Chapter - 2 Polynomial

Exercise -2.2

Q. 1 Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

(i)
$$x^2 - 2x - 8$$

(ii)
$$4s^2 - 4s + 1$$

(iii)
$$6x2 - 3 - 7x$$

(iv)
$$4u^2 + 8u$$

(v)
$$t^2 - 15$$

(vi)
$$3x^2 - x - 4$$

Solution:

Zeroes of the polynomial are the values of the variable of the polynomial when the polynomial is put equal to zero.

Let p(x) be a polynomial with any number of terms any number of degree. Now, zeroes of the polynomial will be the values of x at which p(x) = 0. If $p(x) = ax^2 + bx + c$ is a quadratic polynomial (highest power is equal to 2) and its roots are α and β , then

Sum of the roots = $\alpha + \beta = -b/a$

Product of roots = $\alpha\beta$ = c/a

(i)
$$p(x) = x^2 - 2x - 8$$

So, the zeroes will be the values of x at which p(x) = 0.

Therefore,

$$\Rightarrow$$
 x² - 4x + 2x - 8 = 0

(We will factorize 2 such that the product of the factors is equal to 8 and difference is equal to 2)

$$\Rightarrow$$
 x(x - 4) + 2(x - 4) = 0= (x - 4)(x + 2)

The value of x^2 - 2x - 8 is zero when x - 4 = 0 or x + 2 = 0,

i.e,
$$x = 4$$
 or $x = -2$

Therefore, The zeroes of x^2 - 2x - 8 are 4 and -2.

Sum of zeroes = 4 + (-2) = 2

$$= \frac{-(-2)}{1} = \frac{-(-coefficient\ of\ x)}{(coefficient\ of\ x^2)}$$

Hence, it is verified that, sum of Zeros = $\frac{-(coefficient\ of\ x)}{coefficient\ of\ x^2}$

Product of zeroes = 4 + (-2) = $-8 = \frac{(-8)}{1} = \frac{constant\ term}{coefficient\ of\ x^2}$

Hence, it is verified, Product of zeroes = $\frac{constant\ term}{coefficient\ of\ x^2}$

(ii)
$$4s^2 - 4s + 1$$

$$=(2s)^2 - 2(2s)1 + 1^2$$

As, we know $(a - b)^2 = a^2 - 2ab + b^2$, the above equation can be written as $= (2s - 1)^2$

The value of $4s^2 - 4s + 1$ is zero when 2s - 1 = 0, when, s = 1/2, 1/2.

Therefore, the zeroes of $4s^2 - 4s + 1$ are $\frac{1}{2}$ and $\frac{1}{2}$.

Sum of zeroes =
$$\frac{1}{2} + \frac{1}{2} = 1 = \frac{-(-4)}{4} = \frac{-(coefficient \ of \ s)}{coefficient \ of \ s^2}$$

Product of zeroes =

$$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4} = \frac{constant\ term}{coefficient\ of\ s^2}$$

Hence Verified.

(iii)
$$6x^2 - 3 - 7x$$

= $6x^2 - 7x - 3$

(We will factorize 7 such that the product of the factors is equal to 18 and the difference is equal to -7)= $6x^2 + 2x - 9x - 3$ = 2x(3x + 1) - 3(3x + 1) = (3x + 1)(2x - 3)

The value of $6x^2 - 3 - 7x$ is zero when 3x + 1 = 0 or 2x - 3 = 0,

i.e.
$$x = \frac{-1}{3}$$
 or $\frac{3}{2}$

Therefore, the zeroes of $6x^2 - 3 - 7x$ are $\frac{-1}{3}$ or $\frac{3}{2}$.

Sum of zeroes =
$$\frac{-1}{3} + \frac{3}{2} = \frac{7}{6} = \frac{-(-7)}{6} = \frac{-(coefficient\ of\ x)}{coefficient\ of\ x^2}$$

Product of zeroes
$$=\frac{-1}{3} \times \frac{3}{2} = \frac{-1}{2} = \frac{-3}{6} = \frac{constant\ term}{coefficient\ of\ x^2}$$

Hence, verified.

(iv)
$$4u^2 + 8u$$

$$=4u^2+8u+0$$

$$= 4u (u + 2)$$

The value of $4u^2 + 8u$ is zero when 4u = 0 or u + 2 = 0,

i.e.,
$$u = 0$$
 or $u = -2$

Therefore, the zeroes of $4u^2 + 8u$ are 0 and -2.

Sum of zeroes =
$$0 + (-2) = -2 = \frac{-(8)}{4} = \frac{-(coefficient of u)}{coefficient of u^2}$$

Product of zeroes =
$$0 + (-2) = 0 = \frac{0}{4} = \frac{-constant\ term}{coefficient\ of\ u^2}$$

(v)
$$t^2 - 15$$

$$= t^2 - (\sqrt{15})^2$$

$$= (t - \sqrt{15})(t + \sqrt{15})$$
 [As, $x^2 - y^2 = (x - y)(x + y)$]

The value of $t^2 - 15$ is zero when $(t - \sqrt{15}) = 0$ or $(t + \sqrt{15}) = 0$,

i.e., when $t = \sqrt{15}$ or $t = -\sqrt{15}$

Therefore, the zeroes of $t^2 - 15$ are $\sqrt{15}$ and $-\sqrt{15}$.

Sum of zeroes =
$$\sqrt{15} + (-\sqrt{15}) = 0 = \frac{-0}{1} = \frac{-(coefficient of t)}{coefficient of t^2}$$

$$\sqrt{15} + (-\sqrt{15}) = 0 = \frac{-0}{1} = \frac{-(coefficient\ of\ t)}{coefficient\ of\ t^2}$$

Product of zeroes =

$$(\sqrt{15})(-\sqrt{15}) = -15 = \frac{-15}{1} = \frac{-constant\ term}{coefficient\ of\ x^2}$$

Hence verified.

