3.1 Relation between Sides and Angles

A triangle has six components, three sides and three angles. The three angles of a $\triangle ABC$ are denoted by letters *A*, *B*, *C* and the sides opposite to these angles by letters *a*, *b* and *c* respectively. Following are some well known relations for a triangle (say $\triangle ABC$)

- $A + B + C = 180^{\circ}$ (or π)
- a+b>c, b+c>a, c+a>b
- |a-b| < c, |b-c| < a, |c-a| < b

Generally, the relations involving the sides and angles of a triangle are cyclic in nature, e.g. to obtain the second similar relation to a + b > c, we simply replace a by b, b by c and c by a. So, to write all the relations, follow the cycles given.

(1) The law of sines or sine rule : The sides of a triangle are proportional to the sines of the angles opposite to

them *i.e.*,
$$\left| \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k \text{ (say)} \right|$$

More generally, if R be the radius of the circumcircle of the triangle ABC,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

Note: \Box The above rule may also be expressed as $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$

□ The sine rule is very useful tool to express sides of a triangle in terms of sines of angle and vice-versa in the following manner $\frac{a}{1-c} = \frac{b}{1-c} = K$ (Let) $\Rightarrow a = K \sin A, b = K \sin B, c = K \sin C$.

$$\sin A \quad \sin B \quad \sin C$$

 $\sin 120^{\circ}$ $\sin 30^{\circ}$ $\sin 30^{\circ}$

Similarly,
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} = \lambda$$
 (Let) $\Rightarrow \sin A = \lambda a$, $\sin B = \lambda b$, $\sin C = \lambda c$.

Example: 1If the angles of a triangle are in the ratio 4:1:1, then the ratio of the longest side to the perimeter is[IIT Screening 2003](a) $\sqrt{3}:(2+\sqrt{3})$ (b) 1:6(c) $1:(2+\sqrt{3})$ (d) 2:3Solution: (a) $4x + x + x = 180 \Rightarrow 6x = 180 \Rightarrow x = 30^{\circ}$

$$\frac{1}{a} - \frac{1}{b} - \frac{1}{c}$$

$$\therefore a: (a+b+c) = (\sin 120^{\circ}): (\sin 120^{\circ} + \sin 30^{\circ} + \sin 30^{\circ}) = \frac{\sqrt{3}}{2}: \frac{\sqrt{3}+2}{2} = \sqrt{3}: \sqrt{3} + \frac{1}{2}$$

2.

Example: 2	In a triangle <i>ABC</i> , $\angle B = \frac{\pi}{3}$ and $\angle C = \frac{\pi}{4}$ and <i>D</i>	divides BC internally in the ratio	1:3. Then $\frac{\sin \angle BAD}{\sin \angle CAD}$ is equal to	D
			[UPSEAT 2003, 20	01; IIT 1995]
	(a) $\frac{1}{3}$ (b) $\frac{1}{\sqrt{3}}$	(c) $\frac{1}{\sqrt{6}}$	(d) $\sqrt{\frac{2}{3}}$	
Solution: (c)	Let $\angle BAD = \alpha, \angle CAD = \beta$		A	_
	In $\triangle ADB$, applying sine formulae, we get $\frac{x}{\sin \alpha}$ =	$= \frac{AD}{\sin\left(\frac{\pi}{3}\right)} \qquad \dots \dots \dots (i)$	αβ	
	In $\triangle ADC$, applying sine formulae, we get, $\frac{3x}{\sin\beta}$	$=\frac{AD}{\sin\left(\frac{\pi}{4}\right)}$ (ii)	π/3	π/4
	Dividing (i) by (ii), we get,		$B \xrightarrow{x D} 3x$	C
	$\Rightarrow \frac{x}{\sin\alpha} \times \frac{\sin\beta}{3x} = \frac{AD}{\sin\left(\frac{\pi}{3}\right)} \times \frac{\sin\left(\frac{\pi}{4}\right)}{AD} \Rightarrow \frac{\sin\beta}{3\sin\alpha}$	$\frac{1}{\alpha} = \frac{\frac{1}{\sqrt{2}}}{\frac{\sqrt{3}}{2}} = \sqrt{\frac{2}{3}} \implies \frac{\sin\beta}{\sin\alpha} = 3\sqrt{\frac{2}{3}}$	$=\sqrt{6}$	
	$\therefore \frac{\sin \angle BAD}{\sin \angle CAD} = \frac{\sin \alpha}{\sin \beta} = \frac{1}{\sqrt{6}} \ .$			
Example: 3	In a $\triangle ABC, A: B: C = 3:5:4$. Then $[a+b+c]$	$\sqrt{2}$] is equal to		[DCE 2001]
	(a) 2 <i>b</i> (b) 2 <i>c</i>	(c) 3 <i>b</i>	(d) 3 <i>a</i>	
Solution: (c)	$A:B:C=3:5:4 \implies A+B+C=12x=180^{\circ}$	$\Rightarrow x = 15^{\circ}$		
	$\therefore A = 45^{\circ} , \ B = 75^{\circ} , \ C = 60^{\circ}$			
	$\frac{a}{\sin 45^{\circ}} = \frac{b}{\sin 75^{\circ}} = \frac{c}{\sin 60^{\circ}} = k$ (say)			
	<i>i.e.</i> , $a = \frac{1}{\sqrt{2}}K$, $b = \frac{\sqrt{3}+1}{2\sqrt{2}}K$, $c = \frac{\sqrt{3}}{2}K$. Hen	$\operatorname{ce} \left[a+b+c\sqrt{2}\right] = 3 b \; .$		
Example: 4	In any triangle <i>ABC</i> if $2 \cos B = \frac{a}{c}$, then the triang	gle is		
	(a) Right angled (b) Equilateral	(c) Isosceles	(d) None of these	
Solution: (c)	$2\cos B = \frac{a}{c} = \frac{k\sin A}{k\sin C} = \frac{\sin A}{\sin C} \implies 2\cos B\sin C =$	$\sin A \Rightarrow \sin(B+C) - \sin(B-C)$	$-C) = \sin A$	
	$\Rightarrow \sin(180^{\circ} - A) - \sin(B - C) = \sin A \Rightarrow \sin A - \sin^2 A = -2 $	$\sin(B-C) = \sin A \implies \sin(B-C)$	$()=0 \implies B-C=0 \implies B=C$	
	∴ Triangle is isosceles.			

