$$
 divides AB in the ratio 1:2

$$\therefore \text{ Coordinates of } P \text{ are } \left(\frac{0-4}{3}, \frac{8+0}{3}\right) = \left(\frac{-4}{3}, \frac{8}{3}\right)$$

$$A = Q$$

$$B = Q$$

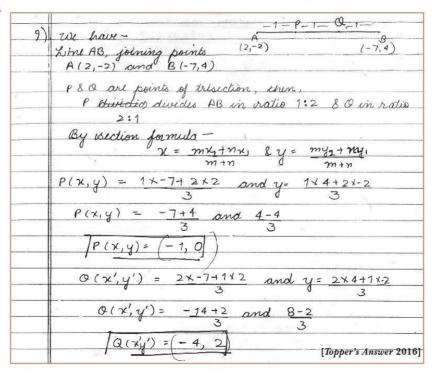
$$(0,8)$$

$$\therefore \quad \text{Coordinates of } Q \text{ are } \left(\frac{0-2}{3}, \frac{16+0}{3}\right) = \left(\frac{-2}{3}, \frac{16}{3}\right)$$

[CBSE Marking Scheme 2019 (30/3/1)]

Fig. 6.14

7. If the point C(-1, 2) divides internally the line segment joining the points A(2, 5) and B(x, y) in the ratio of 3: 4, find the value of $x^2 + y^2$. [CBSE (F) 2016]


Sol. : C(-1, 2) divides AB in the ratio 3:4.

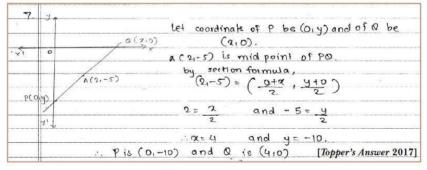
$$\therefore x^2 + y^2 = (-5)^2 + (-2)^2 = 29$$

8. Let
$$P$$
 and Q be the points of trisection of the line segment joining the points $A(2, -2)$ and $B(-7, 4)$ such that P is nearer to A . Find the coordinates of P and Q .

[CBSE (AI) 2016]

Sol.

9. Find the ratio in which P(4, m) divides the line segment joining the points A(2, 3) and B(6, -3). Hence find m.


Sol.

						98
@\ 9	Points A(2,3), O(6,-3) divided by	P(4,m).	4.00	2		
	Let the made be kill. By sag section formula, P(4,00) = [mx_++nx_+ my_++nx_0]			5.0 0.00 5.9,500	+	.J.
	$P\left(4_{1}m\right) = \frac{\left(mx_{2}+nx_{1}}{\ln n+n}, \frac{my_{1}-ny_{1}}{m+n}\right)$ $\left(4_{1}m\right) = \frac{\left(k+2\right)}{\left(k+1\right)} - \frac{2}{3}k+3$			Jan Santa		
	=) 6k12 = 4 k11 Serz = 4k+4	12 2 4 4 5 1 4 4 5 1 4 4 5 1 4 4 5 1 4 4 5 1 4 4 5 1 4 4 5 1 4 4 5 1 4 4 5 1 4 4 5 1				
		is (2).	10 3042.0	*230 % No	Cha.	
	Now, ma -3k+3	[Topper's Answer 201				
	$m = \frac{-3+3}{(-2)}$ $m = 0$. \rightarrow Value of	m is O. the	point is P	(4.0).	دند. حدا	

10. A line intersects the Y-axis and X-axis at the points P and Q respectively. If (2, -5) is the midpoint of PQ, then find the co-ordinates of P and Q.

[CBSE (AI) 2017)]

Sol.

Short Answer Questions-II

Each of the following questions are of 3 marks.

- Find the coordinates of a point on the x-axis which is equidistant from the points A(2, -5) and B(-2, 9).
 [CBSE Delhi 2017 (C)]
- **Sol.** Let P(x, 0) be any point on x-axis.

Now, P(x, 0) is equidistant from point A(2, -5) and B(-2, 9).

$$AP = BP$$

$$\Rightarrow \sqrt{(x-2)^2 + (0+5)^2} = \sqrt{(x+2)^2 + (0-9)^2}$$

Squaring both sides, we have

$$(x-2)^2 + 25 = (x+2)^2 + 81$$

$$\Rightarrow$$
 $x^2 + 4 - 4x + 25 = x^2 + 4 + 4x + 81 \Rightarrow $-8x = 56$$

$$\therefore x = \frac{56}{-8} = -7$$

 \therefore The point on the x-axis equidistant from given points is (-7, 0).

