
206 207

Learning Objectives
After learning this
chapter, the students
will be able to

• Know the structured
data type using arrays.

• Know the types of arrays.
• Writing programs to manuplates

different types of arrays.

12.1 Introduction
 The variables are used to store data.
These variables are the one of the basic
building blocks in C++. A single variable is
used to store a single value that can be used
anywhere in the memory. In some situations,
we need to store multiple values of the same
type. In that case, it needs multiple variables
of the same data type. All the values are
stored randomly anywhere in the memory.

 For example, to store the roll
numbers of the 100 students, it needs 100
variables named as roll1, roll2, roll3,…….
roll100 . It becomes very difficult to declare
100 variables and store all the roll numbers.
In C++, the concept of Array helps to store
multiple values in a single variable. Literally,
the meaning of Array is “More than one”.
In other words, array is an easy way of
storing multiple values of the same type
referenced by a common name”. An array
is also a derived data type in C++.

 “An array is a collection of variables
of the same type that are referenced by a
common name”. In an array, the values
are stored in a fixed number of elements

CHAPTER 12Introduction of C++Unit III

Arrays and Structures

of the same type sequentially in memory.
Therefore, an integer array holds a sequence
of integers; a character array holds a
sequence of characters, and so on. The size
of the array is referred to as its dimension.

12.2 Types of Arrays:

There are different types of arrays used in
C++. They are:

• One-dimensional arrays

• Two-dimensional arrays

• Multi-dimensional arrays

12.2.1 One-dimensional array
 This is the simplest form of an array.
A one dimensional array represents values
that are stored in a single row or in a single
column.

Declaration
Syntax:
<data type><array_name> [<array_size>];

data_type declares the basic type of the
array, which is the type of each element in
the array.

array_name specifies the name with which
the array will be referenced.

array_size defines how many elements the
array will hold. Size should be specified with
square brackets [].

Example:

 int num[10];

Chapter 12 Page 206-227.indd 206 3/24/2020 9:22:22 AM

206 207

 In the above declaration, an array
named “num” is declared with 10 elements
(memory space to store 10 different values)
as integer type.

 For the above declaration, the
compiler allocates 10 memory locations
(boxes) referenced by a common name
“num” as given below

0 1 2 3 4 5 6 7 8 9

int num[10];

subscripts

 Each element (Memory box) has a
unique index number starting from 0 which
is known as “subscript”. The subscript always
starts with 0 and it should be an unsigned
integer value. Each element of an array is
referred by its name with subscript index
within the square bracket. For example,
num[3] refers to the 4th element in the
array.

Some more array declarations with various
data types:

char emp_name[25]; // character
array named emp_name with size 25

float salary[20]; // floating-point array
named salary with size 20

int a[5], b[10], c[15]; // multiple arrays are
declared of type int

Memory representation of an one
dimensional array

 The amount of storage required to
hold an array is directly related with type
and size. The following figure shows the
memory allocation of an array with five
elements.

int numb [5];

num [0] num [1] num [2] num [3] num [4]

1
0

2
5

1
0

2
6

1
0

2
7

1
0

2
8

1
0

2
9

1
0

3
0

 1
0

3
1

 1
0

3
2

1
0

3
3

1
0

3
4

1
0

3
5

1
0

3
6

1
0

3
7

1
0

3
8

1
0

3
9

1
0

4
0

1
0

4
1

1
0

4
2

1
0

4
3

1
0

4
4

1
0

4
5

1
0

4
6

1
0

4
7

1
0

4
8

 The above figure clearly shows that, the array num is an integer array with 5 elements.
As per the Dev-C++ compiler, 4 bytes are allocated for every int type variable. Here, there are
totally 5 elements in the array, where for each element, 4 bytes will be allocated. Totally, 20
bytes will be allocated for this array.