3.2 The Law of Cosines or Cosine Rule

In any triangle *ABC*, the square of any side is equal to the sum of the squares of the other two sides diminished by twice the product of these sides and the cosine of their included angle, that is for a triangle *ABC*,

(1)
$$a^2 = b^2 + c^2 - 2bc \cos A \Rightarrow \cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

(2)
$$b^2 = c^2 + a^2 - 2ca \cos B \Rightarrow \cos B = \frac{c^2 + a^2 - b^2}{2ca}$$

(3) $c^2 = a^2 + b^2 - 2ab \cos C \Rightarrow \cos C = \frac{a^2 + b^2 - c^2}{2ab}$
Combining with $\sin A = \frac{a}{2R}$, $\sin B = \frac{b}{2R}$, $\sin C = \frac{c}{2R}$
We have by division, $\tan A = \frac{a}{R(b^2 + c^2 - a^2)}$, $\tan B = \frac{abc}{R(c^2 + a^2 - b^2)}$, $\tan C = \frac{abc}{R(a^2 + b^2 - c^2)}$
Where *R*, be the radius of the circum-circle of the triangle *ABC*.
Example: 5 The smallest angle of the *AAC*, when $a = 7, b = 4\sqrt{3}$ and $c = \sqrt{13}$, is [MP PET 2003]
(a) 3^{0^4} (b) 15^4 (c) 45^4 (d) None of these
Solution: (a) Smallest angle is opposite to smaller side
 $\therefore \csc C = \frac{b^2 + a^3 - c^2}{2ab} = \frac{49 + 48 - 13}{2 \times 7 \times 4\sqrt{3}} = \frac{3}{2\sqrt{3}} = \frac{\sqrt{5}}{2} \Rightarrow \angle C = 30^{\circ}$.
Example: 6 In a *AABC*, if $\frac{b^2 - c}{11} = \frac{a + b}{12} = \frac{a + 1}{3}$, then $\cos C =$ [Kornutoka CET 2003]
(a) $\frac{7}{5}$ (b) $\frac{5}{7}$ (c) $\frac{17}{36}$ (d) $\frac{16}{17}$
Solution: (a) $\frac{b^2 + c^2 - a^2}{11} = \frac{a + b}{12} = 2 (1a)$
 $\therefore b + c = 11A$ (ii) and $a + b = 13A$ (iii)
 $r \tan (1) + (iii)$, $2a + b + c = 13A$ (iv)
Now subtract (i), (i) and (ii) from (iv), $a = 7\lambda, b = 6\lambda, c = 5\lambda$.
Now $\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{(7A)^2 + (6A)^2 - (5A)^2}{27A, 6A} = \frac{4aX + 36A^2 - 25A^2}{8A^2} = \frac{60A^2}{8A^2} = \frac{5}{7}$.
Example: 7 In a *AABC*. $2a \sin \left(\frac{A - B}{2} + C\right)$ is equal to [IT Screening 2000]
(a) $a^2 + b^2 - c^2$ (b) $c^2 + a^2 - b^2$ (c) $b^3 - c^2 - a^2$ (d) $c^2 - a^2 - b^3$
Solution: (h) $2a \sin \frac{A - B}{2} = 2a \cos B - 2ac \frac{c^2 + a^2 - b^2}{2ac} = \frac{c^2 + a^2 - b^2}{2}$.
Example: 8 In ambiguous case if a, b and A are given and if there are two possible values of third side, are c_1 and c_2 , then
(UTSEAT 1999)
(a) $c_1 - c_2 = \sqrt{a^2 + a^2 - b^2} (a + b^2 - a^3) = 0$
Which is quadratic equation in c. Let there be two roots, c_1 and c_2 of above quadratic dequation then $c_1 + c_2 = 2b \cos A$ and $c_1c_2 = b^2 - a^2$
 $\therefore c_1 - c_2 = \sqrt{(a^2 + b^2 - b^2 - a^2)} = \sqrt{(a^2 + b^2 - a^3)} = 0$ (which is quadratic equation in a t. Let there be two roots, c_1 and $c_$

(i) $a = b \cos c + c \cos B$ (ii) $b = c \cos A + a \cos C$ (iii) $c = a \cos B + b \cos A$ *i.e.*, any side of a triangle is equal to the sum of the projection of other two sides on it.

[EAMCET 2001]

Example: 11 In a
$$\triangle ABC$$
, $\frac{\cos C + \cos A}{c + a} + \frac{\cos B}{b}$ is equal to
(a) $\frac{1}{a}$ (b) $\frac{1}{b}$ (c) $\frac{1}{c}$ (d) $\frac{c + a}{b}$
Solution: (b) $\frac{\cos C + \cos A}{c + a} + \frac{\cos B}{b} = \frac{(b \cos C + b \cos A) + (c \cos B + a \cos B)}{b(c + a)}$
 $= \frac{(b \cos C + c \cos B) + (b \cos A + a \cos B)}{b(c + a)} = \frac{a + c}{b(c + a)}$ (Using projection formulae) $= \frac{1}{b}$.
Example: 12 If k be the perimeter of the $\triangle ABC$, then $b \cos^2 \frac{C}{2} + c \cos^2 \frac{B}{2}$ is equal to
(a) k (b) $2k$ (c) $\frac{k}{2}$ (d) None of these

Solution: (c) $b\cos^2\frac{C}{2} + c\cos^2\frac{B}{2} = \frac{b}{2}(1 + \cos C) + \frac{c}{2}(1 + \cos B) = \frac{b}{2} + \frac{c}{2} + \frac{1}{2}(b\cos C + c\cos B) = \frac{a+b+c}{2} = \frac{k}{2}$.