In Fig. 6.16, \(\Delta BC \) is an equilateral triangle of side 3 units. Find the coordinates of the other two vertices. [Competency Based Question] [CBSE (F) 2017]

Sol. Since AB = BC = AC = 3 units

.. Co-ordinates of B are (5, 0).

Let co-ordinates of C be (x, y).

$$AC^2 = BC^2$$
 [:: $\triangle ABC$ is an equilateral triangle]

Using distance formula

$$(x-2)^2 + (y-0)^2 = (x-5)^2 + (y-0)^2$$

$$\Rightarrow x^2 + 4 - 4x + y^2 = x^2 + 25 - 10x + y^2$$

$$6x = 21$$

$$\Rightarrow x = \frac{21}{6} = \frac{7}{9}$$

Again
$$(x-2)^2 + (y-0)^2 = 9$$

$$\Rightarrow \left(\frac{7}{9} - 2\right)^2 + y^2 = 9$$

$$\Rightarrow \qquad \left(\frac{3}{2}\right)^2 + y^2 = 9 \quad \Rightarrow \qquad y^2 = 9 - \frac{9}{4}$$

$$\Rightarrow y^2 = \frac{27}{4} \Rightarrow y = \frac{3\sqrt{3}}{2}$$
Hence, co-ordinate of $C\left(\frac{7}{2}, \frac{3\sqrt{3}}{2}\right)$.

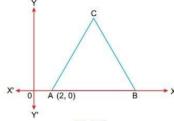


Fig. 6.16

[CBSE Marking Scheme 2020 (30/2/1)]

(+ve sign to be taken)

3. If the point P(k-1, 2) is equidistant from the points A(3, k) and B(k, 5), find the values of k.

[CBSE (AI) 2014]

Sol. Since P is equidistant from A and B,

$$AP = BP \text{ or } AP^2 = BP^2$$

$$\Rightarrow [3 - (k - 1)]^2 + (k - 2)^2 = [k - (k - 1)]^2 + (5 - 2)^2$$

$$\Rightarrow (3 - k + 1)^2 + (k - 2)^2 = (k - k + 1)^2 + (3)^2$$

$$\Rightarrow (4 - k)^2 + (k - 2)^2 = (1)^2 + (3)^2$$

$$\Rightarrow 16 + k^2 - 8k + k^2 + 4 - 4k = 1 + 9$$

$$\Rightarrow 2k^2 - 12k + 20 = 10 \Rightarrow k^2 - 6k + 10 = 5$$

$$\Rightarrow k^2 - 6k + 5 = 0 \Rightarrow k^2 - 5k - k + 5 = 0$$

$$\Rightarrow k + 1 \text{ or } k = 5$$

4. If the mid-point of the line segment joining the points A (3, 4) and B (k, 6) is P (x, y) and x + y - 10 = 0, find the value k.

[CBSE 2020 (30/2/1)]

Sol.
$$A(3, 4)$$
 $P(x, y)$ $B(k, 6)$

Fig. 6.17

 $x = \frac{3+k}{2}, \quad y = 5$ $\frac{3+k}{2} + 5 - 10 = 0$ 1
 $\Rightarrow \quad k = 7$

5. In what ratio does the point P(-4, y) divide the line segment joining the points A(-6, 10) and B(3, -8) if it lies on AB? Hence find the value of y.

[CBSE 2020 (30/3/1)]

Sol. Let k:1 be the required ratio.

∴ Using section formula

$$x = \frac{kx_2 + x_1}{k+1}$$
 \Rightarrow $-4 = \frac{k \times 3 + 1 \times (-6)}{k+1}$

$$\Rightarrow \qquad -4k - 4 = 3k - 6 \quad \Rightarrow \quad -4 + 6 = 3k + 4k$$

$$\Rightarrow \qquad 2 = 7k \qquad \Rightarrow \quad k = \frac{2}{7}$$

:. Ratio be 2 : 7.