Datatype Turbo C++ Dev C++
char 1 1
int 2 4
float 4 4
long 4 4
double 8 8
long double 10 10

The memory space allocated for an array can be calculated using the following formula:

Chapter 12 Page 206-227.indd 207 3/24/2020 9:22:23 AM

208 209

Number of bytes allocated for type of
array × Number of elements
Initialization
 An array can be initialized at the
time of its declaration. Unless an array is
initialized, all the array elements contain
garbage values.
Syntax:
<datatype> <array_name> [size] = {value-
1,value-2,…………… ,value-n};
Example
int age[5]={19,21,16,1,50};
 In the above example, the array name
is ‘age’ whose size is 5. In this case, the first
element 19 is stored in age[0], the second
element 21 is stored in age[1] and so on as
shown in figure 12.1

19 21 16 501

int age [5]={19,21,16,1,50};

ag
e

[0
]

ag
e

[1
]

ag
e

[2
]

ag
e

[3
]

ag
e

[4
]

Figure 12.1

 While declaring and initializing
values in an array, the values should be given
within the curly braces ie. { ….. }

 The size of an array may be optional
when the array is initialized during
declaration.

Example:

int age[]={ 19,21,16,1,50};

 In the above initialization, the size
of the array is not specified directly in the
declaration with initialization. So, the size is
determined by compiler which depends on
the total number of values. In this case, the
size of the array is five.

More examples of array initialization:

float x[5] = {5.6, 5.7, 5.8, 5.9, 6.1};

char vowel[6] = {'a', 'e', 'i', 'o', 'u', '\0'};

Accepting values to an array during
run time :
 Multiple assignment statements
are required to insert values to the cells of
the array during runtime. The for loop is
ideally suited for iterating through the array
elements.

#include <iostream>
using namespace std;
int main()
{
 int num[5];
 for(int i=0; i<5; i++)
 {
 cout<< "\n Enter value " << i+1 << "= ";
 cin>>num[i];
 }
}

// Input values while execution

 In the above program, a for loop has been constructed to execute the statements within
the loop for 5 times. During each iteration of the loop, cout statement prompts you to “Enter
value …….” and cin gets the value and stores it in num[i];

The following table shows the execution of the above code block.

Chapter 12 Page 206-227.indd 208 3/24/2020 9:22:23 AM

208 209

Iteration i <5
cout << "\n
Enter value " <<
i+1 << "= ";

cin>>num [i];
Received

value stored in
memory

i++ (i=i+1)

1 5 > 0 (T) Enter value 1 = num[0] = 5 num[0] 5 1
2 5 > 1 (T) Enter value 2 = num[1] = 10 num[1] 10 2
3 5 > 2 (T) Enter value 3 = num[2] = 15 num[2] 15 3
4 5 > 3 (T) Enter value 4 = num[3] = 20 num[3] 20 4
5 5 > 4 (T) Enter value 4 = num[25 = [4 num[4] 25 5
6 5 > 5 (F) Exit from Loop

Note

In for loop, the index i is declared with an initial value 0 (zero). Since in most of the cases,
the initial value of the loop index will be used as the array subscript representation.

Accessing array elements
 Array elements can be used anywhere in a program as we do in case of a normal
variable. The elements of an array are accessed with the array name followed by the subscript
index within the square bracket.
Example:
 cout<<num[3];
 In the above statement, num[3] refers to the 4th element of the array and cout statement
displays the value of num[3].

Note

The subscript in bracket can be a variable, a constant or an expression that evaluates to an
integer.

#include <iostream>
using namespace std;
int main()
{
 int num[5] = {10, 20, 30, 40, 50};
 int t=2;
 cout<<num[2] <<endl; // S1
 cout<<num[3+1] <<endl; // S2
 cout<<num[t=t+1]; // S3
}
output:
30
50
40

// Accessing array elements

Chapter 12 Page 206-227.indd 209 3/24/2020 9:22:23 AM

210 211

 In the above program, statement S1 displays the value of the 3rd element (subscript
index 2). S2 will display the value of the 5th element (ie. Subscript value is 3+1 = 4). In the
same way statement S3 will display the value of the 4th element.

