

Statistics

Statistics deals with data collected for specific purposes. Usually the data collected are in raw form, which on processing (organization and classification in the form of ungrouped or grouped data) reveal certain salient features or characteristics of the group. We represent data by bar-charts, pie-charts, histograms, frequency polygons and ogives because such representations are eye-catching and depict glaring features/differences in the data at a glance.

Karl Pearson gave an important formula for coefficient of correlation. Spearman gave the phenomenon of Rank correlation.

	Contents									
2	2.1 Measures of Central Tendency									
2.1.1	Introduction									
2.1.2	Arithmetic mean									
2.1.3	Geometric mean									
2.1.4	Harmonic mean									
2.1.5	Median									
2.1.6	Mode									
2.1.7	Pie Chart (Pie diagram)									
2.1.8	Measure of dispersion									
2.1.9	Variance									
2.1.10	Skewness									
2.2 Correlation & Regression										
Correlation										
2.2.1	Introduction									
2.2.2	Covariance									
2.2.3	Correlation									
2.2.4	Rank Correlation									
	Regression									
2.2.5	Linear regression									
2.2.6	Equations of lines of regression									
2.2.7	Angle between two lines of regression									
2.2.8	Important points about regression coefficients b_{xy} and b_{yx}									
2.2.9	Standard error and Probable error									
As	ssignment (Basic and Advance Level)									
	Answer Sheet of Assignment									

2.1.1 Introduction

An average or a central value of a statistical series in the value of the variable which describes the characteristics of the entire distribution.

The following are the five measures of central tendency.

(1) Arithmetic mean (2) Geometric mean (3) Harmonic mean (4) Median (5) Mode

2.1.2 Arithmetic Mean

Arithmetic mean is the most important among the mathematical mean.

According to Horace Secrist,

"The arithmetic mean is the amount secured by dividing the sum of values of the items in a series by their number."

(1) Simple arithmetic mean in individual series (Ungrouped data)

(i) **Direct method :** If the series in this case be $x_1, x_2, x_3, \dots, x_n$ then the arithmetic mean \overline{x} is given by

$$\overline{x} = \frac{\text{Sum of the series}}{\text{Number of terms}}$$
, *i.e.*, $\overline{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i$

(ii) Short cut method

Arithmetic mean $(\bar{x}) = A + \frac{\sum d}{n}$,

where, A = assumed mean, d = deviation from assumed mean = x - A, where x is the individual item,

 Σd = sum of deviations and n = number of items.

(2) Simple arithmetic mean in continuous series (Grouped data)

(i) **Direct method :** If the terms of the given series be $x_1, x_2, ..., x_n$ and the corresponding frequencies be $f_1, f_2, ..., f_n$, then the arithmetic mean \overline{x} is given by,

$$\overline{x} = \frac{f_1 x_1 + f_2 x_2 + \dots + f_n x_n}{f_1 + f_2 + \dots + f_n} = \frac{\sum_{i=1}^n f_i x_i}{\sum_{i=1}^n f_i} \,.$$

(ii) **Short cut method :** Arithmetic mean $(\overline{x}) = A + \frac{\sum f(x - A)}{\sum f}$

Where A = assumed mean, f = frequency and x - A = deviation of each item from the assumed mean.

[Kurukshetra CEE 2001]

(3) Properties of arithmetic mean

(i) Algebraic sum of the deviations of a set of values from their arithmetic mean is zero. If x_i/f_i , i = 1, 2, ..., n is the frequency distribution, then

$$\sum_{i=1}^{n} f_i(x_i - \overline{x}) = 0, \ \overline{x} \ \text{ being the mean of the distribution}$$

(ii) The sum of the squares of the deviations of a set of values is minimum when taken about mean.

(iii) **Mean of the composite series :** If \bar{x}_i , (i = 1, 2,, k) are the means of *k*-component series of sizes n_i , (i = 1, 2,, k) respectively, then the mean \bar{x} of the composite series obtained on combining the component series is given by the formula $\bar{x} = \frac{n_1 \bar{x}_1 + n_2 \bar{x}_2 + + n_k \bar{x}_k}{n_1 \bar{x}_1 + n_2 \bar{x}_2 + + n_k \bar{x}_k} = \sum_{i=1}^{n} n_i \bar{x}_i / \sum_{i=1}^{n} n_i \bar{x}_i$

combining the component series is given by the formula $\overline{x} = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2 + \dots + n_k \overline{x}_k}{n_1 + n_2 + \dots + n_k} = \sum_{i=1}^n n_i \overline{x}_i / \sum_{i=1}^n n_i$.

2.1.3 Geometric Mean

If $x_1, x_2, x_3, \dots, x_n$ are *n* values of a variate *x*, none of them being zero, then geometric mean (G.M.) is given by G.M. = $(x_1.x_2.x_3.\dots,x_n)^{1/n} \Rightarrow \log(G.M.) = \frac{1}{n}(\log x_1 + \log x_2 + \dots + \log x_n)$.

In case of frequency distribution, G.M. of *n* values x_1, x_2, \dots, x_n of a variate *x* occurring with frequency f_1, f_2, \dots, f_n is given by G.M. = $(x_1^{f_1} . x_2^{f_2} . \dots . x_n^{f_n})^{1/N}$, where $N = f_1 + f_2 + \dots + f_n$.

2.1.4 Harmonic Mean

The harmonic mean of *n* items x_1, x_2, \dots, x_n is defined as H.M. = $\frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$. If the frequency distribution is $f_1, f_2, f_3, \dots, f_n$ respectively, then H.M. = $\frac{f_1 + f_2 + f_3 + \dots + f_n}{\left(\frac{f_1}{x_1} + \frac{f_2}{x_2} + \dots + \frac{f_n}{x_n}\right)}$

Note : A.M. gives more weightage to larger values whereas G.M. and H.M. give more weightage to smaller values.

Example: 1 If the mean of the distribution is 2.6, then the value of *y* is

Frequency f of (a) 24 (b) 13 (c) 8 (d) Solution: (c) We know that, Mean = $\frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i x_i}$		Variate <i>x</i>	1	2	3	4	5		
(a) 24 (b) 13 (c) 8 (d) Solution: (c) We know that, Mean = $\frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i x_i}$		Frequency <i>f</i> of	4	5	у	1	2		
Solution: (c) We know that, Mean = $\frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i x_i}$		x							
Solution: (c) We know that, Mean = $\frac{\sum_{i=1}^{i} f_i x_i}{\sum_{i=1}^{i} f_i x_i}$		(a) 24	(b) 13		(c)	8	(d	l) 3
$\sum_{i=1} f_i$	Solution: (c)		$ean = \frac{\sum_{i=1}^{n}}{\sum_{i=1}^{n}}$	f_i					

i.e.
$$2.6 = \frac{1 \times 4 + 2 \times 5 + 3 \times y + 4 \times 1 + 5 \times 2}{4 + 5 + y + 1 + 2}$$
 or $31.2 + 2.6y = 28 + 3y$ or $0.4y = 3.2 \implies y = 8$

Example: 2In a class of 100 students there are 70 boys whose average marks in a subject are 75. If the average
marks of the complete class are 72, then what are the average marks of the girls[AIEEE 2002]

(a)
$$7_3$$
 (b) 6_5 (c) 6_8 (d) 7_4
Solution: (b) Let the average marks of the girls students be x, then
 $7_2 = \frac{70 \times 75 + 30 \times x}{100}$ (Number of girls = 100 - 70 = 30)
i.e., $\frac{7200}{30} = x_1$, $\therefore x = 65$.
Example: 3 If the mean of the set of numbers $x_1, x_2, x_3, ..., x_n$ is \bar{x} , then the mean of the numbers $x_1 + 2i$, $1 \le i \le n$ is
(a) $\bar{x} + 2n$ (b) $\bar{x} + n + 1$ (c) $\bar{x} + 2$ (d) $\bar{x} + n$
Solution: (b) We know that $\bar{x} = \frac{2}{i-1} \frac{x_1}{n}$ *i.e.*, $\sum_{i=1}^{n} x_i = n\bar{x}$
 $\therefore \frac{\sum_{i=1}^{n} (x_i + 2)}{n} = \frac{\sum_{i=1}^{n} x_i + 2\sum_{i=1}^{n} i}{n} \frac{n\bar{x} + 2(1 + 2 + ...n)}{n} = \frac{n\bar{x} + 2(n\bar{x} + 1)}{n} = \bar{x} + (n+1)$
Example: 4 The harmonic mean of 4, 8, 16 is
(a) 6.4 (b) 6.7 (c) 6.85 (d) 7.8
Solution: (c) H.M. of 4, 8, 16 $= \frac{3}{\frac{1}{1} + \frac{1}{8} + \frac{1}{16}} = \frac{48}{7} = 6.85$
Example: 5 The average of n numbers $x_1, x_2, x_3, ..., x_n$ is M. If x_n is replaced by x', then new average is [DCE 2000]
(a) $M - x_n + x'$ (b) $\frac{M - x_n + x'}{n}$ (c) $\frac{(n-1)M + x'}{n}$ (d) $\frac{M - x_n + x'}{n}$
 $\frac{MM - x_n + x_1 + x_2 + x_3 + \dots - x_{n-1}}{n} + \frac{MM - x_n + x_1 + x_3 + \dots - x_{n-1}}{n} + \frac{MM - x_n + x_1 + x_2 + x_3 + \dots - x_{n-1}}{n} + \frac{MM - x_n + x'}{n} + \frac{MM - x_n + x' + x_1 + x_3 + \dots - x_{n-1}}{n} + \frac{MM - x_n + x' + x_1 + x_2 + x_3 + \dots - x_{n-1}}{n} + \frac{MM - x_n + x'}{n} + \frac{MM - x_n + x'}{n} + \frac{MM - x_n + x' + x_1 + x_2 + \dots - x_{n-1}}{n} + \frac{MM - x_n + x' + x_2 + x_3 + \dots - x_{n-1}}{n} + \frac{MM - x_n + x' + x_2 + x_3 + \dots - x_{n-1}}{n} + \frac{M - x_n + x' + x_2 + x_3 + \dots - x_{n-1}}{n} + \frac{M - x_n + x' + x_2 + x_3 + \dots - x_{n-1}}{n} + \frac{M - x_n + x' + x_2 + x_3 + \dots - x_{n-1}}{n} + \frac{M - x_n + x' + x_2 + x_3 + \dots - x_{n-1}}{n} + \frac{M - x_n + x' + x_n + x_n + x_n}{n} + \frac{M - x_n + x' + x_n + x_n + x_n}{n} + \frac{M - x_n + x' + x_n + x_n + x_n}{n} + \frac{M - x_n + x' + x_n + x_n + x_n}{n} + \frac{M - x_$

2.1.5 Median

Median is defined as the value of an item or observation above or below which lies on an equal number of observations *i.e.*, the median is the central value of the set of observations provided all the observations are arranged in the ascending or descending orders.

(1) Calculation of median

(i) **Individual series :** If the data is raw, arrange in ascending or descending order. Let *n* be the number of observations.

If *n* is odd, Median = value of $\left(\frac{n+1}{2}\right)^{th}$ item.

If *n* is even, Median =
$$\frac{1}{2} \left[\text{value of} \left(\frac{n}{2} \right)^{\text{th}} \text{ item } + \text{value of} \left(\frac{n}{2} + 1 \right)^{\text{th}} \text{ item} \right]$$

(ii) **Discrete series :** In this case, we first find the cumulative frequencies of the variables arranged in ascending or descending order and the median is given by

Median = $\left(\frac{n+1}{2}\right)^{th}$ observation, where *n* is the cumulative frequency.

(iii) For grouped or continuous distributions : In this case, following formula can be used

(a) For series in ascending order, Median =
$$l + \frac{\left(\frac{N}{2} - C\right)}{f} \times i$$

Where l = Lower limit of the median class

f = Frequency of the median class

N = The sum of all frequencies

i = The width of the median class

- C = The cumulative frequency of the class preceding to median class.
- (b) For series in descending order

Median =
$$u - \left(\frac{\frac{N}{2} - C}{f}\right) \times i$$
, where u = upper limit of the median class

$$N = \sum_{i=1}^{n} f_{i}$$

As median divides a distribution into two equal parts, similarly the quartiles, quantiles, deciles and percentiles divide the distribution respectively into 4, 5, 10 and 100 equal parts. The

 j^{th} quartile is given by $Q_j = l + \left(\frac{j\frac{N}{4} - C}{f}\right)i; j = 1, 2, 3$. Q_1 is the lower quartile, Q_2 is the median and

 Q_3 is called the upper quartile.

(2) Lower quartile

(i) **Discrete series** :
$$Q_1 = \text{size of} \left(\frac{n+1}{4}\right)^{\text{th}}$$
 item
(ii) **Continuous series** : $Q_1 = l + \frac{\left(\frac{N}{4} - C\right)}{f} \times i$

(3) Upper quartile

(i) **Discrete series**:
$$Q_3 = \text{size of} \left[\frac{3(n+1)}{4}\right]^{\text{th}}$$
 item
(ii) **Continuous series**: $Q_3 = l + \frac{\left(\frac{3N}{4} - C\right)}{f} \times i$

(4) **Decile** : Decile divide total frequencies *N* into ten equal parts.

$$D_{j} = l + \frac{\frac{N \times j}{10} - C}{f} \times i \quad [j = 1, 2, 3, 4, 5, 6, 7, 8, 9]$$

If $j = 5$, then $D_{5} = l + \frac{\frac{N}{2} - C}{f} \times i$. Hence D_{5} is also known as median.

(5) Percentile : Percentile divide total frequencies N into hundred equal parts

$$P_k = l + \frac{\frac{N \times k}{100} - C}{f} \times i$$

where *k* = 1, 2, 3, 4, 5,....,99.

(a) 154

The following data gives the distribution of height of students Example: 7

Height (in <i>cm</i>)		160	150	152	161	156	154	155
Number	of	12	8	4	4	3	3	7
students								

The median of the distribution

is		
	(c) 160	

(d) 161

Solution: (b) Arranging the data in ascending order of magnitude, we obtain

(b) 155

Height (in cm)		150	152	154	155	156	160	161
Number students	of	8	4	3	7	3	12	4
Cumulative frequency		8	12	15	22	25	37	41

Here, total number of items is 41, *i.e.* an odd number. Hence, the median is $\frac{41+1}{2}$ th *i.e.* 21st item.

From cumulative frequency table, we find that median *i.e.* 21st item is 155.

(All items from 16 to 22^{nd} are equal, each = 155)

- The median of a set of 9 distinct observation is 20.5. If each of the largest 4 observation of the set is **Example: 8** increased by 2, then the median of the new set [AIEEE 2003] (a) Is increased by 2
 - (c) Is two times the original median

(b) Is decreased by 2

(d) Remains the same as that of the original set

```
Solution: (d) n = 9, then median term = \left(\frac{9+1}{2}\right)^{th} = 5^{th} term . Since last four observation are increased by 2.
```

 \therefore The median is 5th observation which is remaining unchanged.

 \therefore There will be no change in median.

- Example: 9 Compute the median from the following table
- No. of students Marks obtained

0-10	2
10-20	18
20-30	30
30-40	45
40-50	35
50-60	20
60-70	6
70-80	3
(a) 36.55	(b) 35.55

(c) 40.05

(d) None of these

Solution: (a)

Marks obtained	No. of students	Cumulative frequency
0-10	2	2
10-20	18	20
20-30	30	50
30-40	45	95
40-50	35	130
50-60	20	150
60-70	6	156
70-80	3	159

 $n = \sum f = 159$

Here n = 159, which is odd.

Median number = $\frac{1}{2}(n+1) = \frac{1}{2}(159+1) = 80$, which is in the class 30-40 (see the row of

cumulative frequency 95, which contains 80).