Now,
$$y = \frac{k \times (-8) + 1 \times 10}{k+1} = \frac{\frac{2}{7} \times (-8) + 10}{\frac{2}{7} + 1}$$
$$= \frac{-16 + 70}{9} = \frac{54}{9} = 6$$

$$\therefore$$
 $y = 6$

6. In what ratio does the point $\left(\frac{24}{11}, y\right)$ divide the line segment joining the point P(2, -2) and O(3, 7)? Also find the value of y.

Q (3, 7)? Also find the value of y. Sol.

14. Here x1= 2, 41=-2 P(21-2) (24,4) x2=8, 42=7 Using section formula, $\frac{24}{11} = \frac{3m + 2n}{m}$ 24m+24n = 33m +22n $\frac{2}{9} = \frac{m}{h}$. The given point dindes the line segment in ratio 2:9. Taking m=2 and n= 9, (from (1) 7m -2n 4 = 7(2)-2(9) 14-18 -4 [Topper's Answer 2017] 11

Find the coordinates of the points of trisection of the line segment joining the points (3, -1) and (6, 8).
 [CBSE 2020 (30/4/1)]

Sol. Case I: If C and D trisect AB
then C divides AB in the ratio 1: 2.

Co-ordinates of C:
$$x = \frac{1 \times 6 + 2 \times 3}{3} = 4$$

and
$$y = \frac{1 \times 8 + 2 \times (-1)}{2} = 2$$

Co D
A
B
1/2
Fig. 6.18

$$\therefore$$
 Co-ordinates of point C be $(4, 2)$.

Case II: If D divides AB in the ratio 2: 1, then
$$\frac{1}{2}$$
Co-ordinates of D: $x' = \frac{2 \times 6 + 1 \times 3}{3} = 5$

$$y' = \frac{2 \times 8 + 1 \times (-1)}{3} = 5$$
1/2

and
$$y = \frac{}{3} = 5$$
 \therefore Co-ordinates of D (5, 5). [CBSE Marking Scheme 2020 (30/4/1)]

Long Answer Questions

Each of the following questions are of 5 marks.

If the coordinates of the mid-points of the sides of a triangle are (1, 1), (2, -3) and (3, 4). Find its centroid.

...(i)

...(ii)

Sol. Let P(1, 1), Q(2, -3), R(3, 4) be the mid-points of sides AB, BC and CA respectively, of triangle ABC. Let $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ be the vertices of triangle ABC. Then, P is the mid-point of AB.

d (1, 1) P
$$R(3, 4)$$

B (x_2, y_2) $Q(2, -3)$ $C(x_3, y_3)$

Fig. 6.19

$$\Rightarrow \frac{x_1 + x_2}{2} = 1, \ \frac{y_1 + y_2}{2} = 1$$

$$\Rightarrow x_1 + x_2 = 2 \text{ and } y_1 + y_2 = 2$$
Q is the mid-point of BC
$$x_2 + x_3 = y_3 + y_4$$

$$\Rightarrow \frac{x_2 + x_3}{2} = 2, \quad \frac{y_2 + y_3}{2} = -3$$

$$\Rightarrow x_2 + x_3 = 4 \quad \text{and} \quad y_2 + y_3 = -6$$

R is the mid-point of AC

$$\Rightarrow \frac{x_1 + x_3}{2} = 3 \quad \text{and} \quad \frac{y_1 + y_3}{2} = 4$$

$$\Rightarrow x_1 + x_3 = 6 \text{ and } y_1 + y_3 = 8 \qquad \dots(iii)$$
From (i), (ii) and (iii), we get

 $x_1 + x_2 + x_2 + x_3 + x_1 + x_3 = 2 + 4 + 6$

and
$$y_1 + y_2 + y_2 + y_3 + y_1 + y_3 = 2 - 6 + 8$$

 $\Rightarrow x_1 + x_2 + x_3 = 6$ and $y_1 + y_2 + y_3 = 2$...(iv)

The coordinates of the centroid of $\triangle ABC$ are

$$\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right) = \left(\frac{6}{3}, \frac{2}{3}\right) = \left(2, \frac{2}{3}\right)$$
 [Using (iv)]