Example: 13 $(a + b + c)(\cos A + \cos B + \cos C) =$ (a) $\sum a \sin^2 \frac{A}{2}$ (b) $\sum a \cos^2 \frac{A}{2}$ (c) $2\sum a \sin^2 \frac{A}{2}$ (d) $2\sum a \cos^2 \frac{A}{2}$ Solution: (d) $(a + b + c)(\cos A + \cos B + \cos C) = 9$ terms. $= \sum a \cos A + \sum (b \cos C + c \cos B) = a \cos A + b \cos B + c \cos C + (a + b + c) = \sum a (1 + \cos A) = 2\sum a \cos^2 \frac{A}{2}.$

3.4 Theorem of the Medians: (Apollonius Theorem)

In every triangle the sum of the squares of any two sides is equal to twice the square on half the third side together with twice the square on the median that bisects the third side.

For any triangle *ABC*, $b^2 + c^2 = 2(h^2 + m^2) = 2\{m^2 + (a/2)^2\}$ by use of cosine rule.

If Δ be right angled, the mid point of hypotenuse is equidistant from the three vertices so that DA = DB = DC

 $\therefore b^2 + c^2 = a^2$ which is pythagoras theorem. This theorem is very useful for solving problems of height and distance.

Example: 14 If AD, BE and CF are the medians of a $\triangle ABC$ then $(AD^2 + BE^2 + CF^2) : (BC^2 + CA^2 + AB^2)$ is equal to

(a) 4:2 (b) 3:2 (c) 3:4 (d) 2:3
Solution: (c) We have,
$$AB^2 + AC^2 = 2(AD^2 + BD^2) \Rightarrow \frac{c^2 + b^2}{2} - \frac{a^2}{4} = AD^2$$
(i)
 $\frac{a^2 + c^2}{2} - \frac{b^2}{4} = BE^2$ (ii) and $\frac{a^2 + b^2}{2} - \frac{c^2}{4} = CF^2$ (iii)
 $a^2 + b^2 + c^2 - \frac{a^2 + b^2 + c^2}{4} = AD^2 + BE^2 + CF^2$
Adding (i), (ii) and (iii) we get, $(AD^2 + BE^2 + CF^2)$: $(a^2 + b^2 + c^2) = 3:4$.
Example: 15 AD is a median of the ΔABC , if AE and AF are medians of the triangles ABD and ADC respectively and $AD = m_1$, $AE = m_2$,
 $AF = m_3$, then $\frac{a^2}{8}$ is equal to
(a) $m_2^2 + m_3^2 - 2m_1^2$ (b) $m_1^2 + m_2^2 - 2m_3^2$ (c) $m_2^2 + m_3^2 - m_1^2$ (d) None of these
Solution: (a) In ΔABC , $AD^2 = m_1^2 = \frac{c^2 + b^2}{2} - \frac{a^2}{4}$
In ΔABC , $AE^2 = m_2^2 = \frac{c^2 + AD^2}{2} - \frac{\left(\frac{a}{2}\right)^2}{4}$
 $\therefore m_2^2 + m_3^2 = AD^2 + \frac{b^2 + c^2}{2} - \frac{a^2}{8} = m_1^2 + m_1^2 + \frac{a^2}{4} - \frac{a^2}{8}$
 $m_2^2 + m_3^2 = 2m_1^2 + \frac{a^2}{8} \Rightarrow \frac{a^2}{8} = m_2^2 + m_3^2 - 2m_1^2$.