Hence median class is 30-40.

 \therefore We have l = Lower limit of median class = 30

f = Frequency of median class = 45

C = Total of all frequencies preceding median class = 50

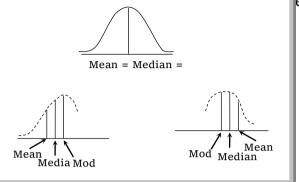
i = Width of class interval of median class = 10

:. Required median =
$$l + \frac{\frac{N}{2} - C}{f} \times i = 30 + \frac{\frac{159}{2} - 50}{45} \times 10 = 30 + \frac{295}{45} = 36.55$$
.

2.1.6 Mode

Mode : The mode or model value of a distribution is that value of the variable for which the frequency is maximum. For continuous series, mode is calculated as, Mode $= l_{1} + \left[\frac{f_{1} - f_{0}}{f_{1} - f_{0}}\right] \times i$

$$= l_1 + \left\lfloor \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \right\rfloor \times i$$


Where, l_1 = The lower limit of the model class

 f_1 = The frequency of the model class

- f_0 = The frequency of the class preceding the model class
- f_2 = The frequency of the class succeeding the model class

i = The size of the model class.

Symmetric distribution : A symmetric is a symmetric distribution if the values of mean, mode and median coincide. In a symmetric distribution frequencies are symmetrically distributed on both sides

A distribution which is not symmetric is called a skewed-distribution. In a moderately asymmetric the interval between the mean and the median is approximately one-third of the interval between the mean and the mode *i.e.* we have the following empirical relation between them

Mean – Mode = 3(Mean – Median) \Rightarrow Mode = 3 Median – 2 Mean. It is known as Empirical relation.

Example: 10	The mode of the d	listribut	ion						[AMU 1988]
	Marks	4	5	6	7	8			
	No. of	6	7	10	8	3			
	students								
	(a) 5	(t) 6		((:) 8		(d) 10	
Solution: (b)	Since frequency i	s maxim	um for 6	5					
	\therefore Mode = 6								
Example: 11	Consider the follo	wing st	atements	5					[AIEEE 2004]
	(1) Mode can be c	ompute	d from h	istogram	L				
	(2) Median is not	indeper	dent of o	change o	f scale				
	(3) Variance is in	depende	nt of cha	ange of o	rigin and	l scale			
	Which of these is	/are cor	rect						
	(a) (1), (2) and (3	3) (t) Only (2)	((c) Only ((1) and (2)	(d) Only (1)	
Solution: (d)	It is obvious.								

Important Tips

[©] Some points about arithmetic mean

- Of all types of averages the arithmetic mean is most commonly used average.
- It is based upon all observations.
- If the number of observations is very large, it is more accurate and more reliable basis for comparison.
- Some points about geometric mean
 - It is based on all items of the series.
 - It is most suitable for constructing index number, average ratios, percentages etc.
 - *G.M.* cannot be calculated if the size of any of the items is zero or negative.

The Some points about H.M.

- It is based on all item of the series.
- This is useful in problems related with rates, ratios, time etc.
- $A.M. \ge G.M. \ge H.M.$ and also $(G.M.)^2 = (A.M.)(H.M.)$

🖻 Some points about median

- It is an appropriate average in dealing with qualitative data, like intelligence, wealth etc.
- The sum of the deviations of the items from median, ignoring algebraic signs, is less than the sum from any other point.

Some points about mode

- It is not based on all items of the series.
- As compared to other averages mode is affected to a large extent by fluctuations of sampling,.
- It is not suitable in a case where the relative importance of items have to be considered.

2.1.7 Pie Chart (Pie Diagram)

Here a circle is divided into a number of segments equal to the number of components in the corresponding table. Here the entire diagram looks like a pie and the components appear like slices cut from the pie. In this diagram each item has a sector whose area has the same percentage of the total area of the circle as this item has of the total of such items. For example if N be the total and n_1 is one of the components of the figure corresponding to a particular

item, then the angle of the sector for this item $=\left(\frac{n_1}{N}\right) \times 360^\circ$, as the total number of degree in the

angle subtended by the whole circular arc at its centre is 360°.

Example: 12	If for a slightly assyme	etric distribution, mean	and median are 5 and	l 6 respectively. What	is its mode[DCE 199
	(a) 5	(b) 6	(c) 7	(d) 8	
Solution: (d)	We know that				
	Mode = 3Median - 2Me	ean			
	= 3(6) - 2(5) = 8				
Example: 13	A pie chart is to be dra	wn for representing th	e following data		
	Items of	Number of			
	expenditure	families			
	Education	150			
	Food and clothing	400			
	House rent	40			
	Electricity	250			
	Miscellaneous	160			
	The value of the centra	al angle for food and clo	othing would be		[NDA 1998]
	(a) 90°	(b) 2.8°	(c) 150°	(d) 144°	
Solution: (d)	Required angle for foo	d and clothing $=\frac{400}{1000}\times$	360° = 144°		

2.1.8 Measure of Dispersion

The degree to which numerical data tend to spread about an average value is called the dispersion of the data. The four measure of dispersion are

(1) Range (2) Mean deviation (3) Standard deviation (4) Square deviation

(1) **Range** : It is the difference between the values of extreme items in a series. Range = X_{max} - X_{min}

The coefficient of range (scatter) = $\frac{x_{\text{max}} - x_{\text{min}}}{x_{\text{max}} + x_{\text{min}}}$.

Range is not the measure of central tendency. Range is widely used in statistical series relating to quality control in production.

(i) **Inter-quartile range :** We know that quartiles are the magnitudes of the items which divide the distribution into four equal parts. The inter-quartile range is found by taking the difference between third and first quartiles and is given by the formula

Inter-quartile range = $Q_3 - Q_1$

Where Q_1 = First quartile or lower quartile and Q_3 = Third quartile or upper quartile.

(ii) Percentile range : This is measured by the following formula

Percentile range = $P_{90} - P_{10}$

Where P_{90} = 90th percentile and P_{10} = 10th percentile.

Percentile range is considered better than range as well as inter-quartile range.

(iii) **Quartile deviation or semi inter-quartile range :** It is one-half of the difference between the third quartile and first quartile *i.e.*, $Q.D. = \frac{Q_3 - Q_1}{2}$ and coefficient of quartile

deviation $= \frac{Q_3 - Q_1}{Q_3 + Q_1}$.

Where, Q_3 is the third or upper quartile and Q_1 is the lowest or first quartile.

(2) **Mean deviation :** The arithmetic average of the deviations (all taking positive) from the mean, median or mode is known as mean deviation.

(i) Mean deviation from ungrouped data (or individual series)

Mean deviation $=\frac{\sum |x - M|}{n}$

Where |x - M| means the modulus of the deviation of the variate from the mean (mean, median or mode). *M* and *n* is the number of terms.

(ii) **Mean deviation from continuous series :** Here first of all we find the mean from which deviation is to be taken. Then we find the deviation dM = |x - M| of each variate from the mean *M* so obtained.

Next we multiply these deviations by the corresponding frequency and find the product *f.dM* and then the sum $\sum f dM$ of these products.

Lastly we use the formula, mean deviation = $\frac{\sum f |x - M|}{n} = \frac{\sum f dM}{n}$, where $n = \sum f$.

```
\sim Mean coefficient of dispersion = \frac{\text{Mean deviation from the mean}}{\text{Mean}}
```

 Median coefficient of dispersion = Mean deviation from the median Median
 Mode coefficient of dispersion = Mean deviation from the mode Mode
 In general, mean deviation (M.D.) always stands for mean deviation about median.

(3) **Standard deviation** : Standard deviation (or S.D.) is the square root of the arithmetic mean of the square of deviations of various values from their arithmetic mean and is generally denoted by σ read as sigma.

(i) **Coefficient of standard deviation :** To compare the dispersion of two frequency distributions the relative measure of standard deviation is computed which is known as coefficient of standard deviation and is given by

Coefficient of S.D. $=\frac{\sigma}{\overline{x}}$, where \overline{x} is the A.M.

(ii) Standard deviation from individual series

$$\sigma = \sqrt{\frac{\sum (x - \overline{x})^2}{N}}$$

where, \overline{x} = The arithmetic mean of series N = The total frequency.

(iii) Standard deviation from continuous series

$$\sigma = \sqrt{\frac{\sum f_i (x_i - \overline{x})^2}{N}}$$

where, \overline{x} = Arithmetic mean of series

 x_i = Mid value of the class

 f_i = Frequency of the corresponding x_i

 $N = \Sigma f$ = The total frequency

Short cut method

(i)
$$\sigma = \sqrt{\frac{\sum fd^2}{N} - \left(\frac{\sum fd}{N}\right)^2}$$

(ii)
$$\sigma = \sqrt{\frac{\sum d^2}{N} - \left(\frac{\sum d}{N}\right)^2}$$

where, d = x - A = Deviation from the assumed mean A

f = Frequency of the item

 $N = \Sigma f =$ Sum of frequencies

(4) Square deviation

(i) Root mean square deviation

$$S = \sqrt{\frac{1}{N} \sum_{i=1}^{n} f_i (x_i - A)^2}$$

where A is any arbitrary number and S is called mean square deviation.

(ii) **Relation between S.D. and root mean square deviation :** If σ be the standard deviation and *S* be the root mean square deviation.

Then $S^{2} = \sigma^{2} + d^{2}$.

Obviously, S^2 will be least when d = 0 *i.e.* $\overline{x} = A$

Hence, mean square deviation and consequently root mean square deviation is least, if the deviations are taken from the mean.

2.1.9 Variance

The square of standard deviation is called the variance.

Coefficient of standard deviation and variance : The coefficient of standard deviation is

the ratio of the S.D. to A.M. *i.e.*, $\frac{\sigma}{r}$. Coefficient of variance = coefficient of S.D. × 100 = $\frac{\sigma}{r}$ × 100.

Variance of the combined series : If $n_1;n_2$ are the sizes, $\overline{x}_1;\overline{x}_2$ the means and $\sigma_1;\sigma_2$ the

standard deviation of two series, then $\sigma^2 = \frac{1}{n_1 + n_2} [n_1(\sigma_1^2 + d_1^2) + n_2(\sigma_2^2 + d_2^2)]$

Where, $d_1 = \overline{x}_1 - \overline{x}$, $d_2 = \overline{x}_2 - \overline{x}$ and $\overline{x} = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2}{n_1 + n_2}$.

Important Tips

- *Range is widely used in statistical series relating to quality control in production.*
- [◦] Standard deviation ≤ Range i.e., variance ≤ $(Range)^2$.
- *Empirical relations between measures of dispersion*
 - Mean deviation $=\frac{4}{5}$ (standard deviation)
 - Semi interquartile range = $\frac{2}{2}$ (standard deviation)
- \Im Semi interquartile range = $\frac{5}{6}$ (mean deviation)
- The For a symmetrical distribution, the following area relationship holds good $\overline{X} \pm \sigma$ covers 68.27% items
 - $\overline{X} \pm 2\sigma$ covers 95.45% items
 - $\overline{X} \pm 3\sigma$ covers 99.74% items
- S.D. of first n natural numbers is $\sqrt{\frac{n^2-1}{12}}$.
- Range is not the measure of central tendency.

2.1.10 Skewness

"Skewness" measures the lack of symmetry. It is measured by $\gamma_1 = \frac{\sum (x_i - \mu)^3}{\left\{\sum (x_i - \mu^2)\right\}^{3/2}}$ and is

denoted by γ_1 .

The distribution is skewed if,

(i) Mean \neq Median \neq Mode

(ii) Quartiles are not equidistant from the median and

(iii) The frequency curve is stretched more to one side than to the other.

(1) Distribution : There are three types of distributions

(i) **Normal distribution :** When $\gamma_1 = 0$, the distribution is said to be normal. In this case Mean = Median = Mode

(ii) **Positively skewed distribution :** When $\gamma_1 > 0$, the distribution is said to be positively skewed. In this case

(iii) **Negative skewed distribution :** When $\gamma_1 < 0$, the distribution is said to be negatively skewed. In this case

Mean < Median < Mode

(2) Measures of skewness

(i) **Absolute measures of skewness :** Various measures of skewness are

(a) $S_K = M - M_d$ (b) $S_K = M - M_o$ (c) $S_k = Q_3 + Q_1 - 2M_d$

where, M_d = median, M_o = mode, M = mean

Absolute measures of skewness are not useful to compare two series, therefore relative measure of dispersion are used, as they are pure numbers.

(3) Relative measures of skewness

(i) Karl Pearson's coefficient of skewness : $S_k = \frac{M - M_o}{\sigma} = 3 \frac{(M - M_d)}{\sigma}, -3 \le S_k \le 3$, where σ

is standard deviation.

(ii) Bowley's coefficient of skewness :
$$S_k = \frac{Q_3 + Q_1 - 2M_d}{Q_3 - Q_1}$$

Bowley's coefficient of skewness lies between -1 and 1.

(iii) Kelly's coefficient of skewness :
$$S_K = \frac{P_{10} + P_{90} - 2M_d}{P_{90} - P_{10}} = \frac{D_1 + D_9 - 2M_d}{D_9 - D_1}$$

 Example: 14
 A batsman scores runs in 10 innings 38, 70, 48, 34, 42, 55, 63, 46, 54, 44, then the mean deviation is[Kerala En (a) 8.6

 (a) 8.6
 (b) 6.4
 (c) 10.6
 (d) 9.6

 Solution: (a)
 Arranging the given data in ascending order, we have 34, 38, 42, 44, 46, 48, 54, 55, 63, 70,

Here median M = $\frac{46 + 48}{2} = 47$ (: n = 10, median is the mean of 5th and 6th items)

- ... Mean deviation $=\frac{\sum |x_i M|}{n} = \frac{\sum |x_i 47|}{10} = \frac{13 + 9 + 5 + 3 + 1 + 1 + 7 + 8 + 16 + 23}{10} = 8.6$ **Example: 15** S.D. of data is 6 when each observation is increased by 1, then the S.D. of new data is [Pb. CET 1994]
- (a) 5 (b) 7 (c) 6 (d) 8 **Solution:** (c) S.D. and variance of data is not changed, when each observation is increased (OR decreased) by the
- solution. (c) "S.D. and variance of data is not changed, when each observation is increased (ok decreased) by the same constant.
- **Example: 16** In a series of 2n observations, half of them equal a and remaining half equal -a. If the standard deviation of the observations is 2, then |a| equals [AIEEE 2004]

a)
$$\frac{\sqrt{2}}{n}$$
 (b) $\sqrt{2}$ (c) 2 (d) $\frac{1}{n}$

Solution: (c) Let *a*, *a*,*n* times – *a*, – *a*

$$2 = \sqrt{\frac{na^2 + na^2}{2n}} = \sqrt{a^2} = \pm a$$
. Hence $|a| = 2$

Example: 17 If μ is the mean of distribution (y_i, f_i) , then $\sum f_i(y_i - \mu) =$ [Kerala PET 2001] (a) M.D. (b) S.D. (c) O (d) Relative frequency **Solution:** (c) We have, $\sum f_i(y_i - \mu) = \sum f_i y_i - \mu \sum f_i = \mu \sum f_i - \mu \sum f_i = 0$ $\left[\because \mu = \frac{\sum f_i y_i}{\sum f_i}\right]$

Example: 18 What is the standard deviation of the following series Measurement
$$0.10$$
 $10-20$ $20-30$ $30-40$

[DCE 1996]

