2. Measurements

Exercise 2.1

1 A. Question

Choose the correct answer:

Area of a semicircle is _____ times the area of the circle.

A. two

B. four

C. one-half

D. one-quarter

Answer

As a semicircle is exact one-half of a full circle, the area of a semicircle is one-half times the area of the circle.

1 B. Question

Choose the correct answer:

Perimeter of a semicircle is _____

A.
$$\left(\frac{\pi+2}{2}\right)r$$
 units

B. $(\pi + 2)$ r units

C. 2r units

D. $(\pi + 4)$ r units

Answer

Perimeter of a full circle = $2\pi r$

Thus, Perimeter of a semicircle is $= \frac{2\pi r}{2} + 2r$

 $=\pi r + 2r$

= $(\pi + 2)r$ units

1 C. Question

Choose the correct answer:

If the radius of a circle is 7 m, then the area of the semicircle is _____

A. 77 m^2

B. 44 m²

C. 88 m²

D. 154 m²

Answer

Area of a semi-circle = $\frac{\pi r^2}{2}$

$$=\frac{22}{7}\times\frac{7\times7}{2}$$

 $= 77 \text{ m}^2$

1 D. Question

Choose the correct answer:

If the area of a circle is 144 cm², then the area of its quadrant is _____

A. 144 cm²

B. 12 cm²

 $C.72 \text{ cm}^2$

D. 36 cm²

Answer

Given, Area of a circle = 144 cm^2

Thus, area of its quadrant is $=\frac{144}{4}$

 $= 36 \text{ cm}^2$

1 E. Question

Choose the correct answer:

The perimeter of the quadrant of a circle of diameter 84 cm is _____

A. 150 cm

B. 120 cm

C. 21 cm

D. 42 cm

Answer

Given, Diameter = 84 cm

So, Radius = $\frac{84}{2}$

= 42 cm

Perimeter of the quadrant of a circle = $\frac{2\pi r}{4}$ + 2r

$$= \frac{2 \times \frac{22}{7} \times 42}{4} + 2 \times 42$$

= 66 + 84

= 150 cm

1 F. Question

Choose the correct answer:

The number of quadrants in a circle is_____

A. 1

B. 2

C. 3

D. 4

Answer

A quadrant is one-fourth of anything.

Hence, the number of quadrants in a circle is 4.

1 G. Question

Choose the correct answer:

Quadrant of a circle is _____ of the circle.

A. one-half

- B. one-fourth
- C. one-third
- D. two-thirds

Answer

A quadrant of a circle is always one-fourth of the full circle .

Hence, Quadrant of a circle is one-fourth of the circle.

1 H. Question

Choose the correct answer:

The central angle of a semicircle is _____

- A. 90°
- B. 270°
- C. 180°
- D. 360°

Answer

The central angle of a semicircle is always 180°.

1 I. Question

Choose the correct answer:

The central angle of a quadrant is _____

- A. 90°
- B. 180°
- C. 270°
- D. 0°

Answer

The central angle of a quadrant is always 90° .

1 J. Question

Choose the correct answer:

If the area of a semicircle is 84 cm², then the area of the circle is _____

- A. 144 cm²
- $B.42 \text{ cm}^2$
- $C.\,168\,cm^2$
- D. 288 cm²

Answer

Area of a semicircle = 84 cm^2

Since a circle is twice of semi-circle,

Thus, Area of the circle = 2×84

 $= 168 \text{ cm}^2$

2 A. Question

Find the perimeter and area of semicircles whose radii are,

35 cm

Answer

We know, Perimeter of semicircle = πr + 2r

 Remember that the perimeter is the distance round the outside. A semicircle has two edges.
 One is half of a circumference and the other is a diameter

 So, the formula for the perimeter of a semicircle is:

Perimeter = $\pi r + 2r$

And,

Area of semicircle = $\frac{\pi r^2}{2}$

Radius = 35 cm

Perimeter of semicircle = πr + 2r

$$=\frac{22}{7} \times 35 + 2 \times 35$$

= 180 cm

Area of semicircle = $\frac{\pi r^2}{2}$

$$=\frac{22}{7}\times\frac{35\times35}{2}$$

 $= 1925 \text{ cm}^2$

2 B. Question

Find the perimeter and area of semicircles whose radii are,

10.5 cm

Answer

We know, Perimeter of semicircle = πr + 2r

 Remember that the perimeter is the distance round the outside. A semicircle has two edges.
 One is half of a circumference and the other is a diameter

 So, the formula for the perimeter of a semicircle is:

Perimeter =
$$\pi r + 2r$$

And,

Area of semicircle =
$$\frac{\pi r^2}{2}$$

Radius = 10.5 cm

Perimeter of semicircle = πr + 2r

$$=\frac{22}{7} \times 10.5 + 2 \times 10.5$$

= 54 cm

Area of semicircle
$$=\frac{\pi r^2}{2}$$

$$=\frac{22}{7}\times\frac{10.5\times10.5}{2}$$

 $= 173.25 \text{ cm}^2$

2 C. Question

Find the perimeter and area of semicircles whose radii are,

6.3 m

Answer

We know, Perimeter of semicircle = πr + 2r

 Remember that the perimeter is the distance round the outside. A semicircle has two edges.
 One is half of a circumference and the other is a diameter

 So, the formula for the perimeter of a semicircle is:

Perimeter = $\pi r + 2r$

And,

Area of semicircle = $\frac{\pi r^2}{2}$

Radius = 6.3 cm

Perimeter of semicircle = πr + 2r

$$=\frac{22}{7} \times 6.3 + 2 \times 6.3$$

= 32.4 cm

Area of semicircle $=\frac{\pi r^2}{2}$

$$=\frac{22}{7}\times\frac{6.3\times6.3}{2}$$

 $= 62.37 \text{ cm}^2$

2 D. Question

Find the perimeter and area of semicircles whose radii are,

4.9 m

Answer

We know, Perimeter of semicircle = πr + 2r

- Remember that the perimeter is the distance round the outside. A semicircle has two edges. One is half of a circumference and the other is a diameter
- So, the formula for the perimeter of a semicircle is:

Perimeter = $\pi r + 2r$

And,

Area of semicircle = $\frac{\pi r^2}{2}$

Radius = 4.9 cm

Perimeter of semicircle = πr + 2r

$$= \frac{22}{7} \times 4.9 + 2 \times 4.9$$
$$= 25.2 \text{ cm}$$
Area of semicircle
$$= \frac{\pi r^2}{2}$$
$$= \frac{22}{7} \times \frac{4.9 \times 4.9}{2}$$

 $= 37.73 \text{ cm}^2$

3 A. Question

Find the perimeter and area of semicircles whose diameters are,

2.8 cm

Answer

```
    Remember that the perimeter is the distance round the outside. A semicircle has two edges. One is half of a circumference and the other is a diameter
    So, the formula for the perimeter of a semicircle is:
```

```
Perimeter = \pi r + 2r
```

Diameter = 2.8 cm

Radius $=\frac{2.8}{2}$

= 1.4 cm

Perimeter of semicircle = πr + 2r

$$=\frac{22}{7} \times 1.4 + 2 \times 1.4$$

= 28 cm

Area of semicircle
$$=$$
 $\frac{\pi r^2}{2}$
 $=$ $\frac{22}{7} \times \frac{1.4 \times 1.4}{2}$

 $= 3.08 \text{ cm}^2$

3 B. Question

Find the perimeter and area of semicircles whose diameters are,

56 cm

Answer

 Remember that the perimeter is the distance round the outside. A semicircle has two edges. One is half of a circumference and the other is a diameter

 So, the formula for the perimeter of a semicircle is:

Perimeter = $\pi r + 2r$

Diameter = 56 cm

Radius =
$$\frac{56}{2}$$

= 28 cm

Perimeter of semicircle = πr + 2r

$$=\frac{22}{7} \times 28 + 2 \times 28$$

= 144 cm

Area of semicircle $=\frac{\pi r^2}{2}$

$$=\frac{22}{7}\times\frac{28\times28}{2}$$

 $= 1232 \text{ cm}^2$

3 C. Question

Find the perimeter and area of semicircles whose diameters are,

84 cm

Answer

- Remember that the perimeter is the distance round the outside. A semicircle has two edges.
 One is half of a circumference and the other is a diameter
- So, the formula for the perimeter of a semicircle is:

Perimeter = $\pi r + 2r$

Diameter = 84 cm

Radius =
$$\frac{84}{2}$$

= 42 cm

Perimeter of semicircle = πr + 2r

$$=\frac{22}{7} \times 42 + 2 \times 42$$

= 216 cm

Area of semicircle = $\frac{\pi r^2}{2}$

$$=\frac{22}{7}\times\frac{42\times42}{2}$$

 $= 2772 \text{ cm}^2$

3 C. Question

Find the perimeter and area of semicircles whose diameters are,

112 m

Answer

 Remember that the perimeter is the distance round the outside. A semicircle has two edges.
 One is half of a circumference and the other is a diameter

 So, the formula for the perimeter of a semicircle is:

Perimeter = $\pi r + 2r$

Diameter = 112 cm

Radius = $\frac{112}{2}$

= 56 cm

Perimeter of semicircle = πr + 2r

$$=\frac{22}{7} \times 56 + 2 \times 56$$

= 288 cm

Area of semicircle = $\frac{\pi r^2}{2}$ = $\frac{22}{7} \times \frac{56 \times 56}{2}$ $= 288 \text{ cm}^2$

4 A. Question

Calculate the perimeter and area of a quadrant of the circles whose radii are,

98 cm

Answer

Perimeter of quarter-circle

Circumference of a circle = π d Perimeter of a semi-circle = $\pi \times \text{Radius} + \text{Diameter}$ = $\pi r + d$ Perimeter of quadrant = $\frac{1}{2} \pi r + 2r$

Radius = 98 cm

Perimeter of quadrant
$$=$$
 $\frac{\pi r}{2}$ + 2r

$$=\frac{22}{7} \times \frac{98}{2} + 2 \times 98$$

= 50 cm

Area of quadrant
$$=$$
 $\frac{\pi r^2}{4}$
 $=$ $\frac{22}{7} \times \frac{35 \times 35}{4}$

 $= 962.5 \text{ cm}^2$

4 B. Question

Calculate the perimeter and area of a quadrant of the circles whose radii are,

70 cm

Answer

Perimeter of quarter-circle

42 m

Answer

Perimeter of quarter-circle

Perimeter of quadrant = $\frac{\pi r}{2}$ + 2r

$$=\frac{22}{7} \times \frac{42}{2} + 2 \times 42$$

= 150 cm

Area of quadrant = $\frac{\pi r^2}{4}$ = $\frac{22}{7} \times \frac{42 \times 42}{4}$

 $= 1386 \text{ cm}^2$

4 D. Question

Calculate the perimeter and area of a quadrant of the circles whose radii are,

28 m

Answer

Perimeter of quarter-circle

Perimeter of quadrant = $\frac{\pi r}{2}$ + 2r = $\frac{22}{7} \times \frac{28}{2}$ + 2 × 28 = 100 cm Area of quadrant = $\frac{\pi r^2}{4}$ = $\frac{22}{7} \times \frac{28 \times 28}{4}$ = 616 cm²

5. Question

Find the area of the semicircle ACB and the quadrant BOC in the given figure.

Answer

So,

Area of semicircle ACB = $\frac{\pi r^2}{2}$

$$=\frac{22}{7}\times\frac{7\times7}{2}$$

$$= 77 \text{ cm}^2$$

Area of quadrant BOC = $\frac{\pi r^2}{4}$

$$= \frac{22}{7} \times \frac{7 \times 7}{4}$$
$$= 38.5 \text{ cm}^2$$

6. Question

A park is in the shape of a semicircle with radius 21 m. Find the cost of fencing it at the cost of `5 per metre.