#include <iostream>
using namespace std;
int main()
{
 int num[10], even=0, odd=0;
 for (int i=0; i<10; i++)
 {
 cout<< "\n Enter Number " << i+1 <<"= ";
 cin>>num[i];
 if (num[i] % 2 == 0)
 ++even;
 else
 ++odd;
 }
 cout << "\n There are "<< even <<" Even Numbers";
 cout << "\n There are "<< odd <<" Odd Numbers";
}

C++ program to inputs 10 values and count the number of odd and even
numbers

Output:
Enter Number 1= 78
Enter Number 2= 51
Enter Number 3= 32
Enter Number 4= 66
Enter Number 5= 41
Enter Number 6= 68
Enter Number 7= 27
Enter Number 8= 65
Enter Number 9= 28
Enter Number 10= 94
There are 6 Even Numbers
There are 4 Odd Numbers

(HOTS : Rewrite the above program using the conditional operator instead of if)
Searching in a one dimensional array:
 Searching is a process of finding a particular value present in a given set of numbers.
The linear search or sequential search compares each element of the list with the value that has
to be searched until all the elements in the array have been traversed and compared.

Chapter 12 Page 206-227.indd 210 3/24/2020 9:22:23 AM

210 211

#include <iostream>
using namespace std;
int main()
{
 int num[10], val, id=-1;
 for (int i=0; i<10; i++)
 {
 cout<< "\n Enter value " << i+1 <<"= ";
 cin>>num[i];
 }
 cout<< "\n Enter a value to be searched: ";
 cin>>val;

for (int i=0; i<size; i++)
{

 if (arr[i] == value)
 { id= i;
 break;
 }

}
 if(id==-1)
 cout<< "\n Given value is not found in the array..";
 else
 cout<< "\n The value is found at the position" << id+1;
 return 0;
}

Program for Linear Search

 The above program reads an array and prompts for the values to be searched. It compares
each element of the list with the value that has to be searched until all the elements in the array
have been traversed and compared.
Strings

 A string is defined as a sequence of characters where each character may be a letter,
number or a symbol. Each element occupies one byte of memory. Every string is terminated
by a null (‘\0’, ASCII code 0) character which must be appended at the end of the string. In
C++, there is no basic data type to represent a string. Instead, it implements a string as an
one-dimensional character array. When declaring a character array, it also has to hold a null
character at the end, and so, the size of the character array should be one character longer than
the length of the string.

Character Array (String) creation

 To create any kind of array, the size (length) of the array must be known in advance, so
that the memory locations can be allocated according to the size of the array. Once an array is
created, its length is fixed and cannot be changed during run time. This is shown in figure12.2

Chapter 12 Page 206-227.indd 211 3/24/2020 9:22:23 AM

212 213

a [0]

First Element

Index :

Elements:

Last Element

0

a [1]

1

a [2]

2

a [3] a [n-1]

 [n-1]3

Array Name : a
Array Length : n

Figure 12.2
Syntax
Array declaration is:

 char array_name[size];

In the above declaration, the size of the array must be an unsigned integer value.

For example,

 char country[6];

 Here, the array reserves 6 bytes of memory for storing a sequence of characters. The
length of the string cannot be more than 5 characters and one location is reserved for the null
character at the end.

#include <iostream>
using namespace std;
int main()
 {
 char country[6];
 cout<< "Enter the name of the country: ";
 cin>>country;
 cout<<" The name of the country is "<<country;
}
OUTPUT
Enter country the name: INDIA
The country name is INDIA

//Program to demonstrate a character array.

Initialization
The character array can be initialized at the time of its declaration. The syntax is shown below:

 char array_name[size]={ list of characters separated by comma or a string } ;

For example,

char country[6]=“INDIA”;

In the above example, the text “INDIA” has 5 letters which is assigned as initial value to array
country. The text is enclosed within double quotes. The memory representation is shown in
Figure 13.3

Chapter 12 Page 206-227.indd 212 3/24/2020 9:22:23 AM

212 213

I

C
ou

nt
ry

[0
]

10
00

10
01

10
02

10
03

10
04

10
05

C
ou

nt
ry

[1
]

C
ou

nt
ry

[2
]

C
ou

nt
ry

[3
]

C
ou

nt
ry

[4
]

C
ou

nt
ry

[5
]

N D I A '\0'

Figure 12.3
 In the above memory representation,
each character occupies one byte in memory.
At the end of the string, a null character
is automatically added by the compiler.
C++ also provides other ways of initializing
the character array:

char country[6]={‘I’, ‘N’, ‘D’, ‘I’, ‘A’, ‘\0’};

char country[]=“INDIA”;

char country[]={‘I’, ‘N’, ‘D’, ‘I’, ‘A’, ‘\0’};

 If the size of the array is not explicitly
mentioned, the compiler automatically
calculate the size of the array based on the
number of elements in the list and allocates
space accordingly.