- 2. Find the ratio in which the line x 3y = 0 divides the line segment joining the points (-2, -5) and (6, 3). Find the coordinates of the point of intersection. [CBSE 2019 (30/2/1)]
- Sol. Let the line x 3y = 0 intersect the segment joining A(-2, -5) and B(6, 3) in the ratio k : 1

$$\therefore \text{ Coordinates of } P \text{ are } \left(\frac{6k-2}{k+1}, \frac{3k-5}{k+1}\right)$$

$$(k+1)^{k} + 1 /$$

$$P \text{ lies on } x - 3y = 0 \implies \frac{6k-2}{k+1} = 3\left(\frac{3k-5}{k+1}\right) \implies k = \frac{13}{2}$$

$$\Rightarrow$$
 Coordinates of P are $\left(\frac{9}{2}, \frac{3}{2}\right)$

[CBSE Marking Scheme 2019 (30/2/1)]

(0, v)

Fig. 6.21

Fig. 6.20

- 3. (i) Find the ratio in which the y-axis divides the line segment joining the points (6, -4) and (-2, -7). Also find the point of intersection.
 - (ii) Show that the points (7, 10), (-2, 5) and (3, -4) are vertices of an isosceles right triangle. [CBSE 2020 (30/5/1)]
- Sol. (i) Let the point P(0, y) on y-axis divides the line segment AB in k:1

$$\therefore 0 = \frac{-2k+6}{k+1} \Rightarrow k = 3 \therefore \text{ Ratio is } 3:1$$

Also,
$$y = \frac{3(-7) + 1(-4)}{3 + 1} = \frac{-25}{4}$$
 :. Point of intersection is $\left(0, \frac{-25}{4}\right)$

(ii) Let the points be
$$A(7, 10)$$
, $B(-2, 5)$ and $C(3, -4)$

$$AB = \sqrt{(-2-7)^2 + (5-10)^2} = \sqrt{106}$$

$$BC = \sqrt{(3+2)^2 + (-4-5)^2} = \sqrt{106}$$

$$AC = \sqrt{(3-7)^2 + (-4-10)^2} = \sqrt{212}$$

 $AB = BC$ and $AC^2 = AB^2 + BC^2$

Hence ABC is isosceles right triangle.

[CBSE Marking Scheme 2020 (30/5/1)]

- 4. Point P divides the line segment joining the points A(2,1) and B(5,-8) such that $\frac{AP}{AB} = \frac{1}{3}$. If P lies on the line 2x y + k = 0, find the value of k. [CBSE 2019 (30/5/1)]
- **Sol.** Let the point P be (x, y) which divides AB such that

$$\frac{AP}{AB} = \frac{1}{3} \implies \frac{AB}{AP} = \frac{3}{1} \implies \frac{AB}{AP} - 1 = \frac{3}{1} - 1$$

$$\Rightarrow \frac{AB - AP}{AP} = \frac{2}{1} \implies \frac{PB}{AP} = \frac{2}{1}$$

$$\Rightarrow \frac{AP}{BP} = \frac{1}{2} \Rightarrow AP : BP = 1:2$$

∴ Using section formula, we have

$$x = \frac{1 \times 5 + 2 \times 2}{1 + 2} = \frac{9}{3} = 3$$

$$y = \frac{1 \times (-8) + 2 \times 1}{1 + 2} = \frac{-8 + 2}{3} = \frac{-6}{3} = -2$$

 \therefore Co-ordinate of P be (3, -2).

Now, P(3, -2) lies on the line 2x - y + k = 0.

$$2 \times 3 - (-2) + k = 0$$

$$\Rightarrow \qquad 6+2+k=0 \quad \Rightarrow \qquad k=-8$$

Case Study-based Questions

Each of the following questions are of 4 marks.