Solution. (a)	(a) 81		(b) 7.6	(c) 9		(d)	2.26			
Solution: (c)	Class	Frequency	y i	$u_i = \frac{y_i - A}{10}$, $A = 25$	f _i u _i	$f_i u_i^2$				
	0-10	1	5	- 2	- 2	4				
	10-20	3	15	- 1	- 3	3				
	20-30 30-40	4 2	25 35	0 1	0 2	0 2				
	50 40	10	55	-	- 3	9				
	$\sigma^2 = c^2 \left[\frac{\sum}{\sum} \right]$	$\frac{f_i u_i^2}{\sum f_i} - \left(\frac{\sum f_i u_i^2}{\sum f_i}\right)^2$	$\left[= 10^2 \left[\frac{9}{10} - \left(\right) \right] \right]$	$\left[\frac{-3}{10}\right]^2 = 90 - 9 = 81 =$	$\sigma = 9$					
xample: 19	$\sum x = 170$	-	ion that was	vations on x, the f 20 was found to be	-			ne correct value		
	(a) 78.00)	(b) 188.66	(c) 17	7.33	(d)	8.33	[AIEEE 2003]		
olution: (a)	Increase	$\sum x^2 = 2830$ in $\sum x = 10$, th in $\sum x^2 = 900$ -		+10 = 180 then $\sum x' = 2830 + 500 =$	= 3330					
		Variance $=\frac{1}{n}\sum x'^2 - \left(\frac{\sum x'}{n}\right)^2 = \frac{3330}{15} - \left(\frac{180}{15}\right)^2 = 222 - 144 = 78$								
Example: 20	The quart	ile deviation	of daily wag	es (in Rs.) of 7 perso	-			, 19, 25 is shetra CEE 1997]		
olution: (d)	-		-	(c) 9 of magnitude is 7, 10	_	(d)	4.5			
	Here $Q_1 =$	$=$ size of $\left(\frac{n+1}{4}\right)^n$	item = size	e of 2 nd item = 10						
	<i>Q</i> ₃ =	size of $\left(\frac{3(n+1)}{4}\right)$	\int_{0}^{th} item = siz	e of 6 th item = 19						
	Then Q.D	$=\frac{Q_3-Q_1}{2}=\frac{19}{2}$	$\frac{-10}{2} = 4.5$							
Example: 21	the media	an of the distr	ibution is give				[Kuruk	nean 39.6. Then shetra CEE 1991]		
			(b) 38.81				28.31			
olution: (b)	(a) 28.61			(c) 29 $M = M_{000}$						
olution: (b)	We know	that $S_k = \frac{M-1}{C}$	$\frac{M_o}{M_o}$, Where	$M =$ Mean, $M_o =$ Mo	ode, $\sigma = 3$	S.D.				
olution: (b)	We know	that $S_k = \frac{M-1}{C}$	$\frac{M_o}{M_o}$, Where		ode, $\sigma = 3$	S.D.				
Golution: (b)	We know <i>i.e.</i> 0.32 = 37.52 = 39 Median =	that $S_k = \frac{M-1}{6}$ = $\frac{39.6 - M_o}{6.5} \Rightarrow$ (Median) - 2(38.81 (approx	$\frac{M_o}{M_o}$, Where $M_o = 37.52$ a 39.6) x.)	$M = Mean, M_o = Mo$	ode, $\sigma = 3$	5.D. nedian –	· 2mean			
	We know <i>i.e.</i> 0.32 = 37.52 = 39 Median =	that $S_k = \frac{M-1}{6}$ = $\frac{39.6 - M_o}{6.5} \Rightarrow$ (Median) - 2(38.81 (approx	$\frac{M_o}{M_o}$, Where $M_o = 37.52$ a 39.6) x.)	$M =$ Mean, $M_o =$ Mo	ode, $\sigma = 3$	5.D. nedian –	· 2mean	[Pb. CET 1996]		
Example: 22	We know <i>i.e.</i> 0.32 = 37.52 = 30 Median = The S.D. of (a) $\left(\frac{a}{c}\right)\sigma$	that $S_k = \frac{M-M_o}{6.5}$ = $\frac{39.6 - M_o}{6.5}$ \Rightarrow (Median) - 2(38.81 (appropriate x))	$\frac{M_o}{\sigma}$, Where $M_o = 37.52$ a 39.6) x.) is σ . The S.D (b) $\left \frac{a}{c}\right \sigma$	$M =$ Mean, $M_o =$ Mo and also know that to of the variate $\frac{ax + b}{c}$ (c) $\left(\frac{b}{c}\right)$	bde, $\sigma = 3$ $M_o = 31$ $\frac{b}{2}$ where a $\frac{a^2}{c^2} \sigma$	5.D. nedian – a, <i>b, c</i> are (d)	2mean constant, is			
Solution: (b) Example: 22 Solution: (b)	We know <i>i.e.</i> 0.32 = 37.52 = 30 Median = The S.D. o (a) $\left(\frac{a}{c}\right)\sigma$ Let $y = \frac{ay}{c}$	that $S_k = \frac{M-c}{c}$ $= \frac{39.6 - M_o}{6.5} \Rightarrow$ (Median) - 2(38.81 (appropriate x) of a variate x $\frac{x+b}{c}$ <i>i.e.</i> , $y =$	$\frac{M_o}{\sigma}$, Where $M_o = 37.52$ a 39.6) x.) is σ . The S.D (b) $\left \frac{a}{c}\right \sigma$	$M =$ Mean, $M_o =$ Mo and also know that to of the variate $\frac{ax + b}{c}$	bde, $\sigma = 3$ $M_o = 31$ $\frac{b}{2}$ where a $\frac{a^2}{c^2} \sigma$	5.D. nedian – a, <i>b, c</i> are (d)	2mean constant, is			
Example: 22	We know <i>i.e.</i> 0.32 = 37.52 = 30 Median = The S.D. of (a) $\left(\frac{a}{c}\right)\sigma$ Let $y = \frac{ax}{c}$ $\therefore \overline{y} = A\overline{x}$	that $S_k = \frac{M-c}{c}$ $= \frac{39.6 - M_o}{6.5} \Rightarrow$ (Median) - 2(38.81 (appropriate) of a variate x $\frac{x+b}{c}$ <i>i.e.</i> , $y =$ +B	$\frac{M_o}{\sigma}$, Where $M_o = 37.52$ a 39.6) x.) is σ . The S.D (b) $\left \frac{a}{c}\right \sigma$ $\frac{a}{c}x + \frac{b}{c}$ i.e.	$M =$ Mean, $M_o =$ Mo and also know that to of the variate $\frac{ax + b}{c}$ (c) $\left(\frac{b}{c}\right)$	bde, $\sigma = 3$ $M_o = 31$ $\frac{b}{c}$ where a $\frac{a^2}{c^2} \sigma$ $= \frac{a}{c}, B = 0$	5.D. median – a, <i>b</i> , <i>c</i> are (d) <u>b</u> c	2mean constant, is None of the	se		

Thus, new S.D. = $\left|\frac{a}{c}\right|\sigma$.

2.2 Correlation & Regression

2.2.1 Introduction

"If it is proved true that in a large number of instances two variables tend always to fluctuate in the same or in opposite directions, we consider that the fact is established and that a relationship exists. This relationship is called correlation."

(1) **Univariate distribution :** These are the distributions in which there is only one variable such as the heights of the students of a class.

(2) **Bivariate distribution :** Distribution involving two discrete variable is called a bivariate distribution. For example, the heights and the weights of the students of a class in a school.

(3) **Bivariate frequency distribution :** Let x and y be two variables. Suppose x takes the values $x_1, x_2, ..., x_n$ and y takes the values $y_1, y_2, ..., y_n$, then we record our observations in the form of ordered pairs (x_1, y_1) , where $1 \le i \le n, 1 \le j \le n$. If a certain pair occurs f_{ij} times, we say that its frequency is f_{ij} .

The function which assigns the frequencies f_{ij} 's to the pairs (x_i, y_j) is known as a bivariate frequency distribution.

Example: 1

x (yrs) y (yrs.)	40-45	45 - 50	50 - 55	55 - 60	60 - 65
45 - 50	2	5	8	3	0
50 - 55	1	3	6	10	2
55 - 60	0	2	5	12	1

1 The following table shows the frequency distribution of age (*x*) and weight (*y*) of a group of 60 individuals

Then find the marginal frequency distribution for *x* and *y*.

22

Marginal frequency distribution for x

18

Solution:

x	40 - 45	45 - 50	50 - 55	55 - 60	60 - 65
f	3	10	19	25	3
Margina	l frequency distr	ibution for y			
v	45 - 50	50 - 55	55 - 60		

20

2.2.2 Covariance

Let (x_1, x_i) ; i = 1, 2, ..., n be a bivariate distribution, where $x_1, x_2, ..., x_n$ are the values of variable x and $y_1, y_2, ..., y_n$ those of y. Then the covariance *Cov* (x, y) between x and y is given by

$$Cov(x,y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \text{ or } Cov(x,y) = \frac{1}{n} \sum_{i=1}^{n} (x_i y_i - \bar{x} \bar{y}) \text{ where, } \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \text{ and } \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \text{ are}$$

means of variables x and y respectively.

Covariance is not affected by the change of origin, but it is affected by the change of scale.

Example: 2 Covariance
$$(x, y)$$
 between x and y, if $\sum x = 15$, $\sum y = 40$, $\sum x \cdot y = 110$, $n = 5$ is [DCE 2000]

(a) 22 (b) 2 (c) -2 (d) None of these
Solution: (c) Given,
$$\sum x = 15$$
, $\sum y = 40$
 $\sum x.y = 110$, $n = 15$
We know that, $Cov(x, y) = \frac{1}{n} \sum_{i=1}^{n} x_i \cdot y_i - \left(\frac{1}{n} \sum_{i=1}^{n} x_i\right) \left(\frac{1}{n} \sum_{i=1}^{n} y_i\right) = \frac{1}{n} \sum x.y - \left(\frac{1}{n} \sum x\right) \left(\frac{1}{n} \sum y\right)$
 $= \frac{1}{5} (110) - \left(\frac{15}{5}\right) \left(\frac{40}{5}\right) = 22 - 3 \times 8 = -2$.

2.2.3 Correlation

The relationship between two variables such that a change in one variable results in a positive or negative change in the other variable is known as correlation.

(1) Types of correlation

(i) Perfect correlation : If the two variables vary in such a manner that their ratio is always constant, then the correlation is said to be perfect.

(ii) Positive or direct correlation : If an increase or decrease in one variable corresponds to an increase or decrease in the other, the correlation is said to be positive.

(iii) Negative or indirect correlation : If an increase or decrease in one variable corresponds to a decrease or increase in the other, the correlation is said to be negative.

(2) Karl Pearson's coefficient of correlation : The correlation coefficient r(x, y), between two variable x and

/

 \sim

[Kerala (Engg.) 2002]

y is given by,
$$r(x,y) = \frac{Cov(x,y)}{\sqrt{Var(x)}\sqrt{Var(y)}}$$
 or $\frac{Cov(x,y)}{\sigma_x \sigma_y}$, $r(x,y) = \frac{n\left(\sum_{i=1}^n x_i y_i\right) - \left(\sum_{i=1}^n x_i\right)\left(\sum_{i=1}^n y_i\right)}{\sqrt{n\sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2}\sqrt{n\sum_{i=1}^n y_i^2 - \left(\sum_{i=1}^n y_i\right)^2}}$
 $r = \frac{\sum(x - \bar{x})(y - \bar{y})}{\sqrt{\sum(x - \bar{x})^2}\sqrt{\sum(y - \bar{y})^2}} = \frac{\sum dxdy}{\sqrt{\sum dx^2}\sqrt{\sum dy^2}}$.
(3) Modified formula : $r = \frac{\sum dxdy - \frac{\sum dx}{\sqrt{\sum dx^2}\sqrt{\sum dy^2}}}{\sqrt{\left\{\sum dx^2 - \left(\sum dx\right)^2\right\}} \left\{\sum dy^2 - \frac{\left(\sum dy\right)^2}{n}\right\}}}$, where $dx = x - \bar{x}; dy = y - \bar{y}$
Also $r_{xy} = \frac{Cov(x,y)}{\sigma_x \sigma_y} = \frac{Cov(x,y)}{\sqrt{var(x).var(y)}}$.
Example: 3 For the data

x: 4 7 8 4 3 5 8 6 3 *y*:

The Karl Pearson's coefficient is

(a)
$$\frac{63}{\sqrt{94 \times 66}}$$
 (b) 63 (c) $\frac{63}{\sqrt{94}}$ (d) $\frac{63}{\sqrt{66}}$
Take $A = 5, B = 5$

5

Solution: (a)

							Correlation	and Regression 67
	<i>x</i> _{<i>i</i>}	y _i	$u_i = x_i - 5$	$v_i = y_i - 5$	u_i^2	v_i^2	<i>u</i> _i <i>v</i> _i	
	4	5	- 1	0	1	0	0	
	7	8	2	3	9	9	6	
	8	6	3	1	1	1	3	
	3	3	- 2	- 2	4	4	4	
	4	5	- 1	0	0	0	0	
	Total		$\sum u_i = 1$	$\sum v_i = 2$	$\sum u_i^2 = 19$	$\sum v_i^2 = 14$	$\sum u_i v_i = 13$	
	\therefore $r(x,y) = c$	$\frac{\sum u_{i}}{\sqrt{\sum u_{i}^{2} - \frac{1}{n}}} \left(\sum_{i=1}^{n} \frac{1}{n}\right)^{2}$	$\frac{u_i v_i - \frac{1}{n} \sum u_i \sum}{\sum u_i \right)^2} \sqrt{\sum v_i}$	$\frac{\sum_{i}^{v_i}}{-\frac{1}{n} \left(\sum_{i}^{v_i}\right)^2}$	$=\frac{13-\frac{1\times}{5}}{\sqrt{19-\frac{1^2}{5}}\sqrt{19}}$	$\frac{2}{5} = \frac{2}{\sqrt{94}}$	$\frac{63}{4\sqrt{66}}$.	
Example: 4	Coefficient of	correlation bet	ween observati	ons (1, 6),(2, 5),(3, 4), (4, 3),			
Solution: (b)	(a) 1Since there is a∴ Coefficient		_	x and y, <i>i.e.</i> x +	(c) $0 - y = 7$	[Pb. CET]	1997; Him. CET 200 (d) None o	
Example: 5	The value of c	o-variance of	two variables	x and y is $-\frac{14}{2}$	$\frac{48}{-}$ and the va	riance of x is	$\frac{272}{2}$ and the varia	nce of y is $\frac{131}{3}$. The
Lample, 5	coefficient of c (a) 0.48		(b) 0.78		3 (c) 0.87		3 (d) None of the	
Solution : (d)	We know that			Cov(x,y)	(,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(1) 1011 11	-
Example: 6	Since the covar ∴ Correlation	riance is – <i>ive</i> . coefficient mu	st be – <i>ive</i> . Her	$d_x + d_y$ nce (d) is the co		covariance is		is 4, then the S.D. of y MU 1988, 89, 90]
	(a) 4		(b) 8		(c) 16		(d) 64	
Solution: (b)	We have, $r_{xy} =$	= 0.5, Cov(x, y)	y) = 16 . S.D of	f x i.e., $\sigma_x = 4$, $\sigma_y = ?$			
	We know that,	$0.5 = \frac{16}{4.\sigma_y}$; $\therefore \sigma_y = 8$.	_	_			
Example: 7	For a bivariate	distribution (x	(x, y) if $\sum x =$	$= 50 , \sum y = 6$	50, $\sum xy = 3$	350, $x = 5, y =$	= 6 variance of x i	s 4, variance of y is 9,
	then $r(x, y)$ is					[AMU	J 1991; Pb. CET 199	98; DCE 1998]
	(a) 5/6		(b) 5/36		(c) 11/3		(d) 11/18	
Solution: (a)	$\overline{x} = \frac{\sum x}{n} \Rightarrow$	<i>n</i>						
	$\therefore Cov (x,y) = Cov$	п	10	= 5.				
	$\therefore r(x,y) = \frac{Co}{\sigma}$	$\frac{\sigma_{x}(x,y)}{\sigma_{x}.\sigma_{y}} = \frac{3}{\sqrt{4}.\gamma}$	$\overline{\sqrt{9}} = \frac{5}{6}$.					
Example: 8	<i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> are	non-zero const	ants, such that					
	(i) both A and	d C are negativ	/e.		(ii) A and	<i>C</i> are of oppos	ite sign.	