 In the initialization of the string, if
all the characters are not initialized, then
the rest of the characters will be filled with
NULL.

Example:

char str[5]={'5','+','A'};

str[0]; ---> 5

str[1]; ---> +

str[2]; ---> A

str[3]; ---> NULL

str[4]; ---> NULL

Note

During initialization, the array of
elements cannot be initialized more than
its size.

For example
char str[2]={'5','+','A','B'}; // Invalid
 In the above example, the compiler
displays “initialize-string for array of chars
is too long” error message.

#include<iostream>
using namespace std;
int main()
{
 int i, j, len, flag =1;
 char a [20];
 cout<<"Enter a string:";
 cin>>a;
 for(len=0;a[len]!='\0';++len)
 for(!=0,j=len-1;i<len/2;++i,--j)
 {
 if(a[j]!=a[i])
 flag=0;
 }

Write a Program to check palindrome or not

Chapter 12 Page 206-227.indd 213 3/24/2020 9:22:23 AM

214 215

 if(flag==1)
 cout<<"\n The String is palindrome";
 else
 cout<<"\n The String is not palindrome";
 return 0;
}
Output:
 Enter a string : madam
 The String is palindrome

12.3 Two-dimensional array
 Two-dimensional (2D) arrays are collection of similar elements where the elements are
stored in certain number of rows and columns. An example m × n matrix where m denotes the
number of rows and n denotes the number of columns is shown in Figure12.4
int arr[3][3];

arr[0] [0] arr[0] [1] arr[0] [3]

arr[1] [0] arr[1] [1] arr[1] [2]

arr[2] [0] arr[2] [1] arr[2] [2]

2D array conceptual memory representation

The array arr can be coneptually viewed in matrix form with 3 rows and
3 coloumns. The point to be noted here is since the subscript starts with
0 arr [0][0] represents the first element.

Column subscript

Ro
w

 su
bs

cr
ip

t

Figure 12.4

12.3.1 Declaration of 2-D array
The declaration of a 2-D array is

data-type array_name[row-size][col-size];

In the above declaration, data-type refers to any valid C++ data-type, array_name refers to the
name of the 2-D array, row-size refers to the number of rows and col-size refers to the number
of columns in the 2-D array.

For example

 int A[3][4];

In the above example, A is a 2-D array, 3 denotes the number of rows and 4 denotes the
number of columns. This array can hold a maximum of 12 elements.

Note

Array size must be an unsigned integer value which is greater than 0. In arrays, column size
is compulsory but row size is optional.

Chapter 12 Page 206-227.indd 214 3/24/2020 9:22:23 AM

214 215

Other examples of 2-D array are:
int A[3][3];
float x[2][3];
char name[5][20];

12.3.2 Initialization of Two-Dimensional array
 The array can be initialized in more than one way at the time of 2-D array declaration.
For example

int matrix[4][3]={
{10,20,30},// Initializes row 0
{40,50,60},// Initializes row 1
{70,80,90},// Initializes row 2
{100,110,120}// Initializes row 3
};
int matrix[4][3]={10,20,30,40,50,60,70,80,90,100,110,120};

Array’s row size is optional but column size is compulsory.