1. Read the following and answer any four questions from (i) to (v).

In order to conduct Sports Day activities in your School, lines have been drawn with chalk powder at a distance of 1 m each, in a rectangular shaped ground *ABCD*, 100 flowerpots have been placed at a distance of 1 m from each other along *AD*, as shown in given figure below. Niharika runs 1/4 th the distance *AD* on the 2nd line and posts a green flag. Preet runs 1/5th distance *AD* on the eighth line and posts a red flag. [Competency Based Question]

- (i) The position of green flag is
 - (a) (2, 25) (b) (2, 0.25)

(d)(0, -25)

- (ii) The position of red flag is
 - (a) (8,0)
- (b) (20, 8)
- (c) (8, 20)

(c) (25, 2)

(d) (8, 0.2)

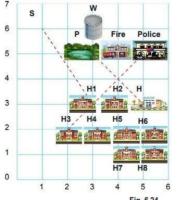
- (iii) What is the distance between both the flags?
 - (a) $\sqrt{41}$
- (b) $\sqrt{11}$
- (c) √61
- (d) √51
- (iv) If Rashmi has to post a blue flag exactly halfway between the line segment joining the two flags, where should she post her flag?
 - (a) (5, 22.5)
- (b)(10, 22)
- (c) (2, 8.5)
- (d) (2.5, 20)
- (v) If Joy has to post a flag at one-fourth distance from green flag in the line segment joining the green and red flags, then where should he post his flag?
 - (a) (3.2, 24)
- (b) (0.5, 12.5)
- (c) (2.25, 8.5)
- (d) (25, 20)

- **Sol.** (i) Niharika runs $\frac{1}{4}$ th the distance AD on the second line, post a green flag.
 - :. Position of the green flag is $\left(2, \frac{1}{4} \times 100\right)$, *i.e.*, (2, 25).
 - .. Option (a) is correct.
 - (ii) Preet runs $\frac{1}{\epsilon}$ th distance AD on the eighth line and posts a red flag.
 - \therefore Position of the red flag is $\left(8, \frac{1}{5} \times 100\right)$, i.e., (8, 20).

Its position is (8, 20).


- : Option (c) is correct.
- (iii) Distance between green flag and red flag is

$$=\sqrt{(20-25)^2+(8-2)^2}=\sqrt{25+36}=\sqrt{61}$$
 units


- : Option (c) is correct.
- (*iv*) Position of the blue flag = $\begin{pmatrix} 2+8 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 25+20 \\ 2 \end{pmatrix}$ = (5, 22.5)
 - .. Option (a) is correct.
- (v) Let P(x, y) be the position of a flag posted by Joy

using section formula, we have

$$x = \frac{1 \times 8 + 4 \times 2}{1 + 4} = \frac{16}{5} = 3.2$$
$$y = \frac{1 \times 20 + 4 \times 25}{1 + 4} = \frac{120}{5} = 24$$

- :. Position of the flag posted by Joy is (3.2, 24).
- : Option (a) is correct.
- 2. Shown below is a town plan on a coordinate grid, where 1 unit = 1 km. Consider the co-ordinates of each building to be the point of intersection of the respective grid lines.

S - School
W - Water Tank
P - Pond
Fire - Fire Station
Police- Police Station
H - House 1
H2 - House 2
H3 - House 3
H4 - House 4
H5 - House 5

H6 - House 6 H7 - House 7 H8 - House 8

Fig. 6.24

Based on the above information answer the following questions.

- (i) What is the distance between the School and House 1 along the path shown?
- (ii) What is the ratio in which House 1 divides the path joining house 3 and the police station?

Sol. (i) Coordinates of school are (1, 6).

Coordinates of House 1 are (3, 3).

.. Distance between school and House 1, is

$$\sqrt{(3-1)^2 + (3-6)^2} = \sqrt{4+9} = \sqrt{13} \text{ km}$$

(ii) Coordinates of House 1 (H₁) are (3, 3).

Fig. 6.25

House 3 (H_3) coordinates are (2, 2).

Coordinates of police station are (5, 5).

Let H_1 divides path joining H_3 and police station in the ratio k:1.

By section formula we have

$$3 = \frac{k(5) + 1(2)}{k + 1}$$

$$\Rightarrow 3k + 3 = 5k + 2$$

$$\Rightarrow 3 - 2 = 5k - 3k$$

$$\Rightarrow 2k = 1 \Rightarrow k = \frac{1}{2}$$

$$\therefore k: 1 = \frac{1}{2}: 1 = 1: 2$$

PROFICIENCY EXERCISE

■ Objective Type Questions:

[1 mark each]

- 1. Choose and write the correct option in each of the following questions.
 - (i) Three points lie on a vertical line. Which of the following could be those points?