3.5 Napier's Analogy (Law of Tangents)

For any triangle ABC,
(1)
$$\tan\left(\frac{A-B}{2}\right) = \left(\frac{a-b}{a+b}\right)\cot\frac{C}{2}$$
 (2) $\tan\left(\frac{B-C}{2}\right) = \left(\frac{b-c}{b+c}\right)\cot\frac{A}{2}$ (3) $\tan\left(\frac{C-A}{2}\right) = \left(\frac{c-a}{c+a}\right)\cot\frac{B}{2}$
(1) $\tan\left(\frac{A-B}{2}\right) = \left(\frac{a-b}{c+a}\right)\cot\frac{C}{2}$ (2) $\tan\left(\frac{B-C}{2}\right) = \left(\frac{b-c}{b+c}\right)\cot\frac{A}{2}$ (3) $\tan\left(\frac{C-A}{2}\right) = \left(\frac{c-a}{c+a}\right)\cot\frac{B}{2}$
(1) $\tan\left(\frac{A-B}{2}\right) = \left(\frac{c-a}{c+a}\right)\cot\frac{B}{2}$
(2) $\tan\left(\frac{B-C}{2}\right) = x$ or $\frac{A}{2}$, then x equal to
(3) $\frac{c-a}{c+a}$ (b) $\frac{a-b}{a+b}$ (c) $\frac{b-c}{b+c}$ (d) None of these
Solution: (c) We know, $\tan\frac{B-C}{2} = \frac{b-c}{b+c}\cot\frac{A}{2} \rightarrow x = \frac{b-c}{b+c}$.
Example: 16 If $\tan \Delta BC$ $a = 6, b = 3$ and $\cot(A - B) = \frac{4}{5}$, then
(a) $C = \frac{\pi}{4}$ (b) $A = \sin^{-1}\frac{2}{\sqrt{5}}$ (c) $ar(\Delta BC) = 9$ (d) None of these
Solution: (bc) $\tan\frac{A-B}{2} = \frac{a-b}{a+b}\cot\frac{C}{2} = \frac{1}{3}\cot\frac{C}{2}$
 $\therefore \tan^{2}\frac{C}{2} = 1 \Rightarrow C = \frac{\pi}{2}$ $\therefore ar(\Delta ABC) = \frac{1-\frac{1}{a}\cos^{2}\frac{C}{2}}{\sqrt{5}}$
Example: 17 If in a ΔABC $a = 6, b = 3$ and $\cos(A - B) = \frac{4}{5}$, then
(Boorhee 1997)
(a) $C = \frac{\pi}{4}$ (b) $A = \sin^{-1}\frac{2}{\sqrt{5}}$ (c) $ar(\Delta ABC) = 9$ (d) None of these
Solution: (bc) $\tan\frac{A-B}{2} = \frac{a-b}{a+b}\cot\frac{C}{2} = \frac{1}{3}\cot\frac{C}{2}$
 $\therefore \tan^{2}\frac{C}{2} = 1 \Rightarrow C = \frac{\pi}{2}$ $\therefore ar(\Delta ABC) = \frac{1}{2}ab = \frac{1}{2}6,3 = 9$
Abox, $\sin A = \frac{6}{\sqrt{3^{2} + 6^{2}}} = \frac{2}{\sqrt{5}}$.
Example: 18 In a ΔABC , $A = \frac{\pi}{3}$ and $b: c = 2:3$. If $\tan a = \frac{\sqrt{3}}{5}, 0 \le a < \frac{\pi}{2}$, then
(a) $B = 60^{\circ} + \alpha$ (b) $C = 60^{\circ} + \alpha$ (c) $B = 60^{\circ} - \alpha$ (d) $C = 60^{\circ} - \alpha$
Solution: (bc) $\tan\frac{C-B}{2} = \frac{c-b}{a+b} \cot\frac{A}{2} \rightarrow \tan\frac{C-B}{2} = \frac{1}{5} \cot^{3} - \frac{\sqrt{3}}{5} = \tan \alpha$
 $\therefore C - B = 2a$ and $C + B = 180^{\circ} - 60^{\circ} = 120^{\circ} i.a, B = 60^{\circ} - \alpha$. (d) $C = 60^{\circ} - \alpha$
Example: 19 In a ΔABC , $a = 2b$ and $A - B = \frac{\pi}{3}$. The measure of $\angle C$ is
(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{6}$ (d) None of these
Solution: (b) Clently, $A > B$ ($\therefore a > b$)
Now $\tan \frac{A-B}{2} = \frac{a-b}{a+b}$ or $\frac{C}{2} \Rightarrow \tan 30^{\circ} = \frac{1}{3} \cot\frac{C}{2}$
 $\therefore \sqrt{3} = \cot\frac{C}{2} = \frac{C}{2} - \frac{C}{3} = \frac{\pi}{3}$.

3.6 Area of Triangle

Let three angles of $\triangle ABC$ are denoted by A, B, C and the sides opposite to these angles by letters a, b, c respectively.

(1) When two sides and the included angle be given: The area of triangle *ABC* is given by, $\Delta = \frac{1}{2}bc \sin A = \frac{1}{2}ca \sin B = \frac{1}{2}ab \sin C \quad i.e., \ \Delta = \frac{1}{2}$ (Product of two sides) × sine of included angle

(2) When three sides are given: Area of $\triangle ABC = \Delta = \sqrt{s(s-a)(s-b)(s-c)}$

where semiperimeter of triangle $s = \frac{a+b+c}{2}$

(3) When three sides and the circum-radius be given: Area of triangle $\Delta = \frac{abc}{4R}$,

where R be the circum-radius of the triangle.

(4) When two angles and included side be given :

$$\Delta = \frac{1}{2}a^2 \frac{\sin B \sin C}{\sin(B+C)} = \frac{1}{2}b^2 \frac{\sin A \sin C}{\sin(A+C)} = \frac{1}{2}c^2 \frac{\sin A \sin B}{\sin(A+B)}$$

Example: 20 In a
$$\triangle ABC$$
 if $a = 2x, b = 2y$ and $\angle C = 120^\circ$, then the area of the triangle is [MP PET 1986, 2002]
(a) xy (b) $xy\sqrt{3}$ (c) $3xy$ (d) $2xy$
Solution: (b) $\triangle = \frac{1}{2}ab\sin C = \frac{1}{2}2x.2y\sin 120^\circ = \sqrt{3}xy$.
Example: 21 In a $\triangle ABC$, $\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}$ and $a = 2$, then the area of a triangle is [MP PET 2000; IIT 1993]
(a) 1 (b) 2 (c) $\frac{\sqrt{3}}{2}$ (d) $\sqrt{3}$
Solution: (d) By sine rule, tan $A = \tan B = \tan C$; \therefore Triangle is equilateral.
Hence, $\triangle = \frac{1}{2}.a.a.\sin 60^\circ = \frac{1}{2}.2.2.\frac{\sqrt{3}}{2} = \sqrt{3}$.
Example: 22 In a triangle ABC , a, b, A are given and c_1, c_2 are two values of third side c . The sum of the areas of triangles with sides a, b, c_1 and a, b, c_2 is
(a) $\frac{1}{2}a^2\sin 2A$ (b) $\frac{1}{2}b^2\sin 2A$ (c) $b^2\sin 2A$ (d) $a^2\sin 2A$
Solution: (b) Let the triangles be $\triangle_1 = ABC_1$ and $\triangle_2 = ABC_2 A$, b, a are given and c has two values. Hence we apply cosine formulae $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ or $c^2 - 2bc \cos A + b^2 - a^2 = 0$.
Above is quadratic in c If c_1, c_2 be the two values of c , then $c_1 + c_2 = 2b \cos A, c_1c_2 = b^2 - a^2$
 $\triangle_1 = \frac{1}{2}ab \sin C_1$, $\triangle_2 = \frac{1}{2}ab \sin C_2$
 $\therefore \triangle_1 + \triangle_2 = \frac{1}{2}ab(\sin C_1 + \sin C_2) = \frac{1}{2}abk(2b \cos A) = b^2ak \cos A = b^2 \sin A \cos A = \frac{1}{2}b^2 \sin 2A$.
Example: 23 If \triangle stands for the area of a triangle ABC , then $a^2\sin 2B + b^2\sin 2A =$ [WB JEE 1988]