For example

int matrix[][3]={

{10,20,30},// row 0

{40,50,60},// row 1

{70,80,90},// row 2

{100,110,120}// row 3

};

12.3.3 Accessing the two-dimensional array

 Two-dimensional array uses two index values to access a particular element in it, where
the first index specifies the row value and second index specifies the column value.

matrix[0][0]=10;// Assign 10 to the first element of the first row

matrix[0][1]=20;// Assign 20 to the second element of the first row

matrix[1][2]=60;// Assign 60 to the third element of the second row

matrix[3][0]=100;// Assign 100 to the first element of the fourth row

Chapter 12 Page 206-227.indd 215 3/24/2020 9:22:23 AM

216 217

#include<iostream>
#include<conio>
using namespace std;
int main()
{
 int row, col, m1[10][10], m2[10][10], sum[10][10];
 cout<<"Enter the number of rows : ";
 cin>>row;
 cout<<"Enter the number of columns : ";
 cin>>col;
 cout<< "Enter the elements of fi rst matrix: "<<endl;
 for (int i = 0;i<row;i++)
 for (int j = 0;j <col;j++)
 cin>>m1[i][j];
 cout<< "Enter the elements of second matrix: "<<endl;
 for (int i = 0;i<row;i++)
 for (int j = 0;j<col;j++)
 cin>>m2[i][j];
 cout<<"Output: "<<endl;
 for (int i = 0;i<row;i++)
 for (int j = 0;j<col;j++)
 {
 sum[i][j]=m1[i][j]+m2[i][j];
 cout<<sum[i][j]<<" ";
 }
 cout<<endl<<endl;
 }
getch();
return 0;
}

Write a program to perform addition of two matrices

Enter the number of rows : 2
Enter the number of column : 2
Enter the elements of first matrix:
1
1
1
1
Enter the elements of second matrix:
1
1
1
1
Output:
2 2
2 2

Chapter 12 Page 206-227.indd 216 3/24/2020 9:22:23 AM

216 217

12.3.4 Memory representation of 2-D array
Normally, the two-dimensional array can be viewed as a matrix. The conceptual view of a 2-D
array is shown below:
int A[4][3];

A[0][0] A[0][1] A[0][2]

A[1][0] A[1][1] A[1][2]

A[2][0] A[2][1] A[2][2]

A[3][0] A[3][1] A[3][2]

In the above example, the 2-D array name A has 4 rows and 3 columns.
Like one-dimensional, the 2-D array elements are stored in continuous memory.
 There are two types of 2-D array memory representations. They are:

• Row-Major order
• Column-Major order

For example
 int A[4][3]={ { 8,6,5}, { 2,1,9}, {3,6,4}, {4,3,2} }
Row Major order
In row-major order, all the elements are stored row by row in continuous memory locations, that
is, all the elements in first row, then in the second row and so on. The memory representation
of row major order is as shown below;

8 6 5 2 1 9 3 6 4 4 3 2

1000 1004 1008 1012 1016 1020 1024 1028 1032 1036 1040 1044
 Row 0 Row 1 Row 2 Row 3

Column Major order
8 2 3 4 6 1 6 3 5 9 4 2

1000 1004 1008 1012 1016 1020 1024 1028 1032 1036 1040 1044

Col 0 Col 1 Col 2
12.4 Array of strings
An array of strings is a two-dimensional character array. The size of the first index (rows)
denotes the number of strings and the size of the second index (columns) denotes the maximum
length of each string. Usually, array of strings are declared in such a way to accommodate the
null character at the end of each string. For example, the 2-D array has the declaration:
char Name[6][10];

In the above declaration, the 2-D array has two indices which refer to the row size and column
size, that is 6 refers to the number of rows and 10 refers to the number of columns.

Chapter 12 Page 206-227.indd 217 3/24/2020 9:22:23 AM

218 219

12.4.1 Initialization
For example
char Name[6][10] = {"Mr. Bean", "Mr.Bush", "Nicole", "Kidman", "Arnold", "Jodie"};
In the above example, the 2-D array is initialized with 6 strings, where each string is a maximum
of 9 characters long, since the last character is null.
The memory arrangement of a 2-D array is shown below and all the strings are stored in
continuous locations.

r 0 1 2 3 4 5 6 7 8
o 0 M r . B e a n \0
w 1 M r . B u s h \0
s 2 N i c o l e \0

3 K i d m a n \0
4 A r n o l d \0
5 J o d i e \0

Columns

Name [5][4]

Name [2][2]

First index

Second index

Name [row] [column] = Name [0] [0]

Name [3][5]