Answer

Given, radius = 21 m

Cost of fencing per metre = Rs.5 per metre

Perimeter of semicircle = $\pi r + 2r$

$$=\frac{22}{7} \times 21 + 2 \times 21$$

= 108 cm

Thus, Cost of fencing per = 108×5

 $= 540 \text{ cm}^2$

Exercise 2.2

1 A. Question

Find the perimeter of the following figures

Answer

Perimeter = 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4

= 32 cm

1 B. Question

Find the perimeter of the following figures

Answer

Perimeter = 10 + 2 + 4 + 8 + 2 + 8 + 4 + 2

= 40 cm

1 C. Question

Find the perimeter of the following figures

Answer

Radius of semi-circle = 4 cm

Perimeter of semi-circle = πr

= 3.14 × 4

= 12.56 cm

Perimeter of figure = 12.56 + 4 + 4 + (6-4) + 4 + 6

= 30.56 cm

1 D. Question

Find the perimeter of the following figures

Answer

Perimeter = 7 + 13 + 13 + 7

= 40 cm

1 E. Question

Find the perimeter of the following figures

Answer

Perimeter = 10 + 10 + 10 + 6 + 13 + 10 + 13 + 6 + 10 + 10

= 98 cm

2 A. Question

Find the area of the following figures

Answer

Height of trapezium = 14-8

Area of trapezium is given as, $A = 1/2 \times (a + b)h$,

As shown below:

Where, a is the shorter side.

B is the longer side.

H is the distance between the two sides.

 $\Rightarrow \text{Area of trapezium} = \frac{1}{2} \times (12 + 8) \times 6$

 $= 60 \text{ cm}^2$

Area of square = 8×8

 $= 64 \text{ cm}^2$

Area of figure = Area of trapezium + Area of square

= 60 + 64

 $= 124 \text{ cm}^2$

2 B. Question

Find the area of the following figures

Answer

The figure can be re-drawn as:

Area of first triangle = $1/2 \times base \times height$

$$\Rightarrow A_1 = \frac{1}{2} \times 4 \times 3$$
$$= 6 \text{ cm}^2$$

Area of second triangle = $1/2 \times base \times height$

$$\Rightarrow A_{2} = \frac{1}{2} \times 4 \times 2$$

$$= 4 \text{ cm}^{2}$$
Area of rectangle = length × breadth
$$\Rightarrow A_{3} = 3 \times 2$$

$$= 6 \text{ cm}^{2}$$
Area of square = (side)²

$$\Rightarrow A_{4} = 3 \times 3$$

$$= 9 \text{ cm}^{2}$$

$$\therefore \text{ Area of figure = } A_{1} + A_{2} + A_{3} + A_{4}$$

$$= 6 + 4 + 6 + 9$$

$$= 25 \text{ cm}^{2}$$

2 C. Question

Find the area of the following figures

Answer

Diameter of semicircle = 14cm

Radius of semicircle = $\frac{14}{2}$

= 7 cm

Area of semicircle = $\frac{\pi r^2}{2}$ = $\frac{22}{7} \times \frac{7 \times 7}{2}$ = 77 cm²

Area of square = $(side)^2 = 14 \times 14$

 $= 196 \text{ cm}^2$

Area of figure = Area of semicircle + Area of square

= 77 + 196

 $= 273 \text{ cm}^2$

2 D. Question

Find the area of the following figures

We know,

Area of quadrant = $\frac{1}{4} \times \text{area of circle}$ = $\frac{1}{4} \times (\pi r^2)$ $\sqrt{90^\circ}$ Area of two quadrants = $2 \times \frac{\pi r^2}{4}$ = $2 \times \frac{22}{7} \times \frac{4 \times 4}{4}$ = 25.14 cm² Area of rectangle = length × breadth = 6×4

 $= 24 \text{ cm}^2$

2 E. Question

Find the area of the following figures

Answer

Radius of bigger semicircle = 2.1 m

Radius of smaller semicircles =
$$\frac{2.1}{2}$$

= 1.05 m

Area of 2 smaller semicircles = $2 \times \frac{\pi r^2}{2}$

: Area of 2 smaller semicircles = πr^2

Hence, area of 2 smaller semicircles = $\frac{22}{7} \times \frac{1.05 \times 1.05}{2}$