If coefficient of correlation between x and y is r, then that between AX + B and CY + D is

Solution : (a,b) (i) Both A and C are negative. Now Cov(AX + B, CY + D) = AC Cov.(X, Y)

(a) r

 $\sigma_{AX+B} \neq A \mid \sigma_x$ and $\sigma_{CY+D} \neq C \mid \sigma_y$

Hence
$$\rho(AX + B, CY + D) = \frac{AC.Cov(X, Y)}{(|A| \sigma_x)(|C| \sigma_y)} = \frac{AC}{|AC|}\rho(X, Y) = \rho(X, Y) = r, \quad (\because AC > 0)$$

(ii) $\rho(AX + B, CY + D) = \frac{AC}{|AC|}\rho(X, Y), \quad (\because AC < 0)$

(c) $\frac{A}{C}r$ (d) $-\frac{A}{C}r$

$$= \frac{AC}{-AC} \rho(X,Y) = -\rho(X,Y) = -r.$$

(b) – *r*

2.2.4 Rank Correlation

Let us suppose that a group of n individuals is arranged in order of merit or proficiency in possession of two characteristics A and B.

These rank in two characteristics will, in general, be different.

For example, if we consider the relation between intelligence and beauty, it is not necessary that a beautiful individual is intelligent also.

Rank Correlation : $\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$, which is the Spearman's formulae for rank correlation coefficient.

Where $\sum d^2$ = sum of the squares of the difference of two ranks and *n* is the number of pairs of observations.

Note :
$$\Box$$
 We always have, $\sum d_i = \sum (x_i - y_i) = \sum x_i - \sum y_i = n(\overline{x}) - n(\overline{y}) = 0$, $(\because \overline{x} = \overline{y})$

If all *d*'s are zero, then r = 1, which shows that there is perfect rank correlation between the variable and which is maximum value of *r*.

 \Box If however some values of x_i are equal, then the coefficient of rank correlation is given by

$$= 1 - \frac{6\left[\sum d^2 + \left(\frac{1}{12}\right)(m^3 - m)\right]}{n(n^2 - 1)}$$

where *m* is the number of times a particular x_i is repeated.

Positive and Negative rank correlation coefficients

Let *r* be the rank correlation coefficient then, if

r

- r > 0, it means that if the rank of one characteristic is high, then that of the other is also high or if the rank of one characteristic is low, then that of the other is also low. *e.g.*, if the two characteristics be height and weight of persons, then r > 0 means that the tall persons are also heavy in weight.
- r = 1, it means that there is perfect correlation in the two characteristics *i.e.*, every individual is getting the same ranks in the two characteristics. Here the ranks are of the type (1, 1), (2, 2), ..., (n, n).
- r < 1, it means that if the rank of one characteristics is high, then that of the other is low or if the rank of one characteristics is low, then that of the other is high. *e.g.*, if the two characteristics be richness and slimness in person, then r < 0 means that the rich persons are not slim.

- r = -1, it means that there is perfect negative correlation in the two characteristics *i.e.*, an individual getting highest rank in one characteristic is getting the lowest rank in the second characteristic. Here the rank, in the two characteristics in a group of *n* individuals are of the type (1, n), (2, n-1), ..., (n, 1).
- r = 0, it means that no relation can be established between the two characteristics.

Important Tips

	Importa	ent Tips				
	e variable x and y are said to be uncorrelated or independe	ent.				
	 -1, the correlation is said to be negative and perfect. +1, the correlation is said to be positive and perfect. 					
-	t r = +1, the correlation is said to be positive and perfect. Correlation is a pure number and hence unitless.					
📽 If two varia	tte are connected by the linear relation $x + y = K$, then $x, y = K$	y are in perfect indirect	correlation. Here $r = -1$.			
☞ If x, y are tv	we independent variables, then $\rho(x + y, x - y) = \frac{\sigma_x^2 - \sigma_y^2}{\sigma_x^2 + \sigma_y^2}$					
\mathscr{F} $r(x,y) = -\sqrt{2}$	$\frac{\sum u_{i}v_{i} - \frac{1}{n}\sum u_{i}\sum v_{i}}{\sum u_{i}^{2} - \frac{1}{n}\left(\sum u_{i}\right)^{2}}\sqrt{\sum v_{i}^{2} - \frac{1}{n}\left(\sum v_{i}\right)^{2}}}, \text{ where } u_{i} = x_{i} - x_{i}$	$A, v_i = y_i - B.$				
Example: 9	Two numbers within the bracket denote the ranks of 10 $(1, 10)$ $(2, 0)$ $(4, 7)$ $(5, 6)$ $(6, 5)$ $(7, 4)$ $(9, 2)$		-			
	(1, 10), (2, 9), (3, 8), (4, 7), (5, 6), (6, 5), (7, 4), (8, 3), (9, 10) (a) 0 (b) -1	(0, 1), $(10, 1)$. The rank $(0, 1)$	(d) 0.5			
Solution: (b)	Rank correlation coefficient is $r = 1 - 6 \cdot \frac{\sum d^2}{n(n^2 - 1)}$, Wh	ere $d = y - x$ for pair ((x,y)			
	$\therefore \ \Sigma d^2 = 9^2 + 7^2 + 5^2 + 3^2 + 1^2 + (-1)^2 + (-3)^2 + (-5)^2$	$(-7)^{2} + (-7)^{2} + (-9)^{2} = 330$				
	Also $n = 10$; $\therefore r = 1 - \frac{6 \times 330}{10(100 - 1)} = -1$.					
Example : 10	Let $x_1, x_2, x_3, \dots, x_n$ be the rank of <i>n</i> individuals acc	cording to character A a	and y_1, y_2, \dots, y_n the ranks of same individual			
	according to other character B such that $x_i + y_i = n + 1$	for $i = 1, 2, 3,, n$. The	hen the coefficient of rank correlation between the			
	characters A and B is					
	(a) 1 (b) 0	(c) – 1	(d) None of these			
Solution: (c)	$x_i + y_i = n + 1$ for all $i = 1, 2, 3, \dots, n$					
	Let $x_i - y_i = d_i$. Then, $2x_i = n + 1 + d_i \implies d_i = 2x_i - d_i$	(n+1)				
	$\therefore \sum_{i=1}^{n} d_i^2 = \sum_{i=1}^{n} [2x_i - (n+1)]^2 = \sum_{i=1}^{n} [4x_i^2 + (n+1)^2 - (n+1)]^2$	$-4x_i(n+1)$]				
	$\sum_{i=1}^{n} d_i^2 = 4 \sum_{i=1}^{n} x_i^2 + (n)(n+1)^2 - 4(n+1) \sum_{i=1}^{n} x_i = 4 \frac{n(n+1)}{n}$	$\frac{(n+1)(2n+1)}{6} + (n)(n+1)$	$(n^2 - 4(n+1)\frac{n(n+1)}{2})$			
	$\sum_{i=1}^{n} d_i^2 = \frac{n(n^2 - 1)}{3} .$					
	$\therefore r = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)} = 1 - \frac{6(n)(n^2 - 1)}{3(n)(n^2 - 1)} i.e., r = -1.$					
		•				

Regression

2.2.5 Linear Regression

If a relation between two variates x and y exists, then the dots of the scatter diagram will more or less be concentrated around a curve which is called the **curve of regression**. If this curve be a straight line, then it is known as line of regression and the regression is called **linear regression**.

Line of regression: The line of regression is the straight line which in the least square sense gives the best fit to the given frequency.

2.2.6 Equations of lines of Regression

(1) **Regression line of** y on x : If value of x is known, then value of y can be found as

$$y - \overline{y} = \frac{Cov(x, y)}{\sigma_x^2}(x - \overline{x})$$
 or $y - \overline{y} = r\frac{\sigma_y}{\sigma_x}(x - \overline{x})$

(2) **Regression line of** *x* **on** *y* **:** It estimates *x* for the given value of *y* as

$$x - \overline{x} = \frac{Cov(x, y)}{\sigma_y^2}(y - \overline{y}) \text{ or } x - \overline{x} = r \frac{\sigma_x}{\sigma_y}(y - \overline{y})$$

(3) **Regression coefficient :** (i) Regression coefficient of y on x is $b_{yx} = \frac{r\sigma_y}{\sigma_x} = \frac{Cov(x, y)}{\sigma_x^2}$

(ii) Regression coefficient of x on y is $b_{xy} = \frac{r\sigma_x}{\sigma_y} = \frac{Cov(x, y)}{\sigma_y^2}$.

2.2.7 Angle between Two lines of Regression

Equation of the two lines of regression are $y - \overline{y} = b_{yx}(x - \overline{x})$ and $x - \overline{x} = b_{xy}(y - \overline{y})$

We have, $m_1 =$ slope of the line of regression of y on $x = b_{yx} = r \cdot \frac{\sigma_y}{\sigma_x}$

 m_2 = Slope of line of regression of x on $y = \frac{1}{b_{xy}} = \frac{\sigma_y}{r.\sigma_x}$

$$\therefore \tan \theta = \pm \frac{m_2 - m_1}{1 + m_1 m_2} = \pm \frac{\frac{\sigma_y}{r\sigma_x} - \frac{\sigma_y}{\sigma_x}}{1 + \frac{r\sigma_y}{\sigma_x} \cdot \frac{\sigma_y}{r\sigma_x}} = \pm \frac{(\sigma_y - r^2 \sigma_y)\sigma_x}{r\sigma_x^2 + r\sigma_y^2} = \pm \frac{(1 - r^2)\sigma_x \sigma_y}{r(\sigma_x^2 + \sigma_y^2)}$$

Here the positive sign gives the acute angle θ , because $r^2 \leq 1$ and σ_x, σ_y are positive.

Note : \Box If r = 0, from (i) we conclude $\tan \theta = \infty$ or $\theta = \pi/2$ *i.e.*, two regression lines are at right angels.

 \Box If $r = \pm 1$, tan $\theta = 0$ *i.e.*, $\theta = 0$, since θ is acute *i.e.*, two regression lines coincide.

2.2.8 Important points about Regression coefficients b_{xy} and b_{yx}

- (1) $r = \sqrt{b_{yx} \cdot b_{xy}}$ *i.e.* the coefficient of correlation is the geometric mean of the coefficient of regression.
- (2) If $b_{yx} > 1$, then $b_{xy} < 1$ *i.e.* if one of the regression coefficient is greater than unity, the other will be less than unity.

(3) If the correlation between the variable is not perfect, then the regression lines intersect at (\bar{x}, \bar{y}) .

(4) b_{yx} is called the slope of regression line y on x and $\frac{1}{b}$ is called the slope of regression line x on y.

(5) $b_{yx} + b_{xy} > 2\sqrt{b_{yx}b_{xy}}$ or $b_{yx} + b_{xy} > 2r$, *i.e.* the arithmetic mean of the regression coefficient is greater than the correlation coefficient.

(6) Regression coefficients are independent of change of origin but not of scale.

(7) The product of lines of regression's gradients is given by $\frac{\sigma_y^2}{\sigma_z^2}$.

(8) If both the lines of regression coincide, then correlation will be perfect linear.

(9) If both b_{yx} and b_{xy} are positive, the r will be positive and if both b_{yx} and b_{xy} are negative, the r will be negative.

Important Tips

The If $r = 0$, then $\tan \theta$ is not defined i.e. $\theta = \frac{\pi}{2}$. Thus the regression lines are	re perpendicular.
--	-------------------

The formula $\theta = 0$ i.e. $\theta = 0$. Thus the regression lines are coincident.

The integral of the set of the s

[™] If b_{yx} , b_{xy} and $r \ge 0$ then $\frac{1}{2}(b_{xy} + b_{yx}) \ge r$ and if b_{xy} , b_{yx} and $r \le 0$ then $\frac{1}{2}(b_{xy} + b_{yx}) \le r$.

Correlation measures the relationship between variables while regression measures only the cause and effect of relationship between the variables.

The interval of the tensor of y on x makes an angle α , with the +ive direction of X-axis, then $\tan \alpha = b_{yx}$.

The interval of the the transformation of X on Y makes an angle β , with the +ive direction of X-axis, then $\cot \beta = b_{xy}$.

Example : 11 The two lines of regression are 2x - 7y + 6 = 0 and 7x - 2y + 1 = 0. The correlation coefficient between x and y is

					[DCE 1999]
	(a) $-2/7$	(b) 2/7	(c) 4/49	(d) None of these	
Solution: (b)	The two lines of regression	on are $2x - 7y + 6 = 0$	(i) and $7x - 2y + 1 = 0$	(ii)	
	If (i) is regression equation	on of y on x , then (ii) is	regression equation of x on y .		
	We write these as $y = \frac{2}{7}$	$x + \frac{6}{7}$ and $x = \frac{2}{7}y - \frac{1}{7}$			
	$\therefore b_{yx} = \frac{2}{7}, \ b_{xy} = \frac{2}{7};$:. $b_{yx} \cdot b_{xy} = \frac{4}{49} < 1$, So	o our choice is valid.		
	$\therefore r^2 = \frac{4}{49} \implies r = \frac{2}{7}.$	$[\because b_{yx} > 0, b]$	$P_{xy} > 0$]		
Example: 12	Given that the regression	coefficients are - 1.5 ar	nd 0.5, the value of the square of cor	relation coefficient is	
			_	[Kuru]	kshetra CEE 2002]
	(a) 0.75		(b) 0.7		
	(c) -0.75		(d) -0.5		
Solution: (c)	Correlation coefficient is	given by $r^2 = b_{yx} \cdot b_{xy} =$	= (-1.5)(0.5) = -0.75.		
Example: 13	In a bivariate data $\sum x$	$= 30, \sum y = 400, \sum x$	$x^2 = 196, \sum xy = 850 \text{ and } n = 10$.The regression coefficient	of y on x is
				[K	erala (Engg.) 2002]
	(a) - 3.1	(b) - 3.2	(c) - 3.3	(d) - 3.4	