(a)
$$3\Delta$$
 (b) 2Δ (c) 4Δ (d) -4Δ
Solution: (c) Use sine rule, $\Delta = \frac{1}{2} ab \sin C$
L.H.S. = $k^2(\sin^2 A.2 \sin B \cos B + \sin^2 B.2 \sin A \cos A) = k^2[2 \sin A. \sin B. \sin(A + B)] = 2ab \sin C = 4\Delta$.
Example: 24 In a ΔABC , $A = \frac{2\pi}{3}$, $b - c = 3\sqrt{3}$ and $ar(\Delta ABC) = \frac{9\sqrt{3}}{2} cm^2$. Then a is
(a) $6\sqrt{3}cm$. (b) $9cm$. (c) $18 cm$. (d) None of these
Solution: (b) $\frac{1}{2}bc \sin \frac{2\pi}{3} = \frac{9\sqrt{3}}{2}$ or $\frac{1}{2} \cdot \frac{\sqrt{3}}{2} \cdot bc = \frac{9\sqrt{3}}{2} \Rightarrow bc = 18$
Also, $\cos \frac{2\pi}{3} = \frac{b^2 + c^2 - a^2}{2bc} \Rightarrow -\frac{1}{2} = \frac{(b - c)^2 + 2bc - a^2}{2bc}$ or $(b - c)^2 + 3bc - a^2 = 0$ or $27 + 54 = a^2 \Rightarrow a = 9$.
Example: 25 If $p_{1,}p_{2,}p_{3}$ are altitudes of a triangle ABC from the vertices A, B, C and Δ , the area of the triangle, then $p_1^{-2} + p_2^{-2} + p_3^{-2}$ is equal to
(a) $\frac{a + b + c}{\Delta}$ (b) $\frac{a^2 + b^2 + c^2}{4\Delta^2}$ (c) $\frac{a^2 + b^2 + c^2}{\Delta^2}$ (d) None of these
Solution: (b) We have $\frac{1}{2}ap_1 = \Delta, \frac{1}{2}bp_2 = \Delta, \frac{1}{2}cp_3 = \Delta \Rightarrow p_1 = \frac{2\Delta}{a}, p_2 = \frac{2\Delta}{b}, p_3 = \frac{2\Delta}{c}$
 $\therefore \frac{1}{p_1^2} + \frac{1}{p_2^2} + \frac{1}{p_3^2} = \frac{a^2 + b^2 + c^2}{4\Delta^2}$.

3.7 Half Angle Formulae

If 2s shows the perimeter of a triangle ABC then, *i.e.*, 2s = a + b + c, then

(1) Formulae for $\sin \frac{A}{2}$, $\sin \frac{B}{2}$, $\sin \frac{C}{2}$: (i) $\sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}$ (ii) $\sin \frac{B}{2} = \sqrt{\frac{(s-a)(s-c)}{ca}}$ (iii) $\sin \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{ab}}$ (2) Formulae for $\cos \frac{A}{2}$, $\cos \frac{B}{2}$, $\cos \frac{C}{2}$: (i) $\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}$ (ii) $\cos \frac{B}{2} = \sqrt{\frac{s(s-b)}{ca}}$ (iii) $\cos \frac{C}{2} = \sqrt{\frac{s(s-c)}{ab}}$ (3) Formulae for $\tan \frac{A}{2}$, $\tan \frac{B}{2}$, $\tan \frac{C}{2}$: (i) $\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$ (ii) $\tan \frac{B}{2} = \sqrt{\frac{(s-c)(s-a)}{s(s-b)}}$ (iii) $\tan \frac{C}{2} = \sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$ (i) $\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$ (ii) $\tan \frac{B}{2} = 2\sqrt{\frac{(s-b)(s-c)}{bc}}$, $\sqrt{\frac{s(s-a)}{bc}} = \left\{\frac{2}{bc}\right\}\sqrt{s(s-a)(s-b)(s-c)} = \frac{2A}{bc}$ Similarly $\sin B = \frac{2A}{ca}$, $\sin C = \frac{2A}{ab}$ $\ln \tan \frac{A}{2} = \frac{(s-b)(s-c)}{\Delta}$, $\tan \frac{B}{2} = \frac{(s-c)(s-a)}{\Delta}$, $\tan \frac{C}{2} = \frac{(s-a)(s-b)}{\Delta}$