[Competency Based Question]

- (\ddot{u}) The distance of the point P (-6, 8) from the origin is
 - (a) 8 units (b) $2\sqrt{7}$ units (c) 10 units (d) 6 units
- (iii) A point G divides a line segment in the ratio 3: 7. The segment starts at the origin and ends at a point K having 20 as its abscissa and 40 as its ordinate. Given that G is closer to the origin than to point K,

Which of the following are the coordinates of point G?

- (iv) The ratio in which x-axis divides the line segment joining A(2, -3) and B(5, 6) is
- (a) 3:5 (b) 1:2 (c) 2:1 (d) 2:3
- (v) Which of the following are the coordinates of the intersection points of the diagonals of the rectangle *ABCD* with vertices *A*(0, 3), *B*(3, 0), *C*(1, −2) and *D*(−2, 1)?

(a)
$$\left(\frac{1}{2}, \frac{1}{2}\right)$$
 (b) $\left(-\frac{1}{2}, -\frac{1}{2}\right)$ (c) $(1.5, 1.5)$ (d) $(2, -1)$

■ Very Short Answer Questions:

- [1 mark each] 2. Find the values of x for which the distance between the points A(x, 2) and B(9, 8) is 10 units.
- [CBSE 2019 (30/5/3)] 3. Find the value(s) of x, if the distance between the points A(0, 0) and B(x, -4) is 5 units. [CBSE 2019 (30/3/1)]
- 4. A(5, 1); B(1, 5) and C(-3, -1) are the vertices of $\triangle ABC$. Find the length of median AD. [CBSE 2018 (C) (30/1)]
- 5. If $P\left(\frac{a}{3},4\right)$ is the mid-point of the line segment joining the points Q(-6,5) and R(-2,3), then find the value of a. [NCERT Exemplar]
- 6. A line intersects the y-axis and x-axis at the points P and Q respectively. If (2, -5) is the mid-point of PQ, then find the coordinates of P and Q. [NCERT Exemplar, CBSE (AI) 2017] 7. Where does the perpendicular bisector of the line segment joining the points A (1, 5) and
- B (4, 6) cut the y-axis? [NCERT Exemplar] 8. In what ratio is the line segment joining the points P(3, -6) and Q(5, 3) divided by x-axis? [CBSE 2019 (30/1/1)]
- 9. The point which divides the line segment joining the points (7, -6) and (3, 4) in ratio 1:2 internally lies in which quadrant? [Competency Based Question] [NCERT Exemplar]
- 10. If the points (k, 2k), (3k, 3k) and (3, 1) are collinear, then find the values of k.
- 11. If points (a, 0), (0, b) and (1, 1) are collinear, then find the value of $\frac{1}{a} + \frac{1}{b}$. [Competency Based Question]
- 12. If the centroid of a triangle formed by the points (a, b), (b, c) and (c, a) is at the origin, then find the value of $a^3 + b^3 + c^3$.

■ Short Answer Questions-I:

[2 marks each]

- 13. Find the linear relation between x and y such that P(x, y) is equidistant from the points A(1, 4) and B(-1, 2). [CBSE 2018 (C) (30/1)]
- 14. Prove that the points (3, 0), (6, 4) and (-1, 3) are the vertices of a right angled isosceles triangle. [CBSE (AI) 2016]
- 15. Name the type of triangle ABC formed by the points $A(\sqrt{2}, \sqrt{2})$, $B(-\sqrt{2}, -\sqrt{2})$ and $C(-\sqrt{6}, \sqrt{6})$.
- 16. Find a point which is equidistant from the points P(-5, 4) and Q (-1, 6). How many such points are there?
- 17. If A(-2, 2), B(5, 2) and C(k, 8) are the vertices of a right-angled triangle ABC with $\angle B = 90^\circ$, then find the value of k. [CBSE 2019 (C) (30/1/2)]
- 18. Points A(3, 1), B(5, 1), C(a, b) and D(4, 3) are vertices of a parallelogram ABCD. Find the values of a and b. [CBSE 2019 (30/3/1)]
- 19. If the mid-point of a segment joining $A\left(\frac{x}{2}, \frac{y+1}{2}\right)$ and B(x+1, y-3) is C(5, -2), find x, y.
- **20.** The point *R* divides the line segment *AB*, where A(-4, 0) and B(0, 6) such that $AR = \frac{3}{4}AB$. Find the coordinates of *R*. [CBSE 2019 (30/4/2)]
- 21. Find the relation between x and y such that the points (x, y), (1, 2) and (7, 0) are collinear.