Solution: (c)	$Cov(x, y) = \frac{1}{n} \sum xy - \frac{1}{n^2} \sum x \cdot \sum y = \frac{1}{10} (850) - \frac{1}{100} (30)(400) = -35$					
	$Var(x) = \sigma_x^2 = \frac{1}{n} \sum x^2 - \left(\frac{\sum x}{n}\right)^2 = \frac{196}{10} - \left(\frac{30}{10}\right)^2 = 10.6$					
	$b_{yx} = \frac{Cov(x, y)}{Var(x)} = \frac{-35}{10.6} = -3.3.$					
Example: 14	If two lines of regression are $8x - 10y + 66 = 0$ and $40x - 18y = 214$, then $(\overline{x}, \overline{y})$ is [AMU 1994; DCE 1994]					
	(a) (17, 13) (b) (13, 17) (c) (-17, 13) (d) (-13, -17)					
Solution: (b)	Since lines of regression pass through (\bar{x}, \bar{y}) , hence the equation will be $8\bar{x} - 10\bar{y} + 66 = 0$ and $40\bar{x} - 18\bar{y} = 214$					
	On solving the above equations, we get the required answer $\overline{x} = 13$, $\overline{y} = 17$.					
Example: 15	The regression coefficient of y on x is $\frac{2}{3}$ and of x on y is $\frac{4}{3}$. If the acute angle between the regression line is θ , then $\tan \theta =$					
	(a) $\frac{1}{18}$ (b) $\frac{1}{9}$ (c) $\frac{2}{9}$ (d) None of these					
Solution: (a)	$b_{yx} = \frac{2}{3}, b_{xy} = \frac{4}{3}$. Therefore, $\tan \theta = \left \frac{b_{xy} - \frac{1}{b_{yx}}}{1 + \frac{b_{xy}}{b_{yx}}} \right = \left \frac{\frac{4}{3} - \frac{3}{2}}{1 + \frac{\frac{4}{3}}{2/3}} \right = \frac{1}{18}$.					
Example: 16	If the lines of regression of y on x and x on y make angles 30° and 60° respectively with the positive direction of X-axis, then the correlation coefficient between x and y is [MP PET 2002]					
	(a) $\frac{1}{\sqrt{2}}$ (b) $\frac{1}{2}$					
	(c) $\frac{1}{\sqrt{3}}$ (d) $\frac{1}{3}$					
Solution: (c)	Slope of regression line of y on $x = b_{yx} = \tan 30^{\circ} = \frac{1}{\sqrt{3}}$					
	Slope of regression line of x on $y = \frac{1}{b_{xy}} = \tan 60^{\circ} = \sqrt{3}$					
	$\Rightarrow b_{xy} = \frac{1}{\sqrt{3}} \text{ . Hence, } r = \sqrt{b_{xy} \cdot b_{yx}} = \sqrt{\left(\frac{1}{\sqrt{3}}\right) \left(\frac{1}{\sqrt{3}}\right)} = \frac{1}{\sqrt{3}} \text{ .}$					
Example: 17	If two random variables x and y, are connected by relationship $2x + y = 3$, then $r_{xy} =$ [AMU 1991]					
Solution: (b)	(a) 1 (b) -1 (c) -2 (d) 3 Since $2x + y = 3$					
	$\therefore 2\overline{x} + \overline{y} = 3; \therefore y - \overline{y} = -2(x - \overline{x}).$ So, $b_{yx} = -2$					
	Also $x - \overline{x} = -\frac{1}{2}(y - \overline{y})$, $\therefore b_{xy} = -\frac{1}{2}$					
	$\therefore r_{xy}^2 = b_{yx} \cdot b_{xy} = (-2)\left(-\frac{1}{2}\right) = 1 \implies r_{xy} = -1. \qquad (\because \text{ both } b_{yx}, b_{xy} \text{ are } -ive)$					
2.2.9 Stanc	lard error and Probable error					

(1) Standard error of prediction : The deviation of the predicted value from the observed value is known as the

standard error prediction and is defined as $S_y = \sqrt{\left\{\frac{\sum (y - y_p)^2}{n}\right\}}$

where y is actual value and y_p is predicted value.

In relation to coefficient of correlation, it is given by

(i) Standard error of estimate of x is $S_x = \sigma_x \sqrt{1 - r^2}$ (ii) Standard error of estimate of y is $S_y = \sigma_y \sqrt{1 - r^2}$.

(2) Relation between probable error and standard error : If r is the correlation coefficient in a sample of n pairs of observations, then its standard error S.E. $(r) = \frac{1-r^2}{\sqrt{r}}$ and probable error P.E. (r) = 0.6745 (S.E.) = 0.6745

 $\left(\frac{1-r^2}{\sqrt{n}}\right)$. The probable error or the standard error are used for interpreting the coefficient of correlation.

(i) If r < P.E.(r), there is no evidence of correlation.

(ii) If r > 6P.E.(r), the existence of correlation is certain.

The square of the coefficient of correlation for a bivariate distribution is known as the "Coefficient of determination".

If $Var(x) = \frac{21}{4}$ and Var(y) = 21 and r = 1, then standard error of y is Example: 18 (a) 0 (b) $\frac{1}{2}$ (c) $\frac{1}{4}$ (d) 1 $S_{v} = \sigma_{v} \sqrt{1 - r^{2}} = \sigma_{v} \sqrt{1 - 1} = 0$.

Solution: (a)

			Mean
		Basic Level	
If the mean of 3, 4	1, x, 7, 10 is 6, then the value	of x is	
(a) 4	(b) 5	(c) 6	(d) 7
		nber is multiplied by λ , then the	
(a) \overline{x}	(b) $\lambda + \overline{x}$	(c) $\lambda \overline{x}$	(d) None of these
The mean of discr	rete observations y_1, y_2, \dots, y_n	is given by	[DCE 1999]
$\sum_{i=1}^{n}$	$\sum_{i=1}^{n}$	$\sum_{n=1}^{n}$	$\sum_{n=1}^{n}$
$\sum_{i=1}^{j} y_i$	(b) $\frac{\sum_{i=1}^{n} y_i}{\sum_{i=1}^{n} i}$	(c) $\frac{\sum_{i=1}^{n} y_i f_i}{n}$	(d) $\frac{\sum_{i=1}^{n} y_i f_i}{\sum_{i=1}^{n} f_i}$
(a) $\frac{n}{n}$	(b) $\frac{1}{n}$	(c) $\frac{1}{n}$	(d) $\frac{1}{n}$
	$\sum_{i=1}^{i} i$		$\sum_{i=1}^{i} f_i$
If the mean of nu	mbers 27, 31, 80, 107, 156 is 3	82, then the mean of 130–126-6	58, 50, 1 is [Pb. CET 1989; Kurukshetr
(a) 75	(b) 157	(c) 82	(d) 80
			1
d_i is the deviation	n of a class mark y_i from 'a'	the assumed mean and f_i is the	he frequency, if $M_g = x + \frac{1}{\sum f_i} (\sum f_i d_i)$,
then <i>x</i> is			
(a) Lower limit	(b) Assumed mean	(c) Number of obser	vations (d) Class size
The mean of a set			0 and then is increased by 10, then
(a) $\frac{\overline{x}}{\overline{x}}$	(b) $\frac{\overline{x}+10}{\alpha}$		(d) $\alpha \overline{x} + 10$
$(a) - \alpha$	$(0) - \frac{\alpha}{\alpha}$	(c) $\frac{\overline{x}+10\alpha}{\alpha}$	(d) $dx + 10$
If the mean o	of the numbers $27 + x$,	31 + x, $89 + x$, $107 + x$, $156 + x$	x is 82, then the mean of
130 + <i>x</i> , 126 + <i>x</i> , 68 +	-x, 50 + x, 1 + x is		
			[Kerala PET 2001]
(a) 75	(b) 157	(c) 82	(d) 80
Consider the freq	uency distribution of the give	en numbers	
Value :	1 2 3 4		
Frequency :	5 4 6 <i>f</i>		
If the mean is kno	own to be 3, then the value of	fis	[NDA 2001]
(a) 3	(b) 7	(c) 10	(d) 14
If the arithmeti	c mean of the numbers	$x_1, x_2, x_3, \dots, x_n$ is \overline{x} , then the	he arithmetic mean of numbers
$ax_1 + b, ax_2 + b, ax_3 + b$	$b, \dots, ax_n + b$, where a, b are	two constants would be	[NDA Sept. 1998]
(a) \overline{x}	(b) $n a \overline{x} + n b$	(c) $a\overline{x}$	(d) $a\overline{x} + b$
The mean of <i>n</i> ite	ms is \overline{x} . If the first term is in	ncreased by 1, second by 2 and s	so on, then new mean is [DCE 1998]
(a) $\overline{x} + n$	(b) $\overline{r} + \frac{n}{n}$	(c) $\bar{x} + \frac{n+1}{2}$	(d) None of these
$(u) x \pm n$	(b) $\bar{x} + \frac{n}{2}$	$(c) x + \frac{1}{2}$	(u) none of these

				5 - 7
1.	The G.M. of the numbe	rs $3, 3^2, 3^3, \dots, 3^n$ is		[Pb. CET 1997]
	(a) $3^{2/n}$	(b) $3^{(n-1)/2}$	(c) $3^{n/2}$	(d) $3^{(n+1)/2}$
	The reciprocal of the m	nean of the reciprocals of <i>n</i> obs	servations is their	[AMU 1985]
	(a) A.M.	(b) G.M.	(c) H.M.	(d) None of these
•	The harmonic mean of	3, 7, 8, 10, 14 is		
	(a) $\frac{3+7+8+10+14}{5}$	(b) $\frac{1}{3} + \frac{1}{7} + \frac{1}{8} + \frac{1}{10} + \frac{1}{14}$	(c) $\frac{\frac{1}{3} + \frac{1}{7} + \frac{1}{8} + \frac{1}{10} + \frac{1}{14}}{4}$	(d) $\frac{5}{\frac{1}{3} + \frac{1}{7} + \frac{1}{8} + \frac{1}{10} + \frac{1}{14}}$
•	If the algebraic sum of	deviations of 20 observations	from 30 is 20, then the mean	n of observations is[NDA (Sept.) 2
	(a) 30	(b) 30.1	(c) 29	(d) 31
•	The weighted mean on numbers is	of first <i>n</i> natural numbers w	hose weights are equal to	the squares of corresponding [Pb. CET 1989]
	(a) $\frac{n+1}{2}$	(b) $\frac{3n(n+1)}{2(2n+1)}$	(c) $\frac{(n+1)(2n+1)}{6}$	(d) $\frac{n(n+1)}{2}$
	The mean of the values	s 0, 1, 2,, <i>n</i> having correspo	nding weight ${}^{n}c_{0}, {}^{n}c_{1}, {}^{n}c_{2},$, ${}^{n}c_{n}$ respectively is[AMU 1990; C
	(a) $\frac{2^n}{n+1}$	(b) $\frac{2^{n+1}}{n(n+1)}$	(c) $\frac{n+1}{2}$	(d) $\frac{n}{2}$
	If the values $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, $	$\frac{1}{5}, \dots, \frac{1}{n}$ occur at frequencies 1	, 2, 3, 4, 5, <i>n</i> in a distribu	tion, then the mean is[NDA 2000
	(a) 1	(b) <i>n</i>	(c) $\frac{1}{n}$	(d) $\frac{2}{n+1}$
	The number of observation then the average of the		verage of first 10 is 4.5 and	that of the remaining 30 is 3.5, [AMU 1992; DCE 1996]
	(a) $\frac{1}{5}$	(b) $\frac{15}{4}$	(c) 4	(d) 8
	A student obtain 75% average cannot be less	-	ects. If the marks of anothe	er subject are added, then his
	(a) 60%	(b) 65%	(c) 80%	[NDA 2000] (d) 90%
	The mean age of a con		en is 30 years. If the means	of the age of men and women [NDA Sept. 1998]
	(a) 30	(b) 40	(c) 50	(d) 60
	female employees are	respectively Rs. 510 and Rs. 46	50. The percentage of male e	ean monthly salary of male and mployees in the factory is[NDA (
	(a) 60 The A.M. of a 50 set o the remaining set of nu		(c) 80 ers of the set, namely 55 and	(d) 90 d 45 are discarded, the A.M. of [Kurukshetra CEE 1993]
	(a) 38.5	(b) 37.5	(c) 36.5	(d) 36
		ons is 45. It was later found th		31 were incorrectly recorded as [NDA 2001]
	(a) 44.0	(b) 44.46	(c) 45.00	(d) 45.54
	A car completes the fi	rst half of its journey with a	velocity v_1 and the rest hal	If with a velocity v_2 . Then the
	average velocity of the	car for the whole journey is		[AMU 1989; DCE 1995]
	(a) $\frac{v_1 + v_2}{2}$	(b) $\sqrt{v_1 v_2}$	(c) $\frac{2v_1v_2}{v_1+v_2}$	(d) None of these

25. An automobile driver travels from plane to a hill station 120 *km* distant at an average speed of 30 *km* per hour. He then makes the return trip at an average speed of 25 *km* per hour. He covers another 120 *km* distance on plane at an average speed of 50 *km* per hour. His average speed over the entire distance of 300 *km* will be

(a) $\frac{30+25+50}{3}$ km/hr (b) $(30,25,50)^{\frac{1}{3}}$ (c) $\frac{3}{\frac{1}{30}+\frac{1}{25}+\frac{1}{50}}$ km/hr (d) None of these

26. The average weight of students in a class of 35 students is 40 kg. If the weight of the teacher be included, the average rises by $\frac{1}{2}$ kg; the weight of the teacher is **[Kerala (Engg.) 2002]**

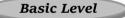
27. If \overline{X}_1 and \overline{X}_2 are the means of two distributions such that $\overline{X}_1 < \overline{X}_2$ and \overline{X} is the mean of the combined distribution, then

(a)
$$\overline{X} < \overline{X}_1$$
 (b) $\overline{X} > \overline{X}_2$ (c) $\overline{X} = \frac{\overline{X}_1 + \overline{X}_2}{2}$ (d) $\overline{X}_1 < \overline{X} < \overline{X}_2$

28. If a variable takes values 0, 1, 2,, n with frequencies $q^n, \frac{n}{1}q^{n-1}p, \frac{n(n-1)}{1.2}q^{n-2}p^2, \dots, p^n$, where p + q = 1, then

the mean is

(a)
$$np$$
 (b) nq (c) $n(p+q)$ (d) None of these


29. The A.M. of n observations is M. If the sum of n - 4 observations is a, then the mean of remaining 4 observations is

(a)
$$\frac{nM-a}{4}$$
 (b) $\frac{nM+a}{2}$ (c) $\frac{nM-A}{2}$ (d) $nM+a$

Median

[Kurukshetra CEE 1995]

(d) G.M.