 $= 1.7325 \text{ m}^2$

Area of bigger semicircle = $\frac{\pi r^2}{2}$

: Area of bigger semicircle = $\frac{22}{7} \times \frac{2.1 \times 2.1}{2}$

 $= 6.93 \text{ m}^2$

3 A. Question

Find the area of the coloured regions

Answer

The figure is given below:

Area of bigger rectangle (shaded in green) = length × breadth

= 8 × 2

 $= 16 \text{ m}^2$

Area of smaller rectangle (shaded in grey) = length × breadth

= 6 × 2

$$= 12 \text{ m}^2$$

Area of the coloured regions = Area of bigger rectangle + Area of

smaller rectangle

Area of the coloured regions = 16 + 12

 $= 28 \text{ m}^2$

3 B. Question

Find the area of the coloured regions

Answer

Area of rectangle = length × breadth

$$= 320 \text{ m}^2$$

Area of square = side × side

= 6 × 6

$$= 36 \text{ m}^2$$

Area of the coloured regions = Area of rectangle + Area of square

Area of the coloured regions = 320 + 36

 $= 356 \text{ m}^2$

3 C. Question

Find the area of the coloured regions

Answer

Radius of smaller semicircle = $\frac{14}{2}$

= 7 cm

Radius of bigger semicircle = 14 cm

Area of smaller semicircle = $\frac{\pi r^2}{2}$

$$=\frac{22}{7}\times\frac{7\times7}{2}$$

 $= 77 \text{ cm}^2$

Area of bigger semicircle = $\frac{\pi R^2}{2}$

$$=\frac{22}{7}\times\frac{14\times14}{2}$$

$$= 308 \text{ cm}^2$$

Area of the coloured regions = (Area of bigger semicircle-Area of

smaller semicircle) + Area of smaller semicircle

Area of the coloured regions = (308-77) + 77

 $= 308 \text{ cm}^2$

3 D. Question

Find the area of the coloured regions

Answer

Area of square = 7×7

 $= 49 \text{ cm}^2$

Area of semicircle = $\frac{\pi r^2}{2}$

$$=\frac{22}{7}\times\frac{3.5\times3.5}{2}$$

 $= 19.25 \text{ cm}^2$

Area of coloured region = Area of square - 2 × Area of semicircle

= 49-38.5

$$= 10.5 \text{ cm}^2$$

3 E. Question

Find the area of the coloured regions

Answer

Area of rectangle = 18×7

$$= 126 \text{ cm}^2$$

Radius of bigger semicircle = 3.5 cm

Area of bigger semicircle = $\frac{\pi R^2}{2}$

$$=\frac{22}{7}\times\frac{3.5\times3.5}{2}$$

 $= 19.25 \text{ cm}^2$

Radius of smaller semicircle = $\frac{3.5}{2}$

= 1.75 cm

Area of unshaded region = πr^2

$$=\frac{22}{7} \times 1.75 \times 1.75$$

 $= 9.625 \text{ cm}^2$

Area of coloured region = Area of bigger semicircle + (Area of

Rectangle- Area of unshaded region)

Area of coloured region = 19.25 + (126-9.625)

 $= 135.625 \text{ cm}^2$

3 F. Question

Find the area of the coloured regions

Answer

Area of quadrant = $\frac{1}{4}$ × area of circle $=\frac{1}{4}\times(\pi r^2)$ 90° Area of quadrants $=\frac{\pi r^2}{4}$ $=\frac{22}{7}\times\frac{3.5\times3.5}{4}$ $= 9.625 \text{ cm}^2$ Area of triangle = $1/2 \times base \times height$ $= 1/2 \times 3.5 \times 2$ $= 3.5 \text{ cm}^2$ Area of coloured region = Area of quadrant - Area of triangle = 9.625-3.5

 $= 6.125 \text{ cm}^2$

4. Question

In the given figure, find the area of the shaded portion if AC = 54 cm, BC = 10 cm, and 0 is the centre of bigger circle.