 [CBSE 2019 (C) (30/1/1)]
- **22.** The vertices of a triangle are (a, b c), (b, c a) and (c, a b). Prove that its centroid lies on x-axis.

■ Short Answer Questions-II:

[3 marks each]

- 23. Show that (a, a), (-a, -a), and $(-\sqrt{3}a, \sqrt{3}a)$ are vertices of an equilateral triangle. [CBSE 2019 (C) (30/1/1)]
- 24. Find the points on the x-axis which are at a distance of $2\sqrt{5}$ from the point (7, -4). How many such points are there?
- 25. Find the coordinates of the point on the y-axis which is equidistant from the points A(5, 3) and B(1, -5).
 [CBSE Delhi 2017 (C)]
- 26. Show that (1, -1) is the centre of the circle circumscribing the triangle whose vertices are (4, 3), (-2, 3) and (6, -1).
- 27. If R(x, y) is a point on the line segment joining the points P(a, b) and Q(b, a), then prove that x + y = a + b.
- 28. If A(-2, 1), B(a, 0), C(4, b) and D(1, 2) are vertices of a parallelogram ABCD, find the values of a and b. Hence find the lengths of its sides. [CBSE 2018 (30/1)]
- **29.** Point *A* lies on the line segment *XY* joining X(6, -6) and Y(-4, -1) in such a way that $\frac{XA}{XY} = \frac{2}{5}$. If point *A* also lies on the line 3x + k(y + 1) = 0, find the value of *k*. [CBSE 2019 (30/2/2)]
- **30.** In what ratio does the *x*-axis divide the line segment joining the points (– 4,–6) and (–1, 7)? Find the coordinates of the point of division.
- 31. In what ratio does the point P(-4, y) divide the line segment joining the point A(-6, 10) and B(3, -8)? Hence find the value of y. [CBSE 2019 (30/4/2)]
- **32.** Find the value of p for which the points (-5, 1), (1, p) and (4, -2) are collinear.

[CBSE 2019 (30/4/2)]

33. If the points P(-3, 9), Q(a, b) and R(4, -5) are collinear and a + b = 1, find the values of a and b. [CBSE Delhi 2014]

■ Long Answer Questions:

[5 marks each]

[NCERT Exemplar]

(vi) (c)

15. Equilateral

- 34. Find the centre of a circle passing through the points (6, -6), (3, -7) and (3, 3).
- **35.** The points $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are the vertices of $\triangle ABC$.
 - (i) The median from A meets BC at D. Find the coordinates of the point D.
 - (ii) Find the coordinates of the point P on AD such that AP : PD = 2 : 1.
 - (iii) Find the coordinates of points Q and R on medians BE and CF respectively such that BQ:QE=2:1 and CR:RF=2:1.
 - (iv) What are the coordinates of the centroid of the triangle ABC?
- **36.** The mid-point *P* of the line segment joining the points *A* (-10, 4) and *B* (-2, 0) lies on the line segment joining the points *C* (-9, -4) and *D* (-4, y). Find the ratio in which *P* divides *CD*. Also find the value of y.

 [CBSE (F) 2014]