(vi)
$$3x^2 - x - 4$$

(We will factorize 1 in such a way that the product of factors is equal to 12 and the difference is equal to 1) = $3x^2 - 4x + 3x - 4$ = x(3x - 4) + 1(3x - 4) = (3x - 4)(x + 1)

The value of $3x^2 - x - 4$ is zero when 3x - 4 = 0 or x + 1 = 0,

when
$$x = \frac{4}{3}$$
 or $x = -1$

Therefore, the zeroes of $3x^2 - x - 4$ are $\frac{4}{3}$ and -1

Sum of zeroes =
$$\frac{4}{3} + (-1) = \frac{1}{3} = \frac{-(-1)}{3} = \frac{-coefficient\ of\ x}{coefficient\ of\ x^2}$$

Product of zeroes =
$$\frac{4}{3}(-1) = \frac{-4}{3} = \frac{constant\ term}{coefficient\ of\ x^2}$$

Hence, verified.

Q. 2 Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

- (i) $\frac{1}{4}$, -1
- (ii) $\sqrt{2}, \frac{1}{3}$
- (iii) $0, \sqrt{5}$
- (iv) 1, 1(v) $-\frac{1}{4}, \frac{1}{4}$
- (vi)

Solution: If α , β are roots of an equation, then the quadratic form of this equation can be given by $x^2 - (\alpha + \beta)x + \alpha\beta = 0$

(i)
$$\frac{1}{4}$$
 -1

we know that for a quadratic equation in the form $ax^2 + bx + c = 0$, and its zeros are α and β , then

sum of zeroes is $\alpha + \beta = \frac{-b}{a}$

and product of zeroes is $\alpha \beta = \frac{c}{a}$

Let the polynomial be, $ax^2 + bx + c$, then

$$\alpha + \beta = \frac{1}{4} = \frac{-b}{a}$$

$$\alpha\beta = -1 = \frac{-4}{4} = \frac{c}{a}$$

Let a = 4, then b = -1, c = -4

Therefore, the quadratic polynomial is $4x^2 - x - 4$.

(ii)
$$\sqrt{2}, \frac{1}{3}$$

we know that for a quadratic equation in the form $ax^2 + bx + c = 0$, and its zerors are α and β , then

sum of zeroes is $\alpha + \beta = \frac{-b}{a}$

and product of zeroes is $\alpha\beta = \frac{c}{a}$

Let the polynomial be, $ax^2 + bx + c$, then

$$\alpha + \beta = \sqrt{2} = \frac{-b}{a}$$

and

If
$$a = 3$$
, then $b = -3\sqrt{2}$, and $c = 1$

Therefore, the quadratic polynomial is $3x^2 - 3\sqrt{2}x + 1$

(iii)
$$0, \sqrt{5}$$

we know that for a quadratic equation in the form $ax^2 + bx + c = 0$, and its zerors are α and β , then

sum of zeroes is $\alpha + \beta = \frac{-b}{a}$

and product of zeroes is $\alpha\beta = \frac{c}{a}$

Let the polynomial $b ax^2 + bx + c$, then

$$\alpha + \beta = 0 = \frac{0}{1} = \frac{-b}{a}$$

$$\alpha\beta = \sqrt{5} = \frac{\sqrt{5}}{1} = \frac{c}{a}$$

If
$$a = 1$$
, then $b = 0$, $c = \sqrt{5}$

Therefore, the quadratic polynomial is $x^2 + \sqrt{5}$.

(iv) 1, 1

we know that for a quadratic equation in the form $ax^2 + bx + c = 0$, and its zerors are α and β , then

sum of zeroes is $\alpha + \beta = \frac{-b}{a}$

and product of zeroes is $\alpha \beta = \frac{c}{a}$

Let the polynomial be $ax^2 + bx + c$, then

$$\alpha + \beta = 1 = \frac{1}{1} = \frac{-b}{a}$$

$$\alpha\beta = 1 = \frac{1}{1} = \frac{c}{a}$$

If a = 1, then b = -1, c = 1

Therefore, the quadratic polynomial is $x^2 - x + 1$

(v)
$$-\frac{1}{4}, \frac{1}{4}$$

we know that for a quadratic equation in the form $ax^2 + bx + c = 0$, and its zerors are α and β , then

sum of zeroes is $\alpha + \beta = \frac{-b}{a}$

and product of zeroes is $\alpha \beta = \frac{c}{a}$

Let the polynomial be $ax^2 + bx + c$, then

$$\alpha + \beta = 1 = \frac{-1}{4} = \frac{-b}{a}$$

$$\alpha\beta = \frac{1}{4} = \frac{c}{a}$$

If a = 4, then b = 1, c = 1

Therefore, the quadratic polynomial is $4x^2 + x + 1$.

(vi) 4, 1

we know that for a quadratic equation in the form $ax^2 + bx + c = 0$, and its zerors are α and β , then

sum of zeroes is $\alpha + \beta = \frac{-b}{a}$

and product of zeroes is $\alpha\beta = \frac{c}{a}$

Let the polynomial be $ax^2 + bx + c$, then

$$\alpha + \beta = 4 = \frac{4}{1} = \frac{-b}{a}$$

$$\alpha\beta = 1 = \frac{1}{1} = \frac{c}{a}$$

If a = 1, then b = -4, c = 1

Therefore, the quadratic polynomial is $x^2 - 4x + 1$.