#include<iostream>
using namespace std;
int main()
{
 // initialize 2d array
 char colour [4][10]={"Blue","Red","Orange",
 "yellow"};

 // printing strings stored in 2d array
 for (int i=0; i <4; i++)
 cout << colour [i] << "\n";
}
Output:
 Blue
 Red
 Orange
 Yellow

C++ program to demonstrate array of strings using 2-D character array

Chapter 12 Page 206-227.indd 218 3/24/2020 9:22:23 AM

218 219

Case Study:
(1) Write a program to accept the marks of 10 students and find the average, maximum and

minimum marks.
Structures

12.5 Structures Introduction

 Structure is a user-defined which has the combination of data items with different data
types. This allows to group variables of mixed data types together into a single unit.

12.5.1 Purpose of Structures
 In any situation when more than one variable is required to represent objects of
uniform data-types, array can be used. If the elements are of different data types,then array
cannot support. If more than one variable is used, they can be stored in memory but not in
adjacent locations. It increases the time consumption while searching. The structure provides
a facility to store different data types as a part of the same logical element in one memory
chunk adjacent to each other.

12.5.2 Declaring and defining structures
 Structure is declared using the keyword ‘struct’. The syntax of creating a structure is
given below.

struct structure_name {

 type member_name1;

 type member_name2;

Objects declared along with
structure definition are called
global objects

 } reference_name;

 An optional field reference_name can be used to declare objects of the structure type
directly.

Example:

struct Student

{

 long rollno;

 int age;

 float weight;

} ;

 In the above declaration of the struct, three variables rollno,age and weight are used.
These variables(data element)within the structure are called members (or fields). In order to
use the Student structure, a variable of type Student is declared and the memory allocation is
shown in figure 12.5

Chapter 12 Page 206-227.indd 219 3/24/2020 9:22:23 AM

220 221

Rollno Age weight
4 Bytes 2 Bytes 4 Bytes

Fig 12.5 Memory Allocation

struct Student balu; // create a Student structure for Balu

 This defines a variable of type Student named as Balu. Similar to normal variables, struct
variable allocates memory for that variable itself. It is possible to define multiple variables of
the same struct type:

struct Student frank; // create a structure for Student Frank.

For example, the structure objects balu and frank can also be declared as the structure data
type as:

struct Student

{

longrollno;

int age;

float weight;

} balu, frank;

12.5.3 Referencing Structure Elements

 Once the two objects of student structure type are declared (balu and frank),their
members can be accessed directly. The syntax for that is using a dot (.) between the object name
and the member name. For example, the elements of the structure Student can be accessed as
follows:

balu.rollno

balu.age

balu.weight

frank.rollno

frank.age

frank.weight

Chapter 12 Page 206-227.indd 220 3/24/2020 9:22:23 AM

220 221

(Anonymous Structure Vs Named Structure)
A structure without a name/tag is called anonymous structure.
struct
{
long rollno;
 int age;
 float weight;
} student;
The student can be referred as reference name to the above structure and the
elements can be accessed like student.rollno, student.age and student.weight .

12.5.4 Initializing structure elements

Values can be assigned to structure elements similar to assigning values to variables.

Example

 balu.rollno= “702016”;

 balu.age= 18;

 balu.weight= 48.5;

Also, values can be assigned directly as similar to assigning values to Arrays.

balu={702016, 18, 48.5};

12.5.5 Structure Assignment
Structures can be assigned directly instead of assigning the values of elements individually.

Example

 If Mahesh and Praveen are same age and same height and weight then the values of
Mahesh can be copied to Praveen

struct Student

{
Structure assignment is possible
only if both structure variables/
objects are same type. int age;

 float height, weight;

}mahesh;

 The age of Mahesh is 17 and the height and weights are 164.5 and 52.5 respectively.The
following statement will perform the assignment.

mahesh = {17, 164.5, 52.5};

praveen =mahesh;

will assign the same age, height and weight to Praveen.