Important Tips

$$\mathbf{x} \quad \text{tm} \frac{1}{2} \text{tm} \frac{1}{2} = \left\{ \frac{(s-b)(s-c)}{s(s-a)} \cdot \frac{(s-c)(s-a)}{s(s-b)} \right\}^{1/2} = \frac{s-c}{s} \text{ or } \frac{1}{2} \text{ or } \frac{1}{2} = \frac{s}{s-c} \\ \mathbf{x} \quad \text{tm} \frac{1}{2} + \text{tm} \frac{1}{2} = \sqrt{\left[\frac{s-c}{s-c}\right]} \sqrt{\left[\frac{s-b}{s-b}\right]} = \sqrt{\left[\frac{s-c}{s}\right]} \left[\frac{s-b+s-a}{\sqrt{(s-a)(s-b)}}\right]^{1/2} = \frac{c}{s} \text{ cot} \frac{1}{2} \\ \text{Another form:} \quad \frac{c(s-c)}{(s(s-a)(s-b)(s-c))^{1/2}} = \frac{c}{s} (s-c) \\ \mathbf{x} \quad \text{tm} \frac{1}{2} - \text{tm} \frac{1}{2} = \frac{a-b}{s} (s-c) \\ \mathbf{x} \quad \text{tm} \frac{1}{2} + \text{tm} \frac{1}{2} = \frac{a-b}{s} (s-c) \\ \mathbf{x} \quad \text{tm} \frac{1}{2} + \text{tm} \frac{1}{2} = \frac{a-b}{tm} \frac{1}{2} + \frac{tm} \frac{1}{2} = \frac{c}{s-c} \text{ or } \frac{1}{2} \\ \frac{1}{tm} \frac{1}{2} \text{ tm} \frac{1}{2} = \frac{c}{s-c} \text{ or } \frac{1}{2} \\ \frac{1}{tm} \frac{1}{2} \text{ tm} \frac{1}{2} = \frac{c}{s-c} \text{ or } \frac{1}{2} \\ \frac{1}{tm} \frac{1}{2} \text{ tm} \frac{1}{2} = \frac{c}{s-c} \text{ or } \frac{1}{2} \\ \frac{1}{s} \text{ or } \frac{1}{2} - \frac{1}{s} \frac{1}{s} \frac{1}{s} \frac{1}{s} \frac{1}{s} \frac{1}{s} \frac{1}{s} \\ \frac{1}{s} \frac{1}{s} \frac{1}{s} \frac{1}{s} \frac{1}{s} \frac{1}{s} \frac{1}{s} \\ \frac{1}{s} \\ \frac{1}{s} \frac{1}{s$$

Example: 30 In
$$\triangle ABC$$
, $\left(\cot\frac{A}{2} + \cot\frac{B}{2}\right)\left(a\sin^2\frac{B}{2} + b\sin^2\frac{A}{2}\right)$ equal to

$$\begin{cases} \cot\frac{A}{2} + \cot\frac{B}{2} \right\} \left\{ a\sin^2\frac{B}{2} + b\sin^2\frac{A}{2} \right\} = \left\{ \frac{\cos\frac{C}{2}}{\sin\frac{A}{2}\sin\frac{B}{2}} \right\} \quad \left\{ a\sin^2\frac{B}{2} + b\sin^2\frac{A}{2} \right\} = \left\{ \cos\frac{C}{2} \right\} \quad \left\{ a\frac{\sin\frac{B}{2}}{\sin\frac{A}{2}} + b\frac{\sin\frac{A}{2}}{\sin\frac{B}{2}} \right\} \\ = \sqrt{\frac{s(s-c)}{ab}} \left\{ a\frac{\sqrt{\frac{(s-a)(s-c)}{ac}}}{\sqrt{\frac{(s-b)(s-c)}{bc}}} + b\frac{\sqrt{\frac{(s-b)(s-c)}{bc}}}{\sqrt{\frac{(s-a)(s-c)}{ac}}} \right\} = \sqrt{\frac{s(s-c)}{ab}} \left\{ \sqrt{\left(\frac{s-a}{s-b}\right)ab} + \sqrt{\left(\frac{s-b}{s-a}\right)ab} \right\} \\ = \sqrt{s(s-c)} \left\{ \frac{s-a+s-b}{\sqrt{(s-a)(s-b)}} \right\} = \sqrt{s(s-c)} \left\{ \frac{2s-a-b}{\sqrt{(s-a)(s-b)}} \right\} = c\sqrt{\frac{s(s-c)}{(s-a)(s-b)}} = c\cot\frac{C}{2}. \end{cases}$$

Trick : Such type of unconditional problems can be checked by putting the particular values for a=1, $b=\sqrt{3}$, c=2 and $A=30^{\circ}$, $B=60^{\circ}$, $C=90^{\circ}$, Here expression is equal to 2 which is given by (d).

(b) $c \cot C$ (c) $\cot \frac{C}{2}$ (d) $c \cot \frac{C}{2}$

3.8 Circle Connected with Triangle

(a) $\cot C$

(1) Circumcircle of a triangle and its radius

(i) **Circumcircle :** The circle which passes through the angular points of a triangle is called its circumcircle. The centre of this circle is the point of intersection of perpendicular bisectors of the sides and is called the circumcentre. Its radius is always denoted by *R*. The circumcentre may lie within, outside or upon one of the sides of the triangle.

(ii) **Circum-radius :** The circum-radius of a $\triangle ABC$ is given by

(a)
$$\frac{a}{2 \sin A} = \frac{b}{2 \sin B} = \frac{c}{2 \sin C} = R$$
 (b) $R = \frac{abc}{4\Delta}$ [Δ = area of ΔABC]

(2) Inscribed circle or incircle of a triangle and its radius

(i) In-circle or inscribed circle : The circle which can be inscribed within a triangle so as to

is called its inscribed circle or in circle. The centre of this circle is the point of intersection of the bisectors of the angles of the triangle. The radius of this circle is always denoted by r and is equal to the length of the perpendicular from its centre to any one of the sides of triangle.