30. Which one of the following measures of marks is the most suitable one of central location for computing intelligence of students

	(a) Mode	(b) Arithmetic mean	(c) Geometric mean	(d) Median
31.	The central value of the	set of observations is called		

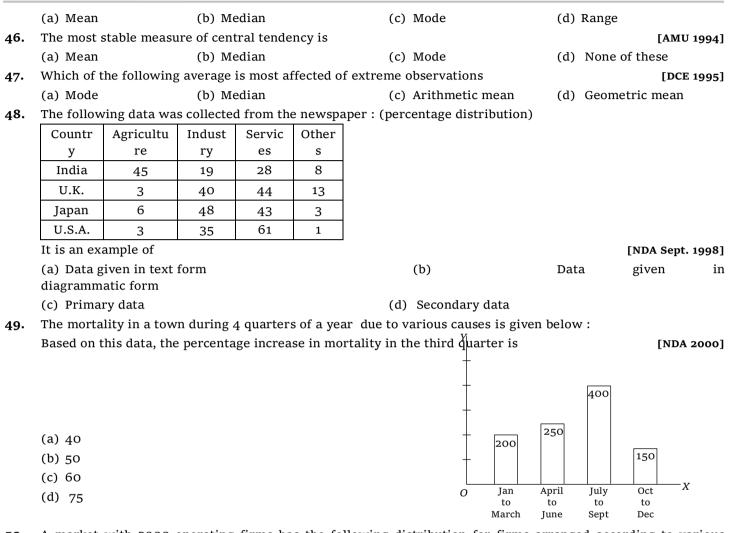
(a) Mean(b) Median(c) Mode32. For a frequency distribution 7th decile is computed by the formula

(a)
$$D_7 = l + \frac{\left(\frac{N}{7} - C\right)}{f} \times i$$
 (b) $D_7 = l + \frac{\left(\frac{N}{10} - C\right)}{f} \times i$ (c) $D_7 = l + \frac{\left(\frac{7N}{10} - C\right)}{f} \times i$ (d) $D_7 = l + \frac{\left(\frac{10N}{7} - C\right)}{f} \times i$

33. Which of the following, in case of a discrete data, is not equal to the median

(a) 50th percentile
(b) 5th decile
(c) 2nd quartile
(d) Lower quartile

34. The median of 10, 14, 11, 9, 8, 12, 6 is

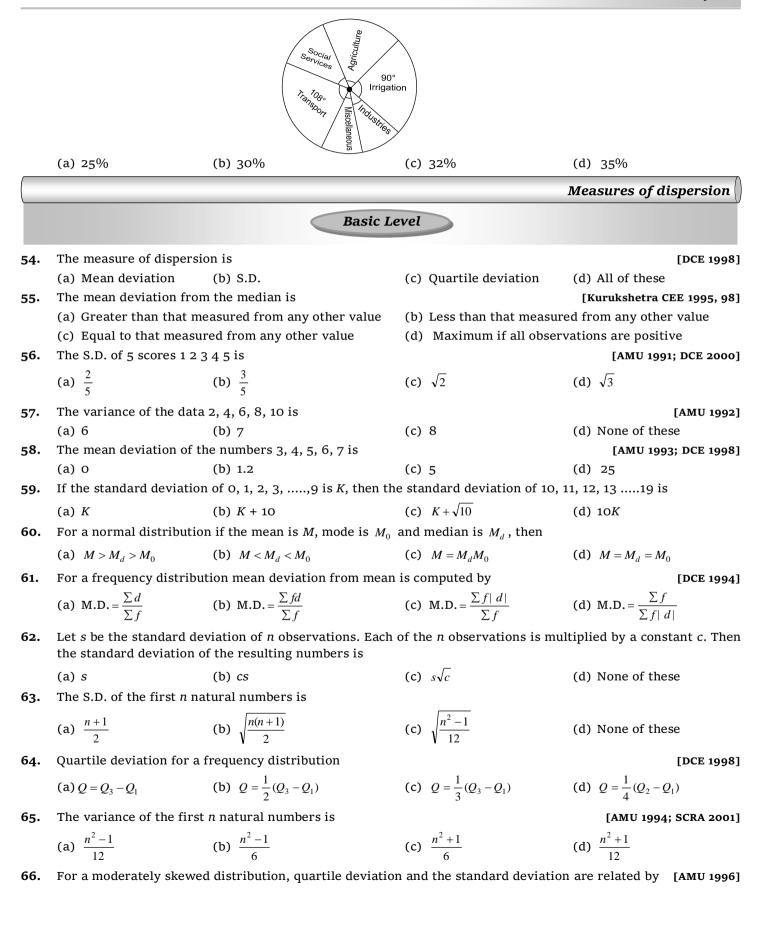

(a) 10
(b) 12
(c) 14
(d) 11

35. The relation between the median *M*, the second quartile Q_2 , the fifth decile D_5 and the 50th percentile P_{50} , of a set of observations is

[AMU 1990]
(a)
$$M = Q_2 = D_5 = P_{50}$$
 (b) $M < Q_2 < D_5 < P_{50}$ (c) $M > Q_2 > D_5 > P_{50}$ (d) None of these

36. For a symmetrical distribution $Q_1 = 25$ and $Q_3 = 45$, the median is

			Ме	asures of Central Tendency 59
	(a) 20	(b) 25	(c) 35	(d) None of these
		Advan	ce Level	
37.	If a variable takes t	the discrete values $\alpha - 4, \alpha - \frac{7}{2}, \alpha - \frac{7}{2}$	$\frac{5}{2}, \alpha - 3, \alpha - 2, \alpha + \frac{1}{2}, \alpha - \frac{1}{2}, \alpha$	$\alpha + 5 (\alpha > 0)$, then the median is
		2		[DCE 1997; Pb. CET 1988
	(a) $\alpha - \frac{5}{4}$	(b) $\alpha - \frac{1}{2}$	(c) $\alpha - 2$	(d) $\alpha + \frac{5}{4}$
38.	The upper quartile	for the following distribution	1	
	Size of 1 items	2 3 4 5 6 7	-	
	Frequency 2	4 5 8 7 3 2]	
	is given by the size (a) $\left(\frac{31+1}{4}\right)$ th item	(b) $\left[2\left(\frac{31+1}{4}\right)\right]$ th item	(c) $\left[3\left(\frac{31+1}{4}\right)\right]$ th ite	em (d) $\left[4\left(\frac{31+1}{4}\right)\right]$ th item
				Mode
		Basic	c Level	
39.		ries the mode is computed by the	formula	
	(a) $l + \frac{f_{m-1}}{f_m - f_{m-1} - f_{m+1}}$	$- \times C$ or $l + \left(\frac{f_1}{f_m - f_1 - f_2}\right) \times i$		$r \times C$ or $l + \frac{f_m - f_1}{f_m - f_1 - f_2} \times i$
	5m 5m-1 5m-		(d) $l + \frac{2f_m - f_{m-1}}{f_m - f_{m-1} - f_{m+1}}$	
40.	A set of numbers co is [AMU 1989]	onsists of three 4's, five 5's, six 6'	s, eight 8's and seven 10	o's. The mode of this set of number
	(a) 6	(b) 7	(c) 8	(d) 10
41.		lowing items is 0, 1, 6, 7, 2, 3, 7,		[AMU 1995
	(a) 0	(b) 5	(c) 6	(d) 2
			Relation betw	ween mean, median and mode
		Basic	c Level	
42.	If mean = (3 media	n – mode) k, then the value of k is	5	
	(a) 1	(b) 2	(c) $\frac{1}{2}$	(d) $\frac{3}{2}$
43.	In a moderately asy	mmetrical distribution the mode	and mean are 7 and 4 re	espectively. The median is[NDA Sep
44.	(a) 4 If in a moderately median is	(b) 5 asymmetrical distribution mode	(c) 6 e and mean of the data	(d) 7 a are 6λ and 9λ respectively, the [Pb. CET 1988]
	(a) 8λ	(b) 7λ	(c) 6λ	(d) 5λ
45.		ving is not a measure of central te		[Pb. CET 1989


50. A market with 3900 operating firms has the following distribution for firms arranged according to various income groups of workers

Income	No. of firms
group	
150-300	300
300-500	500
500-800	900
800-1200	1000
1200-1800	1200

If a histogram for the above distribution is constructed the highest bar in the histogram would correspond to the class [NDA Sept. 1998]

	(a) 500-800	(b) 1200-1800	(c) 800-1200	(d) 150-300	
51.	The total expenditure in	curred by an industry under dif	ferent heads is best present	ed as a	[NDA 2000]
	(a) Bar diagram	(b) Pie diagram	(c) Histogram	(d) Frequency p	olygon
52.	The expenditure of a far	nily for a certain month were as	s follows :		
	Food – Rs.560, Rent – Rs.420, Clothes – Rs.180, Education – Rs.160, Other items – Rs.120				
	A pie graph representing this data would show the expenditure for clothes by a sector whose angle equals				
	(a) 180°	(b) 90°	(c) 45°	(d) 64°	

53. Section-wise expenditure of a State Govt. is shown in the given figure. The expenditure incurred on transport is[NDA (

(a) S.D.
$$-\frac{3}{2}$$
 Q.D. (b) S.D. $-\frac{3}{2}$ Q.D. (c) S.D. $-\frac{3}{4}$ Q.D. (d) S.D. $-\frac{4}{3}$ Q.D.
(a) $\sigma = \sqrt{\frac{2}{M}} \frac{1}{2} \frac{N}{2} \frac{1}{2} \frac{N}{2} \frac{N}$

The standard deviation of 25 numbers is 40. If each of the numbers is increased by 5, then the new standard deviation will be [DCE 1995] (c) $40 + \frac{21}{25}$ (b) 45 (d) None of these (a) 40 The S.D of 15 items is 6 and if each item is decreased by 1, then standard deviation will be [Pb. CET 1998] 83. (c) $\frac{91}{15}$ (d) 6 (a) 5 (b) 7 The quartile deviation for the data 84. x:2 6 3 4 5 f:8 3 4 4 1 is [AMU 1988; Kurukshetra CEE 1999] (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ (a) 0 (d) 1 The sum of squares of deviations for 10 observations taken from mean 50 is 250. The co-efficient of variation is[DCE 1 85. (b) 10% (c) 40% (d) None of these (a) 50%One set containing five numbers has mean 8 and variance 18 and the second set containing 3 numbers has mean 86. 8 and variance 24. Then the variance of the combined set of numbers is (b) 20.25 (d) None of these (a) 42 (c) 18 The means of five observations is 4 and their variance is 5.2. If three of these observations are 1, 2 and 6, then 87. the other two are [AMU 1994] (a) 2 and 9 (b) 3 and 8 (c) 4 and 7 (d) 5 and 6 The mean of 5 observations is 4.4 and their variance is 8.24. If three observations are 1, 2 and 6, the other two 88. observations are [AMU 1998] (b) 4 and 9 (c) 5 and 7 (d) 5 and 9 (a) 4 and 8 Consider any set of observations $x_1, x_2, x_3, ..., x_{101}$; it being given that $x_1 < x_2 < x_3 < ... < x_{100} < x_{101}$; then the mean 89. deviation of this set of observations about a point k is minimum when k equals [DCE 1997] (c) $\frac{x_1 + x_2 + \dots + x_{101}}{101}$ (a) x₁ (b) x_{51} (d) x_{50} The mean and S.D of the marks of 200 candidates were found to be 40 and 15 respectively. Later, it was 90. discovered that a score of 40 was wrongly read as 50. The correct mean and S.D respectively are (a) 14.98, 39.95 (b) 39.95, 14.98 (c) 39.95, 224.5 (d) None of these Let *r* be the range and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$ be the S.D. of a set of observations x_1, x_2, \dots, x_n , then 91. (a) $S \le r \sqrt{\frac{n}{n-1}}$ (b) $S = r \sqrt{\frac{n}{n-1}}$ (c) $S \ge r\sqrt{\frac{n}{n-1}}$ (d) None of these In any discrete series (when all values are not same) the relationship between M.D. about mean and S.D. is 92. (a) M.D. = S.D.(b) M.D. \geq S.D. (c) M.D. < S.D.(d) M.D. \leq S.D. For (2*n* +1) observations $x_1, -x_1, x_2, -x_2, \dots, x_n, -x_n$ and 0 where x's are all distinct. Let S.D. and M.D. denote the 93.

82.

standard deviation and median respectively. Then which of the following is always true [Orissa JEE 2002] (a) S.D. < M.D.

- (b) S.D. > M.D.
- (c) S.D. = M.D.

95.

- (d) Nothing can be said in general about the relationship of S.D. and M.D.
- **94.** Suppose values taken by a variable *X* are such that $a \le x_i \le b$ where x_i denotes the value of *X* in the *i*th case for *i* = 1, 2, ..., *n*. Then

[Kurukshetra CEE 1995, 2000]

(a) $a \leq \operatorname{Var}(X) \leq b$	(b) $a^2 \leq \operatorname{Var}(X) \leq b^2$	(c) $\frac{a^2}{4} \leq \operatorname{Var}(X)$	(d) $(b-a)^2 \ge Var(X)$
The variance of α , β and	γ is 9, then variance of 5 α , 5 β at	nd 5 ₇ is	[AMU 1998]
(a) 45	(b) $\frac{9}{5}$	(c) $\frac{5}{9}$	(d) 225

* * *

Assignment (Basic and Advance Level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
с	с	a	a	b	с	a	d	d	с	d	с	d	d	b	d	d	b	a	b
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
с	b	d	с	с	d	d	a	a	d	b	с	d	a	a	с	a	с	с	с
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
с	с	b	a	d	a	с	с	с	b	b	с	b	d	b	с	с	b	a	d
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
с	b	с	b	а	b	d	с	a	а	b	b	b	b	a	d	d	d	с	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95					
a	а	d	d	b	b	с	b	b	b	а	b	b	d	d					

Correlation

Basic Level

1. For the bivariate frequency table for *x* and *y*

x y	0 - 10	10 - 20	20 - 30	30 - 40	Sum
0 - 10	3	2	4	2	11
10 - 20	-	1	3	1	5
20 - 30	3	2	-	-	5
30 - 40	-	6	7	-	13
Sum	6	11	14	3	34