Chapter 12 Page 206-227.indd 221 3/24/2020 9:22:24 AM

222 223

Examples:

#include <iostream>
using namespace std;
struct Student
{
 int age;
 float height, weight;
} mahesh;
void main()
{
 cout<< “ Enter the age:”<<endl;
 cin>>mahesh.age;
 cout<< “Enter the height:”<<endl;
 cin>>mahesh.height;
 cout<< “Enter the weight:”<<endl;
 cin>>mahesh.weight;
 cout<< “The values entered for Age, height and weight are”<<endl;
 cout<<mahesh.age<< “\t”<<mahesh.height<< “\t”<<Mahesh.
weight;
}
Output:
Enter the age:
18
Enter the height:
160.5
Enter the weight:
46.5
The values entered for Age, height and weight are
18 160.5 46.5

The following C++ program reads student information through keyboard
and displays the same

• Structure is a user-defined which has the
combination of data items with different
data types

• Structure is declared using the keyword
‘struct’

• Structure elements are referenced using
its object name followed by dot(.)
operator and then the member name

• A structure without a name/tag is called
anonymous structure.

• The structure elements can be initialized
either by using separate assignment

statements or at the time of declaration
by surrounding its values with braces.

• A structure object can also be assigned
to another structure object only if both
the objects are of same structure type.

• The structure declared within another
structure is called a nested structure

• A structure can contain array as its
member element.

• Array of structure variable can also be
created.

Points to Remember:

Chapter 12 Page 206-227.indd 222 3/24/2020 9:22:24 AM

222 223

Evaluation

SECTION – A

Choose the correct answer

1. Which of the following is the collection of variables of the same type that an referenced by a
common name ?

 a) int b) float c) Array d) class

2. int age[]={6,90,20,18,2}; How many elements are there in this array?

 a) 2 b) 5 c) 6 d) 4

3. cin>>n[3]; To which element does this statement accept the value?

 a) 2 b) 3 c) 4 d) 5

4. By default, a string ends with which character?

 a)\o b) \t c) \n d) \b

5. Structure definition is terminated by

 (a) : (b) } (c) ; (d) ::

6. What will happen when the structure is declared?

 (a) it will not allocate any memory (b) it will allocate the memory

 (c) it will be declared and initialized (d) it will be only declared

7. A structure declaration is given below.

 struct Time
 {
 int hours;
 int minutes;
 int seconds;
 }t;
 Using above declaration which of the following refers to seconds.
 (a) Time.seconds (b) Time::seconds (c)seconds (d) t. seconds

8. Which of the following is a properly defined structure?

 (a) struct {int num;} (b) struct sum {int num;}

 (c) struct sum int sum; (d)struct sum {int num;};

9. A structure declaration is given below.

Chapter 12 Page 206-227.indd 223 3/24/2020 9:22:24 AM

224 225

 struct employee
 {
 int empno;
 char ename[10];
 }e[5];
 Using above declaration which of the following statement is correct.
 (a) cout<<e[0].empno<<e[0].ename; (b) cout<<e[0].empno<<ename;
 (c)cout<<e[0]->empno<<e[0]->ename; (d) cout<<e.empno<<e.ename;

10. When accessing a structure member ,the identifier to the left of the dot operator is the
name of

 (a) structure variable (b) structure tag

 (c) structure member (d) structure function

SECTION-B

Very Short Answers

1. What is Traversal in an Array?

2. What is Strings?

3. What is the syntax to declare two – dimensional array.

4. Define structure .What is its use?
5. What is the error in the following structure definition.
 struct employee{ inteno;charename[20];char dept;}
 Employee e1,e2;

SECTION-C
Short Answers

1. Define an Array ? What are the types?

2. Write note an Array of strings.

3. The following code sums up the total of all students name starting with ‘S’ and display it.
Fill in the blanks with required statements.

 struct student {int exam no,lang,eng,phy,che,mat,csc,total;char name[15];};
 int main()
 {
 student s[20];
 for(int i=0;i<20;i++)
 { …………………….. //accept student details }
 for(int i=0;i<20;i++)
 {
 …………………….. //check for name starts with letter “S”

Chapter 12 Page 206-227.indd 224 3/24/2020 9:22:24 AM

224 225

 ……………………. // display the detail of the checked name
 }
 return 0;
 }
4. How to access members of a structure?Give example.
5. What is called anonymous structure .Give an example

SECTION - D

Explain in detail
1. Write a C++ program to find the difference between two matrix.