(ii) **In-radius :** The radius *r* of the inscribed circle of a triangle *ABC* is given by

(a)
$$r = \frac{\Delta}{s}$$
 (b) $r = 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
(c) $r = (s-a) \tan \frac{A}{2}, r = (s-b) \tan \frac{B}{2}, r = (s-c) \tan \frac{C}{2}$
(d) $r = \frac{a \sin \frac{B}{2} \sin \frac{C}{2}}{\cos \frac{A}{2}}, r = \frac{b \sin \frac{A}{2} \sin \frac{C}{2}}{\cos \frac{B}{2}}, r = \frac{c \sin \frac{B}{2} \sin \frac{A}{2}}{\cos \frac{C}{2}}$

(e)
$$\cos A + \cos B + \cos C = 1 + \frac{1}{R}$$

(3) Escribed circles of a triangle and their radii

(i) **Escribed circle :** The circle which touches the side *BC* and two sides *AB* and *AC* produced of a triangle *ABC* is called the escribed circle opposite to the angle A. Its radius is denoted by r_1 . Similarly, r_2 and r_3 denote the radii of the escribed circles opposite to the angles *B* and *C* respectively.

The centres of the escribed circles are called the ex-centres. The centre of the escribed circle opposite to the angle A is the point of intersection of the external bisectors of angles B and C. The internal bisectors of angle A also passes through the same point. The centre is generally denoted by I_1

(ii) **Radii of ex-circles :** In any $\triangle ABC$, we have

(a)
$$r_{1} = \frac{\Delta}{s-a}, r_{2} = \frac{\Delta}{s-b}, r_{3} = \frac{\Delta}{s-c}$$
 (b) $r_{1} = s \tan \frac{A}{2}, r_{2} = s \tan \frac{B}{2}, r_{3} = s \tan \frac{C}{2}$
(c) $r_{1} = \frac{a \cos \frac{B}{2} \cos \frac{C}{2}}{\cos \frac{A}{2}}, r_{2} = \frac{b \cos \frac{C}{2} \cos \frac{A}{2}}{\cos \frac{B}{2}}, r_{3} = \frac{c \cos \frac{A}{2} \cos \frac{B}{2}}{\cos \frac{C}{2}}$
(d) $r_{1} + r_{2} + r_{3} - r = 4R$ (e) $\frac{1}{r_{1}} + \frac{1}{r_{2}} + \frac{1}{r_{3}} = \frac{1}{r}$
(f) $\frac{1}{r^{2}} + \frac{1}{r_{1}^{2}} + \frac{1}{r_{2}^{2}} + \frac{1}{r_{3}^{2}} = \frac{a^{2} + b^{2} + c^{2}}{\Delta^{2}}$ (g) $\frac{1}{bc} + \frac{1}{ca} + \frac{1}{ab} = \frac{1}{2Rr}$
(h) $r_{1}r_{2} + r_{2}r_{3} + r_{3}r_{1} = s^{2}$ (i) $\Delta = 2R^{2} \sin A . \sin B . \sin C = 4Rr \cos \frac{A}{2} . \cos \frac{B}{2} . \cos \frac{C}{2}$
(j) $r_{1} = 4R \sin \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}; r_{2} = \cos \frac{A}{2} . \sin \frac{B}{2} . \cos \frac{C}{2}; r_{3} = 4R \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2}$

(4) **Centroid (G) :** Common point of intersection of medians of a triangle. Divides every median in the ratio 2:1. Always lies inside the triangle.

(5) **Orthocentre of a triangle :** The point of intersection of perpendicular drawn from the vertices on the opposite sides of a triangle is called its orthocentre.

3.9 Pedal Triangle

Let the perpendiculars *AD*, *BE* and *CF* from the vertices *A*, *B* and *C* on the opposite sides *BC*, *CA* and *AB* of $\triangle ABC$ respectively, meet at *O*. Then *O* is the orthocentre of the $\triangle ABC$. The triangle *DEF* is called the pedal triangle of the $\triangle ABC$.

Othocentre of the triangle is the incentre of the pedal triangle.

If O is the orthocentre and DEF the pedal triangle of the $\triangle ABC$, where AD, BE, CF are the perpendiculars drawn from A, B, C on the opposite sides BC, CA, AB respectively, then

- (i) $OA = 2R \cos A$, $OB = 2R \cos B$ and $OC = 2R \cos C$
- (ii) $OD = 2R \cos B \cos C$, $OE = 2R \cos C \cos A$ and $OF = 2R \cos A \cos B$

᠕

(1) Sides and angles of a pedal triangle: The angles of pedal triangle *DEF* are: 180 - 2A, 180 - 2B, 180 - 2C and sides of pedal triangle are:

 $EF = a\cos A$ or $R\sin 2A$; $FD = b\cos B$ or $R\sin 2B$; $DE = c\cos C$ or $R\sin 2C$

If given $\triangle ABC$ is obtuse, then angles are been represented by 2A, 2B, $2C - 180^{\circ}$ and the sides are $a \cos A$, $b \cos B$, $-c \cos C$.

(2) Area and circum-radius and in-radius of pedal triangle

Area of pedal triangle = $\frac{1}{2}$ (Product of the sides) × (sine of included angle)

 $\Delta = \frac{1}{2}R^2 \cdot \sin 2A \cdot \sin 2B \cdot \sin 2C$

Circum-radius of pedal triangle = $\frac{EF}{2\sin FDE} = \frac{R\sin 2A}{2\sin(180^{\circ} - 2A)} = \frac{R}{2}$.