Then the marginal frequency distribution for y is given by

(a	0	I	6
)	10		
	10	I	11
	20		
	20	I	14
	30		
	30 40	١	3
	40		

(b)	0	I	11
	10		
	10	Ι	5
	20		
	20	Ι	5
	30		
	30	-	13
	40		

(c)	0 -	10	10
	10	I	12
	20		
	20	Ι	11
	30		

	(d) None of these			
2.		represent height in <i>cm</i> and weig	ght in <i>gm</i> respectively. The	correlation between x and y
	has the unit			-
				[MP PET 2003]
	(a) gm	(b) cm	(c) <i>gm.cm</i>	(d) None of these
3.	The value of $\sum_{x \in x} \overline{x}(x - x)(y - x)($	$(y-\overline{y})$] is		
	(a) $n.r_{xy}.\sigma_x\sigma_y$	(b) $r_{xy}.\sigma_x^2\sigma_y^2$	(c) $r_{xy}\sqrt{\sigma_x\sigma_y}$	(d) None of these
4.	Karl Pearson's coefficie	ent of correlation is dependent		[MP PET 1993]
	(a) Only on the change scale and not on the	of origin and not on the change e change of origin	of scale	(b) Only on the change of
	(b) On both the change of origin	of origin and the change of scal	e (d) Neither on the chang	ge of scale nor on the change
5۰	If X and Y are independ	ent variable, then correlation co	pefficient is	
	(a) 1	(b) - 1	(c) $\frac{1}{2}$	(d) o
6.	The value of the correla	ation coefficient between two va	ariable lies between	[Kurukshetra CEE 1998]
	(a) 0 and 1	(b) – 1 and 1	(c) 0 and ∞	(d) $-\infty$ and o
7.	The coefficient of corre	lation between two variables x	and <i>y</i> is given by	
	(a) $r = \frac{\sigma_x^2 + \sigma_y^2 + \sigma_{x-y}^2}{2\sigma_x\sigma_y}$	(b) $r = \frac{\sigma_x^2 + \sigma_y^2 - \sigma_{x-y}^2}{2\sigma_x \sigma_y}$	(c) $r = \frac{\sigma_x^2 + \sigma_y^2 + \sigma_{x-y}^2}{\sigma_x \sigma_y}$	(d) $r = \frac{\sigma_x^2 + \sigma_y^2 - \sigma_{x-y}^2}{\sigma_x \sigma_y}$
8.	If <i>r</i> is the correlation co	oefficient between two variables	s, then	[MP PET 1995; Pb. CET 1995]
8.	If r is the correlation co (a) $r \ge 1$	Defficient between two variables (b) $r \le 1$	s, then (c) $ r \le 1$	[MP PET 1995; Pb. CET 1995] (d) r ≥1
8. 9.	(a) $r \ge 1$		(c) r ≤1	(d) $ r \ge 1$
	(a) $r \ge 1$	(b) <i>r</i> ≤1	(c) r ≤1	(d) $ r \ge 1$
	(a) $r \ge 1$ When the correlation be (a) -1	(b) $r \le 1$ etween two variables is perfect,	 (c) r ≤1 then the value of coefficie (c) 0 	(d) $ r \ge 1$ nt of correlation <i>r</i> is
9.	(a) $r \ge 1$ When the correlation be (a) -1	 (b) r≤1 etween two variables is perfect, (b) +1 	 (c) r ≤1 then the value of coefficie (c) 0 	(d) $ r \ge 1$ nt of correlation <i>r</i> is
9.	 (a) r≥1 When the correlation be (a) -1 If correlation between a (a) -r 	 (b) r≤1 etween two variables is perfect, (b) +1 x and y is r, then between y and 	 (c) r ≤1 then the value of coefficie (c) 0 <i>x</i> correlation will be (c) <i>r</i> 	 (d) r ≥1 nt of correlation r is (d) ±1
9. 10.	 (a) r≥1 When the correlation be (a) -1 If correlation between a (a) -r 	(b) $r \le 1$ etween two variables is perfect, (b) +1 x and y is r, then between y and (b) $\frac{1}{r}$ correlation and $Y = a + bX$, then	 (c) r ≤1 then the value of coefficie (c) 0 <i>x</i> correlation will be (c) <i>r</i> 	 (d) r ≥1 nt of correlation r is (d) ±1
9. 10.	(a) $r \ge 1$ When the correlation be (a) -1 If correlation between x (a) $-r$ If r is the coefficient of (a) $\frac{a}{b}$	(b) $r \le 1$ etween two variables is perfect, (b) +1 x and y is r, then between y and (b) $\frac{1}{r}$ correlation and $Y = a + bX$, then (b) $\frac{b}{a}$	(c) $ r \le 1$ then the value of coefficient (c) o x correlation will be (c) r r = (c) 1	 (d) r ≥1 nt of correlation r is (d) ±1 (d) 1- r
9. 10. 11.	(a) $r \ge 1$ When the correlation be (a) -1 If correlation between x (a) $-r$ If r is the coefficient of (a) $\frac{a}{b}$	 (b) r≤1 etween two variables is perfect, (b) +1 x and y is r, then between y and (b) 1/r correlation and Y = a+bX, then (b) b/a tion between the variables x and 	(c) $ r \le 1$ then the value of coefficient (c) o x correlation will be (c) r r = (c) 1	 (d) r ≥1 nt of correlation r is (d) ±1 (d) 1- r (d) None of these
9. 10. 11.	(a) $r \ge 1$ When the correlation be (a) -1 If correlation between r (a) $-r$ If r is the coefficient of (a) $\frac{a}{b}$ If coefficient of correlation	(b) $r \le 1$ etween two variables is perfect, (b) +1 x and y is r, then between y and (b) $\frac{1}{r}$ correlation and $Y = a + bX$, then (b) $\frac{b}{a}$ tion between the variables x and ave no relation	<pre>(c) r ≤1 then the value of coefficie (c) 0 x correlation will be (c) r r = (c) 1 d y is zero, then</pre>	 (d) r ≥1 nt of correlation r is (d) ±1 (d) 1- r (d) None of these
9. 10. 11. 12.	(a) $r \ge 1$ When the correlation be (a) -1 If correlation between x (a) $-r$ If r is the coefficient of (a) $\frac{a}{b}$ If coefficient of correlation (a) Variables x and y have (c) y increases as x incompared by the set of	(b) $r \le 1$ etween two variables is perfect, (b) +1 x and y is r, then between y and (b) $\frac{1}{r}$ correlation and $Y = a + bX$, then (b) $\frac{b}{a}$ tion between the variables x and ave no relation reases	 (c) r ≤1 then the value of coefficie (c) 0 x correlation will be (c) r r = (c) 1 d y is zero, then (b) y decreases as x incred 	 (d) r ≥1 nt of correlation r is (d) ±1 (d) 1- r (d) None of these
9. 10. 11. 12.	(a) $r \ge 1$ When the correlation be (a) -1 If correlation between x (a) $-r$ If r is the coefficient of (a) $\frac{a}{b}$ If coefficient of correlative (a) Variables x and y have (c) y increases as x incomparison between x and y When the origin is characterised	(b) $r \le 1$ etween two variables is perfect, (b) +1 x and y is r, then between y and (b) $\frac{1}{r}$ correlation and $Y = a + bX$, then (b) $\frac{b}{a}$ tion between the variables x and ave no relation reases	<pre>(c) r ≤1 , then the value of coefficie (c) 0 , x correlation will be (c) r r = (c) 1 d y is zero, then (b) y decreases as x increases relation</pre>	 (d) r ≥1 nt of correlation r is (d) ±1 (d) 1- r (d) None of these eases (d) There may be a
 9. 10. 11. 12. relati 13. 	(a) $r \ge 1$ When the correlation be (a) -1 If correlation between r (a) $-r$ If r is the coefficient of (a) $\frac{a}{b}$ If coefficient of correlation (a) Variables x and y has (c) y increases as x incomposition between x and y When the origin is charmonic (a) Becomes zero	(b) $r \le 1$ etween two variables is perfect, (b) +1 x and y is r, then between y and (b) $\frac{1}{r}$ correlation and $Y = a + bX$, then (b) $\frac{b}{a}$ tion between the variables x and ave no relation reases	 (c) r ≤1 then the value of coefficie (c) 0 x correlation will be (c) r r = (c) 1 d y is zero, then (b) y decreases as x incred 	 (d) r ≥1 nt of correlation r is (d) ±1 (d) 1- r (d) None of these
9. 10. 11. 12. relat	(a) $r \ge 1$ When the correlation be (a) -1 If correlation between x (a) $-r$ If r is the coefficient of (a) $\frac{a}{b}$ If coefficient of correlati (a) Variables x and y have (c) y increases as x incompared tion between x and y When the origin is charma (a) Becomes zero If $r = -0.97$, then	(b) $r \le 1$ etween two variables is perfect, (b) +1 x and y is r, then between y and (b) $\frac{1}{r}$ correlation and $Y = a + bX$, then (b) $\frac{b}{a}$ tion between the variables x and ave no relation reases nged, then the coefficient of cor (b) Varies	 (c) r ≤1 then the value of coefficie (c) 0 x correlation will be (c) r r = (c) 1 d y is zero, then (b) y decreases as x increases 	 (d) r ≥1 nt of correlation r is (d) ±1 (d) 1- r (d) None of these eases (d) There may be a (d) None of these
 9. 10. 11. 12. relati 13. 	(a) $r \ge 1$ When the correlation be (a) -1 If correlation between r (a) $-r$ If r is the coefficient of (a) $\frac{a}{b}$ If coefficient of correlative (a) Variables x and y having (c) y increases as x inclusion between x and y When the origin is charming (a) Becomes zero If $r = -0.97$, then (a) Correlation is negative	(b) $r \le 1$ etween two variables is perfect, (b) +1 x and y is r, then between y and (b) $\frac{1}{r}$ correlation and $Y = a + bX$, then (b) $\frac{b}{a}$ tion between the variables x and ave no relation reases nged, then the coefficient of cor (b) Varies	 (c) r ≤1 then the value of coefficie (c) 0 x correlation will be (c) r r = (c) 1 d y is zero, then (b) y decreases as x increases 	 (d) r ≥1 nt of correlation r is (d) ±1 (d) 1- r (d) None of these eases (d) There may be a (d) None of these
 9. 10. 11. 12. relati 13. 	(a) $r \ge 1$ When the correlation be (a) -1 If correlation between x (a) $-r$ If r is the coefficient of (a) $\frac{a}{b}$ If coefficient of correlative (a) Variables x and y have (b) y increases as x incompared (c) y increases x and y When the origin is charmadown (a) Becomes zero If $r = -0.97$, then (b) Correlation is negative (c) Correlation is in this	(b) $r \le 1$ etween two variables is perfect, (b) +1 x and y is r, then between y and (b) $\frac{1}{r}$ correlation and $Y = a + bX$, then (b) $\frac{b}{a}$ tion between the variables x and ave no relation reases nged, then the coefficient of cor (b) Varies	 (c) r ≤1 then the value of coefficie (c) 0 x correlation will be (c) r r = (c) 1 d y is zero, then (b) y decreases as x increases 	 (d) r ≥1 nt of correlation r is (d) ±1 (d) 1- r (d) None of these eases (d) There may be a (d) None of these

15. In a scatter diagram, if plotted points form a straight line running from the lower left to the upper right corner, then there exists a

(a) High degree of positive correlation (b) Perfect positive correlation

30

40

_

1

				-		correl		variate distribution	(d) have a perfect correla	None of these tion, they may be connected by [Kur
(a)						-	(c) $\frac{a}{r}$ +		(c) $\frac{x}{a} + \frac{y}{b} = 1$	(d) None of these
If x	c an	ld y	are	rela	ated				correlation between <i>x</i>	and <i>y</i> is
		-	t po					ect negative	(c) No correlation	(d) None of these
If	$\sum j$	x = 1	5, 5	- y =	= 36 ,	, \sum_{i}	y = 110	, $n = 5$ then $Cov(x, y)$	equals	[AI CBSE 1991]
(a)			_	_			(c) $\frac{-1}{5}$		(c) $\frac{2}{5}$	(d) $-\frac{2}{5}$
For	al	biva	riab	ole c	listr	ibutio	n (x,y)	if $\sum xy = 350$, $\sum x$	$x = 50, \sum y = 60, \overline{x} = 5, \overline{y} = 5$	= 6, then $Cov(x, y)$ equals
										[Pb. CET 1997, AMU
]	_					0				
(a) For		var	ianc	e th	e nu		o)6 ofvar	ate values in the tw	(c) 22 o given distribution sh	(d) 28 ould be [AMU 1989]
		nequ		c th		inoci	Ji val	are values in the tw	•	one and any number in the other
		jual							(d) None of these	
		-		ind	eper	ndent	variab	es, then		[AMU 1994]
		-			-			(x, y) = -1	(c) $Cov(x, y) = 0$	(d) $Cov(x, y) = \pm \frac{1}{2}$
(u)	Ct	л (л,	y) –	1		() 001	(, y) = 1	$(\mathbf{c}) \mathbf{cov}(x,y) = 0$	$(\alpha) = \frac{1}{2}$
If										
x :		3	4	8	6	52	1			
у		5	3	9	6	59	2			
:		5	5	5		5	_			
the	n tl	he c	oeff	icie	nt o	f corr	elatior	will be approximate	ely	[AI CBSE 1990]
(a)					_) 0.4		(c) - 0. 49	(d) - 0. 40
The	e co	oeffi	cien	it of	cor	relati	on for	he following data		
x	2		25	30) 3		45			
	C		10	0	-	0				
у	1	6	10	8	2 0	-	10			
wil	l be	e		I						[AI CBSE 1988]
(a)						(1	o) - o.	2	(c) 0.35	(d) None of these
Coe	effi	cier	t of	cor	rela	tion f	rom th	following data		
x		1	2		3	4	5			
:										
y		2	5		7	8	10			
: wil	1 .	2								INCLE 1000 AT CROP
W11	1 06	=								[DSSE 1983, AI CBSE
(a)	о.	97				(1	o) - o.	7	(c) 0.90	(d) None of these
Coe	effi	cier	t of	cor	rela	tion b	etwee	x and y for the foll	owing data	
x	:	15	16	5	17	17	18 2	10		
-		5	_ ~			,	0			

12 15 16 12 15 11 y 17 : will be approximately [DSSE 1979, 81; AI CBSE 1990] (c) - 0.50 (a) 0.50 (b) 0.53 (d) - 0.53 Karl Pearson's coefficient of correlation between x and y for the following data 26. [AISSE 1983, 85, 90] 8 6 x: 3 4 9 2 1 3 7 7 6 9 2 y 5 : (b) - 0. 480 (d) - 0. 408 (a) 0.480 (c) 0.408 The coefficient of correlation for the following data 27. x:1 2 6 8 10 З 4 5 7 9 8 6 u:3 10 5 1 2 9 4 7 will be [AISSE 1986, 1990] (a) 0.224 (b) 0.240 (c) 0.30 (d) None of these Karl Pearson's coefficient of correlation between the marks in English and Mathematics by ten students 28. Marks in 18 2 13 21 11 12 17 14 19 15 English 0 Marks in 17 12 23 25 14 8 19 21 22 19 Maths will be [AISSE 1979, 82] (d) None of these (a) 0.75 (b) - 0.75 (c) 0.57 Coefficient of correlation between x and y for the following data 29. x _ -3 -2 -1 0 1 2 3 4 4 16 9 4 1 0 1 9 16 у 4 will be [Mathematics Olympiad 1981; DSSE 1980] (a) 1 (b) -1 (c) 0 (d) None of these If the variances of two variables x and y are respectively 9 and 16 and their covariance is 8, then their 30. coefficient of correlation is [MP PET 1998] (b) $\frac{8}{3\sqrt{2}}$ (c) $\frac{9}{8\sqrt{2}}$ (d) $\frac{2}{9}$ (a) $\frac{2}{3}$ If the co-efficient of correlation between x and y is 0. 28, covariance between x and y is 7.6 and the variance of 31. x is 9, then the S.D. of y series is (a) 9.8 (b) 10.1 (c) 9.05 (d) 10.05 [AMU 1993] 32. If Cov(x, y) = 0, then $\rho(x, y)$ equals (d) $\pm \frac{1}{2}$ (a) 0 (b) 1 (c) - 1

Correlation and Regression 77

33. Karl Pearson's coefficient of correlation between the heights (in inches) of teachers and students corresponding to the given data

78	Correlation and Reg	ress	sion											
	Height of teachers <i>x</i> :	6 6	67	6 8	6 9	70)							
	Height of students <i>y</i> :		6 6		72	70	1							
	is												[M P	PET 1993]
	(a) $\frac{1}{\sqrt{2}}$		(b) √	2					(c)	$-\frac{1}{\sqrt{2}}$			(d) o	
1.	The coefficient of cor the standard deviation			oetwe	een <i>x</i>	and	y is	0.6, t	hen c	ovaria	nce i	s 16. Sta	ndard deviation of x is	s 4, then
	(a) 5		(b) 10	С					(c)	20/3			(d) None of these	
5.	If $Cov(u, v) = 3$, $\sigma_u^2 = 4.5$	$,\sigma_v^2$	= 5.5,	then	ρ(u,	v) is							[A	MU 1988]
	(a) 0.121		(b) 0	-						0.07			(d) 0.347	
6.	Given $n = 10$, $\sum x = 4$,	$\sum y$	v = 3,	$\sum x^2$	= 8,	$\sum y^2$	2 = 9	and X	$\sum xy =$	3, the	n the	coefficie	ent of correlation is [P	b. CET 1999
	(a) $\frac{1}{4}$		(b) $\frac{7}{1}$	$\frac{7}{2}$					(c)	$\frac{15}{4}$			(d) $\frac{14}{3}$	
7.	Let r_{xy} be the coefficient	ent o	of cor	relat	ion t	etw	een t	two va	ariable	es x ai	nd y.	If the va	ariable x is multiplied	by 3 and
	the variable y is incre	eased	l by 2	, the	n the	corr	elati	ion co	efficie	ent of t	the ne	ew set of	variables is	
	(a) <i>r</i> _{xy}		(b) 3	r_{xy}					(c)	$3r_{xy} + 2$	2		(d) None of these	
8.	Coefficient of correlat	tion	betw	een t	he tw	vo va	riate	es X ai	nd Y i	5				
	X 1 2		3	4		5]							
	Y 5 4	1	3	2		1								
	(a) 0		(b) -:	1					(c)	1			(d) None of these	
9.	The coefficient of co	rrela	ation	betw	een t	wo	varia	ables 2	X and	Y is (0.5,	their co	variance is 15 and $\sigma_{\scriptscriptstyle X}$	=6, then
	σ_y =		[AMU	1998]									
	(a) 5		(b) 10	С					(c)	20			(d) 6	
0.	Karl Pearson's coeffic Chemistry in a class t					atio	n bet	ween	the r	anks c	btain	ed by te	n students in Mathem	atics and
	Rank in Mathematics :	1	2	3	4	4	5	6	7	8	9	10		
	Rank in Chemistry :	3	10	5		1	2	9	4	8	7	6		
	is												[AI	SSE 1990]
	(a) 0.224		(b) o	-						0.240			(d) None of these	
1.	1									d in Pl	nysics	and Ch	emistry by 10 students	in a test
	is 150, then the co-eff (a) 0.909		(b) o		corre	elatio	on 1s	given		0.849			(d) None of these	
							Adva	ance	Level					
2.	If a, b, h, k are consta	nts,	while	e U ai	nd V	are i	$U = \frac{\lambda}{2}$	$\frac{X-a}{L}$, V	$V = \frac{Y}{T}$	- <u>b</u> , th	en		[]	DCE 1999]
								n	K				$C_{0V}(\mathbf{Y}, \mathbf{V}) = hk C_{0V}$	
	(a) $Cov(X, Y) = Cov(X, Y) = $	υ, ν)							(b)			Cov(X, Y) = hk Cov	v(0, v)

