Congruence of Triangles

• Similar and Congruent Figures

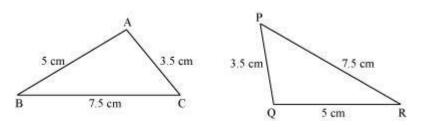
- Two geometric figures having the same shape and size are said to be congruent figures.
- Two geometric figures having the same shape, but not necessarily the same size, are called similar figures.

Example:

- (1) All circles are similar.
- (2) All equilateral triangles are similar.
- (3) All congruent figures are similar. However, the converse is not true.

• Similarity of Polygons

Two polygons with the same number of sides are similar, if


- •
- their corresponding angles are equal
- their corresponding sides are in the same ratio (or proportion)
- Two lines segments are congruent, if they are equal in length.
- Two angles are congruent, if they have the same measure.
- CPCT:

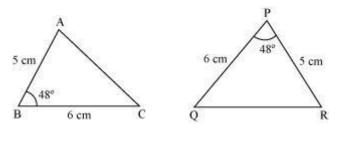
CPCT stands for Corresponding Parts of Congruent Triangles. If $\triangle ABC \cong \triangle PQR$, then corresponding sides are equal i.e., AB = PQ, BC = QR, and CA = RP and corresponding angles are equal i.e., $\angle A = \angle P$, $\angle B = \angle Q$, and $\angle C = \angle R$.

• SSS congruence rule

If three sides of a triangle are equal to the three sides of the other triangle, then the two triangles are congruent by SSS congruence rule.

Example:

Are $\triangle ABC$ and $\triangle QRP$ congruent?


Solution:

In $\triangle ABC$ and $\triangle QRP$ AB = QR = 5 cm BC = PR = 7.5 cm AC = PQ = 3.5 cm $4\Box \triangle ABC \cong \triangle QRP$ (By SSS congruence rule)

• SAS congruence rule

If two sides of a triangle and the angle included between them are equal to the corresponding two sides and included angle of another triangle, then the triangles are congruent by SAS congruence rule.

Example:

Are $\triangle ABC$ and $\triangle RPQ$ congruent?

Solution:

In \triangle ABC and \triangle RPQ,

AB = RP

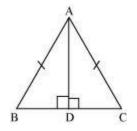
 $\angle ABC = \angle RPQ$

BC = PQ

 $\therefore \Delta ABC \cong \Delta RPQ$

(By SAS congruence rule)

• CPCT


CPCT stands for 'corresponding parts of congruent triangles'. 'Corresponding parts' means corresponding sides and angles of triangles. According to CPCT, if two or more triangles are congruent to one another, then all of their corresponding parts are equal.

• ASA congruence rule

If two angles and included side of a triangle are equal to the two corresponding angles and the included side of another triangle, then the triangles are congruent by ASA congruence rule.

Example:

In the following figure, AD is the median of $\triangle ABC$.

Are $\triangle ABD$ and $\triangle ACD$ congruent?

Solution:

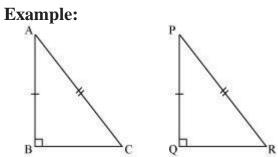
In $\triangle ABC$,

AB = AC (Given)

 $4 \angle ACB = \angle ABC$ (Base angles of an isosceles triangle have equal measures)

Now, in $\triangle ABD$ and $\triangle ACD$,

ABD = ACD


BD = CD (AD is the median)

 $ADB = ADC = 90^{\circ}$

 $4\Box \Delta ABD \cong \Delta ACD$ (By ASA congruence rule)

• RHS congruence rule

If the hypotenuse and one side of a right triangle are equal to the hypotenuse and one side of the other right triangle, then the two triangles are congruent to each other by RHS congruence rule.

If in the given figure, $\angle B = \angle Q = 90^{\circ}$, AC = PR, and AB = PQ, \therefore By RHS congruence rule, $\triangle ABC \cong \triangle PQR$