Answer Given, AC = 54 cm

BC = 10 cm

AB = 54-10 = 44 cm

Radius of bigger circle = $\frac{54}{2}$

= 27 cm

Area of bigger circle = πr^2

$$=\frac{22}{7}\times 27\times 27$$

= 2291.14

Radius of smaller circle = $\frac{44}{2}$

= 22 cm

Area of smaller circle = πR^2

$$=\frac{22}{7}\times22\times22$$

= 1521.14

Area of the shaded portion = Area of bigger circle- Area of smaller

Circle

 $= 769.99 \text{ cm}^2$

 $= 770 \text{ cm}^2$

5. Question

A cow is tied up for grazing inside a rectangular field of dimensions $40 \text{ m} \times 36 \text{ m}$ in one corner of the field by a rope of length 14 m. Find the area of the field left ungrazed by the cow.

Answer

The figure is shown below:

= 1440 m² Area of grazed area = $\frac{\pi r^2}{4}$ = $\frac{22}{7} \times \frac{14 \times 14}{4}$ = 154 m²

Therefore, Area of the field left ungrazed by the cow = 1440-154

= 1286 m²

6. Question

A square park has each side of 100 m. At each corner of the park there is a flower bed in the form of a quadrant of radius 14 m as shown in the figure. Find the area of the remaining portion of the park.

Answer

Radius = 14 cm

One flower bed is a quadrant of the circle.

We know,

 \Rightarrow Area of one flower bed = $3.14 \times 14 \times 14 = 616 \text{ m}^2$ Area of the square park = $100 \times 100 = 10000 \text{ m}^2$ Area of the four-flower bed = $4 \times 616 = 2464 \text{ m}^2$ Thus area of the remaining part = (10000-2464) m² = 7536 m²

7. Question

Find the area of the shaded region shown in the figure. The four corners are quadrants. At the center, there is a circle of diameter 2 cm.

Answer

Area of square = side × side

= 4 × 4

$$= 16 \text{ cm}^2$$

Area of unshaded region = 4 × Area of 1 quadrant + Area of circle

$$= 4 \times \frac{\pi r^2}{4} + \pi R^2$$

$$= \frac{22}{7} \times 1 \times 1 + \frac{22}{7} \times 1 \times 1$$

$$= \frac{22 + 22}{7}$$

$$= \frac{44}{7}$$

$$= 6.28 \text{ cm}^2$$
Therefore,

Area of shaded region = Area of square- Area of

unshaded region

Area of shaded region = 16-6.28

 $= 9.72 \text{ cm}^2$

8. Question

A paper is in the form of a rectangle ABCD in which AB = 20 cm and BC = 14 cm. A semicircular portion with BC as diameter is cut off. Find the area of the remaining part.

Answer

The figure is given below:

Diameter of semi-circle = BC = 14cm

Radius of semi-circle = $\frac{14}{2}$

= 7cm

Area of semi-circle = $\frac{\pi r^2}{2}$

$$=\frac{22}{7}\times\frac{7\times7}{2}$$

 $= 77 \text{ cm}^2$

Area of sheet = $20 \times 14 = 280 \text{ cm}^2$

Thus, Area of remaining sheet = 280-77

 $= 203 \text{ cm}^2$

9. Question

On a square handkerchief, nine circular designs each of radius 7 cm are made. Find the area of the remaining portion of the handkerchief.

Answer

From the figure,

Hence, it can be observed that size of side of square = 14 + 14 + 14 = 42 cm

Area of square =
$$(side)^2$$

- = 42 × 42
- $= 1764 \text{ cm}^2$

Area of each circle = πr^2

$$=\frac{22}{7}\times7\times7$$

 $= 154 \text{ cm}^2$

Area of 9 circles = 9×154

 $= 1386 \text{ cm}^2$

Area of unshaded region = Area of square – Area of 9 circle

 $= 378 \text{ cm}^2$