	(c) $Cov(X, Y) = ab$	Cov (U, V)	(d)	Cov(U, V) = I	hk Cov (X, Y)
43.	Let X, Y be two vari U = 2X, $V = 3Y$, then		efficient $\rho(X, Y)$ and variables U, V be	e related to X, Y	by the relation [AMU 1999]
	(a) $\rho(X, Y)$	(b) $6\rho(X, Y)$	(c) $\sqrt{6}\rho(X,Y)$	(d) $\frac{3}{2}\rho(X,Y)$	
44.	If X and Y are two u	incorrelated variables and	d if $u = X + Y$, $v = X - Y$, then $r(u, v)$ is	s equal to	[DCE 1998]
	(a) $\frac{\sigma_x^2 + \sigma_y^2}{\sigma_x^2 - \sigma_y^2}$	(b) $\frac{\sigma_x^2 - \sigma_y^2}{\sigma_x^2 + \sigma_y^2}$	(c) $\frac{\sigma_x^2 + \sigma_y^2}{\sigma_x \sigma_y}$	(d) None of t	hese
45.	If $\overline{x} = \overline{y} = 0$, $\sum x_i y_i = 12$	2, $\sigma_x = 2$, $\sigma_y = 3$ and $n = 10$, then the coefficient of correlation is	5	[MP PET 1999]
	(a) 0.4	(b) 0.3	(c) 0.2	(d) 0.1	
46.	Let X and Y be two Y. Then Cov (U, V) i		variance and <i>U</i> and <i>V</i> be two variable	es such that U =	X + Y, V = X -
	(a) <i>Cov</i> (<i>X</i> , <i>Y</i>)	(b) o	(C) 1	(d) – 1	
					Regression
		<	Basic Level		

- 47. If there exists a linear statistical relationship between two variables x and y, then the regression coefficient of y on x is[MP PET 1998]
 - (a) $\frac{cor(x,y)}{\sigma_x \cdot \sigma_y}$

(b)
$$\frac{cor(x,y)}{\sigma_y^2}$$

(c)
$$\frac{cor(x,y)}{\sigma_x^2}$$

(d) $\frac{cor(x,y)}{\sigma_x}$, where σ_x, σ_y are standard deviations of x and y respectively.

48. If ax + by + c = 0 is a line of regression of *y* on *x* and $a_1x + b_1y + c_1 = 0$ that of *x* on *y*, then

(a) $a_1b \le ab_1$ (b) $aa_1 = bb_1$ (c) $ab_1 \le a_1b$ (d) None of these **49.** Least square lines of regression give best possible estimates, when $\rho(X, Y)$ is [DCE 1996]

(a) <1 (b) > -1 (c) -1 or 1 (d) None of these

- **50.** Which of the following statement is correct
 - (a) Correlation coefficient is the arithmetic mean of the regression coefficient
 - (b) Correlation coefficient is the geometric mean of the regression coefficient
 - (c) Correlation coefficient is the harmonic mean of the regression coefficient
 - (d) None of these
- **51.** The relationship between the correlation coefficient r and the regression coefficients b_{xy} and b_{yx} is[MP PET 2003; Pb. C

(a)
$$r = \frac{1}{2}(b_{xy} + b_{yx})$$
 (b) $r = \sqrt{b_{xy}b_{yx}}$ (c) $r = (b_{xy}b_{yx})^2$ (d) $r = b_{xy} + b_{yx}$

52. If the coefficient of correlation is positive, then the regression coefficients

[Pb. CET 1998; PU CET 2002]

[Kurukshetra CEE 1995]

80	Correlation and Regr	ession		
	(a) Both are positive			
	(b) Both are negative			
	(c) One is positive and	another is negative		
	(d) None of these			
3.	If b_{yx} and b_{xy} are both	positive (where b_{yx} and b_{xy} are	regression coefficients), th	ien [MP PET 2001]
	(a) $\frac{1}{b_{yx}} + \frac{1}{b_{xy}} < \frac{2}{r}$		(b) $\frac{1}{b_{yx}} + \frac{1}{b_{xy}} > \frac{2}{r}$	
	(c) $\frac{1}{b_{yx}} + \frac{1}{b_{xy}} < \frac{r}{2}$		(d) None of these	
4.	If x_1 and x_2 are regres	ssion coefficients and r is the coefficients and r	efficient of correlation, ther	1
	(a) $x_1 - x_2 > r$	(b) $x_1 + x_2 < r$	(c) $x_1 + x_2 \ge 2r$	(d) None of these
5.	If one regression coeffi	cient be unity, then the other w	ill be	
	(a) Greater than unity	(b) Greater than or equal to u	inity (c)	Less than or equal to unity (d
5.	If one regression coeffi	cient be less than unity, then the	e other will be	
	(a) Less than unity	(b) Equal to unity	(c) Greater than unity	(d) All of the above
7.	If regression coefficien	t of y on x is 2, then the regress	ion coefficient of x on y is	[AMU 1990]
	(a) 2	(b) $\frac{1}{2}$	(c) $\leq \frac{1}{2}$	(d) None of these
3.	The lines of regression	of <i>x</i> on <i>y</i> estimates		[AMU 1993]
	(a) <i>x</i> for a given value	of y (b)	y for a given value of x	(c) x from y and y from $x(d)$
9.	The statistical method value of the related var	which helps us to estimate or pr 'iable is called	redict the unknown value of	f one variable from the known [Pb. CET 1995]
	(a) Correlation	(b) Scatter diagram	(c) Regression	(d) Dispersion
).	The coefficient of correct Then the regression coefficient	elation between two variables <i>x</i> efficient of <i>x</i> on <i>y</i> is	and y is 0.8 while regression	on coefficient of <i>y</i> on <i>x</i> is 0.2. [MP PET 1993]
	(a) -3.2	(b) 3.2	(c) 4	(d) 0.16
•	If the lines of regressio	n coincide, then the value of con	rrelation coefficient is	
	(a) 0	(b) 1	(c) 0.5	(d) 0.33
2.	Two lines of regression	are $3x + 4y - 7 = 0$ and $4x + y - 5$	= 0 . Then correlation coeffi	icient between x and y is[AI CBSI
	(a) $\frac{\sqrt{3}}{4}$	(b) $-\frac{\sqrt{3}}{4}$	(c) $\frac{3}{16}$	(d) $-\frac{3}{16}$
3.	If the two lines of regre	ession are $4x + 3y + 7 = 0$ and $3x + 3y + 7 = 0$	+4y+8=0, then the means	of <i>x</i> and <i>y</i> are [AI CBSE 1990]
	(a) $-\frac{4}{7}, -\frac{11}{7}$	(b) $-\frac{4}{7},\frac{11}{7}$	(c) $\frac{4}{7}, -\frac{11}{7}$	(d) 4, 7
ŀ	The two regression line	es for a bivariate data are $x + y + y$	-50 = 0 and $2x + 3y + K = 0$.	If $\overline{x} = 0$, then \overline{y} is
	(a) 50	(b) $K - 100$	[] (c) - 50	BCA Delhi Entrance Exam. 1999] (d) $50 + K$
5.		es are $2x - 9y + 6 = 0$ and $x - 2y - 9y + 6 = 0$		
	(a) $-\frac{2}{3}$	(b) $\frac{2}{3}$	(c) $\frac{4}{9}$	(d) None of these

6.	If the two regression c them is	coefficient between x and y are	e 0.8 and 0.2, then the coe	fficient of correlation between [MP PET 2000]
	(a) 0.4	(b) 0.6	(c) 0.3	(d) 0.5
7.	The two lines of regres and <i>y</i> is	ssion are given by $3x + 2y = 26$	and $6x + y = 31$. The coefficient	icient of correlation between <i>x</i> [DCE 2000]
	(a) $-\frac{1}{3}$	(b) $\frac{1}{3}$	(c) $-\frac{1}{2}$	(d) $\frac{1}{2}$
3.	If the lines of regressio	on be $x - y = 0$ and $4x - y - 3 = 0$	and $\sigma_x^2 = 1$, then the coeff	icient of correlation is
	(a) - 0.5	(b) 0.5	(c) 1.0	(d) - 1.0
) .	A student obtained two y on x is) regression lines as $L_1 \equiv x - 5y$	$x + 7 = 0$ and $L_2 \equiv 3x + y - 8 =$	= 0 . Then the regression line of
	(a) <i>L</i> ₁	(b) L ₂	(c) Neither of the two	(d) $x - 5y = 0$
D .	If b_{yx} and b_{xy} are registratement is true	gression coefficients of y on	x and x on y respectively	r, then which of the following [Pb. CET 1996]
	(a) $b = 1.5, b_{m} = 1.4$	(b) $b_{yy} = 1.5, b_{yy} = 0.9$	(c) $h = 1.5, h_{m} = 0.8$	(d) $b_{xy} = 1.5, b_{yx} = 0.6$
ι.	<i>xy yx</i>	es of regression is given by		(u) $v_{xy} = 1.5, v_{yx} = 0.0$ (urukshetra CEE 2000; DCE 1998]
	(a) $\tan^{-1}\left(\frac{b_{yx} - \frac{1}{b_{xy}}}{1 + \frac{b_{xy}}{b_{yx}}}\right)$	(b) $\tan^{-1}\left(\frac{b_{yx} - b_{xy} - 1}{b_{yx} + b_{xy}}\right)$	(c) $\tan^{-1}\left(\frac{b_{xy} - \frac{1}{b_{yx}}}{1 + \frac{b_{xy}}{b_{yx}}}\right)$	(d) $\tan^{-1}\left(\frac{b_{yx} - b_{xy}}{1 + b_{yx} \cdot b_{xy}}\right)$
2.	If acute angle between	the two regression lines is θ , the two regression lines is θ .	nen	
	(a) $\sin\theta \ge 1-r^2$	(b) $\tan \theta \ge 1 - r^2$	(c) $\sin\theta \le 1-r^2$	(d) $\tan \theta \le 1 - r^2$
3.	If the angle between th	e two lines of regression is 90°	', then it represents	[DCE 1999]
	(a) Perfect correlation	(b) Perfect negative correlat	tion (c)	No linear correlation (d)
ŀ•	If $2x + y = 7$ and $x + 2y =$ and <i>y</i> is	=7 are the two regression line	s respectively, then the cor	rrelation co-efficient between x
				[DCE 1983; AMU 1993]
	(a) + 1	(b) -1	(c) $+\frac{1}{2}$	(d) $-\frac{1}{2}$
5.	For a perfect correlation then $\rho(x, y) =$	on between the variables x and	y, the line of regression is	s $ax + by + c = 0$ where $a, b, c > 0$;
				[AMU 1999]
	(a) 0	(b) -1	(C) 1	(d) None of these
5.	If two random variable correlation coefficient		bution are connected by th	e relationship $3x + 2y = 4$, then [AMU 1999]
	(a) 1	(b) -1	(c) 2/3	(d) -2/3
7.	Two variables x and y the two is +1, if	are related by the linear equa	tion $ax + by + c = 0$. The coe	fficient of correlation between
				[DCE 2002]
	(a) <i>a</i> is positive	(b) <i>b</i> is positive	(c) a and b both are pos	sitive (d)a and b are of opposi

	U U			
78.	If the two lines of regre	ession are $5x + 3y = 55$ and $7x + 3y = 55$	y = 45, then the correlation	coefficient between x and y is[AM
	(a) +1	(b) -1	(c) $-\sqrt{\frac{5}{21}}$	(d) $-\sqrt{\frac{21}{5}}$
79.	The error of prediction	of <i>x</i> from the required line of r	egression is given by,	
	(where $ ho$ is the co-efficient	ient of correlation)		[AMU 1992]
	(a) $\sigma_x(1-\rho^2)$	(b) $n \sigma_x^2 (1 - \rho^2)$	(c) $\sigma_x^2(1-\rho^2)$	(d) $n \sigma_y^2 (1-\rho^2)$
0.	Probable error of <i>r</i> is			
	(a) $0.6745\left(\frac{1-r^2}{\sqrt{n}}\right)$	(b) 0.6754 $\left(\frac{1+r^2}{\sqrt{n}}\right)$	(c) $0.6547\left(\frac{1-r^2}{n}\right)$	$(d) 0.6754\left(\frac{1-r^2}{n}\right)$
		Advance	Level	
81.	For the following data			
		x y		
	Mean	65 67		
	Standard deviation	5.0 2.5		
	Correlation coefficient	0.8		
	Then the equation of lir	ne of regression of y on x is		
	(a) $y-67 = \frac{2}{5}(x-65)$	(b) $y-67 = \frac{1}{5}(x-65)$	(c) $x-65 = \frac{2}{5}(y-67)$	(d) $x - 65 = \frac{1}{5}(y - 67)$
2.	If the lines of regression	n of y on x and that of x on y ar	$re \ y = kx + 4 \ and \ x = 4y + 5 \ re$	espectively, then
	(a) $k \le 0$	(b) $k \ge 0$	(c) $0 \le k \le \frac{1}{4}$	(d) $0 \le k \le 1$
3.	From the following obs	ervations $\{(x, y)\} = \{(1, 7), (4, 5), (7, 2)\}$	2),(10,6),(13,5)}. The line of re	egression of y on x is[AI CBSE 199
	(a) $7x + 30y - 187 = 0$	(b) $7x - 30y - 187 = 0$	(c) $7x - 30y + 187 = 0$	(d) None of these
4.	If the variance of $x = 9$	and regression equations are	4x - 5y + 33 = 0 and $20x - 9y - 33 = 0$	-10 = 0, then the coefficient of
		and y and the variance of y resp	ectively are	
	(a) 0.6; 16	(b) 0.16; 16	(c) 0.3; 4	(d) 0.6; 4
5.	_	ession are $x + 4y = 3$ and $3x + y = 3$		
_	(a) 4	(b) -9	(c) - 4	(d) None of these
6.	bivariate population	g two sets of regression lines	-	
	I. $x + 4y = 15$ and $y + 3x$	$= 12, \overline{x} = 3, \overline{y} = 3$ II. $3x$	$x + 4y = 9$ and $4x + y = 1, \overline{x} = -$	$\frac{5}{10}, \overline{y} = \frac{30}{13}$ [AMU 2000]
	(a) Both I and II	(b) II only	(c) I only	(d) None of these
7.	Out of the two lines of a	regression given by $x + 2y = 4$ a	nd $2x + 3y - 5 = 0$, the regres	sion line of x on y is [Kurukshetra
			(b) $2 + 2 + 5 = 0$	
.,.	(a) $x + 2y = 4$		(b) $2x + 3y - 5 = 0$	

88. Regression of savings (*S*) of a family on income *Y* may be expressed as $S = a + \frac{Y}{m}$, where *a* and *m* are constants. In a random sample of 100 families the variance of savings is one-quarter of the variance of incomes and the correlation coefficient is found to be 0.4. The value of *m* is

(a) 2 (b) 5 (c) 8 (d) None of these

* * *

Assignment (Basic and Advance Level)

()

b d a d b b b c a c a c a c a	a
c a b a b c a a c a c a a c b b a a b a a b a a a a a a a a a a a a a a a a a a a	a
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 55	
	60
b b a b c b c c c b b a b c c d c a d	b
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 7	80
b b a c b a c b c d c c c d b b d c l	a
81 82 83 84 85 86 87 88	
a c d a a c b b	