Answers

- 1. (i) (b) (ii) (c) (iii) (a) (iv) (b) (v) (a)
- **2.** x = 17, x = 1 **3.** $x = \pm 3$ **4.** $\sqrt{37}$ **5.** a = -12
- **6.** (0, -10) and (4, 0) **7.** (0, 13) **8.** 2:1 **9.** IVth **10.** $k = -\frac{1}{3}$ or 0
- 11. 1 12. 3abc 13. x + y 3 = 0
- **16.** (-3, 5), infinitely many **17.** k = 5 **18.** a = 6, b = 3 **19.** x = 6, y = -1
- **20.** $R\left(-1,\frac{9}{2}\right)$ **21.** x + 3y 7 = 0 **22.** (3, 1) **24.** (9, 0), (5, 0); 2 points
- **25.** $0, \frac{1}{2}$ **28.** $a = 1, b = 1; \sqrt{10}$ units **29.** k = 2 **30.** $6: 7; \left(\frac{-34}{13}, 0\right)$
- **31.** 2:7; y=6 **32.** p=-1 **33.** a=2, b=-1 **34.** (3,-2)
- 35. (i) $\left(\frac{x_2 + x_3}{2}, \frac{y_2 + y_3}{2}\right)$ (ii) $\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$ (iii) $Q\left(\frac{x_1 + x_2 + x_3}{2}, \frac{y_1 + y_2 + y_3}{2}\right)$, $R\left(\frac{x_1 + x_2 + x_3}{2}, \frac{y_1 + y_2 + y_3}{2}\right)$ (iv) $\left(\frac{x_1 + x_2 + x_3}{2}, \frac{y_1 + y_2 + y_3}{2}\right)$
- **36.** 3:2, y=6

Self-Assessment

Time allowed: 1 hour Max. marks: 40

SECTION A

- 1. Choose and write the correct option in the following questions.
 - (i) Komal was asked to plot a point 10 units on the left of the origin and other points 4 units directly above the origin. Which of the following are the two points?
 - (a) (10, 0) and (0, 4) (b) (-10, 0) and (0, 4) (c) (10, 0) and (0, -4) (d) (-10, 0) and (4, 0)

- (ii) The perimeter of a triangle with vertices (0, 4), (0, 0) and (3, 0) is
 - (a) 5 units (b) 12 units
- (c) 11 units (d) 14 units
- (iii) If the points (1, x), (5, 2) and (9, 5) are collinear then value of x is
- $(b) -\frac{5}{2}$

2. Solve the following questions.

- $(2 \times 1 = 2)$
- (i) Find the value of 'a' so that the point (3, a) lies on the line represented by 2x 3y = 5. [CBSE 2019 (30/5/1)]
- (ii) What is the ratio in which the point $P\left(\frac{-2}{5},6\right)$ divides the line joining A (-4, 3) and B(2, 8)?

SECTION B

Solve the following questions.

- $(4 \times 2 = 8)$
- 3. What is the distance between the points A (5 cos θ , 0) and B (0, 5 sin θ)?
- 4. Examine whether the points (1, -1), (-5, 7) and (2, 5) are equidistant from the point (-2, 3)?
- 5. Prove that the points (2, -2), (-2, 1) and (5, 2) are the vertices of a right angled triangle.
- 6. Find the value of k for which the points (-5, 1), (1, k) and (4, -2) are collinear. [CBSE Delhi 2017 (C)]
- Solve the following questions.

- $(4 \times 3 = 12)$
- 7. Find the ratio in which the line segment joining A (1, -5) and B (-4, 5) is divided by the x-axis. Also find the coordinates of the point of division.
- 8. If $a \neq b \neq 0$, prove that the points (a, a^2) , (b, b^2) , (0, 0) will not be collinear.
- 9. If ABCD be a rectangle and P be any point in the plane of the rectangle, then prove that

$$PA^2 + PC^2 = PB^2 + PD^2$$

- [Hint: Take A as the origin and AB and AD as x and y-axis respectively. Let AB = a, AD = b]
- 10. The two opposite vertices of a square are (-1, 2) and (3, 2). Find the coordinates of other two vertices.
- Solve the following questions.

- $(3 \times 5 = 15)$
- 11. If the distance of P(x, y) from A(6, 1) and B(-1, 6) are equal then prove that 7x = 5y.
- 12. The base AB of two equilateral triangles ABC and ABC' with side 2a lies along the x-axis, such that the mid point of AB is at the origin. Find coordinates of vertices C and C' of the triangles.
- 13. Show that the points A(1,0), B(5,3), C(2,7) and D(-2,4) are the vertices of a rhombus.

Answers

- **1.** (i) (b) (ii) (b) (iii) (c) **2.** (i) $a = \frac{1}{3}$ (ii) 3:2 **3.** 5 units **4.** No **6.** k = -1 **7.** $1:1; \left(-\frac{3}{2}, 0\right)$

- **10.** (1, 0); (1, 4)
- 12. $C(0, \sqrt{3}a), C'(0, -\sqrt{3}a)$