2. Write a C++ program to add two distances using the following structure definition

 struct Distance{

 int feet;

 float inch;

 }d1 , d2, sum;

3. Write the output of the following c++ program

 #include<iostream>
 #include<stdio>
 #include <string>
 #include<conio>
 using namespace std;
 struct books {
 char name[20], author[20];
 } a[2];
 int main()
 { cout<< "Details of Book No " << 1 << "\n";
 cout<< "------------------------\n";
 cout<< "Book Name :"<<strcpy(a[0].name,"Programming ")<<endl;
 cout<< "Book Author :"<<strcpy(a[0].author,"Dromy")<<endl;
 cout<< "\nDetails of Book No " << 2 << "\n";
 cout<< "------------------------\n";
 cout<< "Book Name :"<<strcpy(a[1].name,"C++programming")<<endl;
 cout<< "Book Author :"<<strcpy(a[1].author,"BjarneStroustrup ")<<endl;
 cout<<"\n\n";
 cout<< "==\n";
 cout<< " S.No\t| Book Name\t|author\n";
 cout<< "==";
 for (int i = 0; i < 2; i++) {

Chapter 12 Page 206-227.indd 225 3/24/2020 9:22:24 AM

226 227

 cout<< "\n " << i + 1 << "\t|" << a[i].name << "\t| " << a[i].author;
 }
 cout<< "\n===";
 return 0;
 }
4. Write the output of the following c++ program

 #include <iostream>

 #include <string>

 using namespace std;

 struct student

 {

 introll_no;

 char name[10];

 long phone_number;

 };

 int main(){

 student p1 = {1,"Brown",123443},p2;

 p2.roll_no = 2;

 strcpy(p2.name ,"Sam");

 p2.phone_number = 1234567822;

 cout<< "First Student" <<endl;

 cout<< "roll no : " << p1.roll_no <<endl<< "name : " << p1.name <<endl;

 cout<< "phone no : " << p1.phone_number <<endl;

 cout<< "Second Student" <<endl;

 cout<< "roll no : " << p2.roll_no <<endl<< "name : " << p2.name <<endl;

 cout<< "phone no : " << p2.phone_number <<endl;

 return 0;

}

5. Debug the error in the following program

 #include <istream.h>

 structPersonRec

 {

Chapter 12 Page 206-227.indd 226 3/24/2020 9:22:24 AM

226 227

 charlastName[10];

 chaefirstName[10];

 int age;

 }

 PersonRecPeopleArrayType[10];

 void main()

 {

 PersonRecord people;

 for (i = 0; i < 10; i++)

 {

 cout<<people.firstName<< ‘ ‘ <<people.lastName <<people.age;

 }

 for (int i = 0; i < 10; i++)

 {

 cout<< "Enter first name: "; cin<<peop[i].firstName;

 cout<< "Enter last name: "; cin>>peop[i].lastName;

 cout<< "Enter age: "; cin>> people[i].age;}

}

References:
1. Object Oriented Programming with C++ (4th Edition), Dr. E. Balagurusamy,

Mc.Graw Hills.
2. The Complete Reference C++ (Forth Edition), Herbert Schildt.Mc.Graw Hills.
3. Computer Science with C++ (A text book of CBSE XI and XII), SumitaArora,

DhanpatRai& Co.
4. The C++ Programming Language, Bjarne Stroustrup
5. https://www.tutorialspoint.com
6. http://www.cs.princeton.edu
7. https://www.programiz.com

Chapter 12 Page 206-227.indd 227 3/24/2020 9:22:24 AM

	Introduction Folder
	Chapter 1 Page 001-013
	Chapter 2 Page 014-040
	Chapter 3 Page 041-049
	Chapter 4 Page 050-056
	Chapter 5 Page 057-075
	Chapter 6 Page 076-087
	Chapter 7 Page 088-101
	Chapter 8 Page 102-114
	Chapter 9 Page 115-151
	Chapter 10 Page 152-179
	Chapter 11 Page 180-205
	Chapter 12 Page 206-227