In-radius of pedal triangle = $\frac{\text{area of } \Delta DEF}{\text{semi - perimeter of } \Delta DEF} = \frac{\frac{1}{2}R^2 \sin 2A \cdot \sin 2B \cdot \sin 2C}{2R \sin A \cdot \sin B \cdot \sin C} = 2R \cos A \cdot \cos B \cdot \cos C$.

Important Tips

- Circum-centre, Centroid and Orthocentre are collinear.
- *In any right angled triangle, the orthocentre coincides with the vertex containing the right angled.*
- The mid-point of the hypotenuse of a right angled triangle is equidistant from the three vertices of the triangle.
- The mid-point of the hypotenuse of a right angled triangle is the circumcentre of the triangle.
- The length of the medians AD, BE, CF of $\triangle ABC$ are given by

$$AD = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2} = \frac{1}{2}\sqrt{b^2 + c^2 + 2bc\cos A}, BE = \frac{1}{2}\sqrt{2c^2 + 2a^2 - b^2} = \frac{1}{2}\sqrt{c^2 + a^2 + 2ca.\cos B}$$
$$CF = \frac{1}{2}\sqrt{2a^2 + 2b^2 - c^2} = \frac{1}{2}\sqrt{a^2 + b^2 + 2ab.\cos c}$$

The distance between the circumcentre O and centroid G of $\triangle ABC$ is given by

$$OG = \frac{1}{3}OH = \frac{1}{3}R\sqrt{1 - 8\cos A \cdot \cos B \cdot \cos C}$$
, Where H is the orthocentre of $\triangle ABC$.

The distance between the orthocentre H and centroid G of $\triangle ABC$ is given by $HG = \frac{2}{3}R\sqrt{1-8\cos A.\cos B.\cos C}$.

The distance between the circumcentre O and the incentre I of $\triangle ABC$ given by $OI = R\sqrt{1-8\sin\frac{A}{2}\cdot\sin\frac{B}{2}\cdot\sin\frac{C}{2}}$

The If I_1 is the centre of the escribed circle opposite to the angle *B*, then $OI_1 = R\sqrt{1+8\sin\frac{A}{2}\cdot\cos\frac{B}{2}\cdot\cos\frac{C}{2}}$

Similarly,
$$OI_2 = R\sqrt{1 + 8\cos\frac{A}{2} \cdot \sin\frac{B}{2} \cdot \cos\frac{C}{2}}$$
, $OI_3 = R\sqrt{1 + 8\cos\frac{A}{2} \cdot \cos\frac{B}{2} \cdot \sin\frac{C}{2}}$

- Circle circumscribing the pedal triangle of a given triangle bisects the sides of the given triangle and also the lines joining the vertices of the given triangle to the orthocentre of the given triangle. This circle is known as "Nine point circle".
- *Circumcentre of the pedal triangle of a given triangle bisects the line joining the circum-centre of the triangle to the orthocentre.*

3.10 Ex-central Triangle

Let *ABC* be a triangle and *I* be the centre of incircle. Let I_1 , I_2 and I_3 be the centres of the escribed circles which are opposite to *A*, *B*, *C* respectively then $I_1I_2I_3$ is called the Ex-central triangle of $\triangle ABC$.

 $I_1I_2I_3$ is a triangle, thus the triangle *ABC* is the pedal triangle of its ex-central triangle $I_1I_2I_3$. The angles of ex-central triangle $I_1I_2I_3$ are

$$90^{\circ} - \frac{A}{2}, 90^{\circ} - \frac{B}{2}, 90^{\circ} - \frac{C}{2}$$

Example: 31

and sides are $I_1I_3 = 4R\cos\frac{B}{2}$; $I_1I_2 = 4R\cos\frac{C}{2}$; $I_2I_3 = 4R\cos\frac{A}{2}$

Area and circum-radius of the ex-central triangle

Area of triangle = $\frac{1}{2}$ (Product of two sides) × (sine of included angles)

$$\Delta = \frac{1}{2} \left(4R \cos \frac{B}{2} \right) \cdot \left(4R \cos \frac{C}{2} \right) \times \sin \left(90^{\circ} - \frac{A}{2} \right)$$
$$\Delta = 8R^2 \cos \frac{A}{2} \cdot \cos \frac{B}{2} \cdot \cos \frac{C}{2}$$
$$4R \cos \frac{A}{2}$$

Circum-radius = $\frac{I_2 I_3}{2 \sin I_2 I_1 I_3} = \frac{4R \cos \frac{\pi}{2}}{2 \sin \left(90^{\circ} - \frac{A}{2}\right)} = 2R$.

In a $\triangle ABC$ $r_1 < r_2 < r_3$, then

(a) a < b < c (b) a > b > c

(d) a < c < b

[EAMCET 2003]

In a $\triangle ABC$, $r_1 < r_2 < r_3$ Solution: (a) $\Rightarrow \quad \frac{1}{r_1} > \frac{1}{r_2} > \frac{1}{r_3} \Rightarrow \frac{s-a}{\Delta} > \frac{s-b}{\Delta} > \frac{s-c}{\Delta} \Rightarrow (s-a) > (s-b) > (s-c) \Rightarrow -a > -b > -c \Rightarrow a < b < c.$ Example: 32 Which of the following pieces of data does NOT uniquely determine an acute-angled triangle ABC (R being the radius of the circum-circle) [IIT Screening 2002] (b) *a*,*b*,*c* (d) $a. \sin B. R$ (a) $a, \sin A, \sin B$ (d) $a, \sin A, R$ $\frac{a}{\sin A} = R$ and $b = 2R \sin B$. So two sides and two angles are known. So $\angle C$ is known. Therefore, two sides and included Solution: (d) angle is known. So, Δ is uniquely known in case (a). If *a*, *b*, *c* are known the Δ is uniquely known in case (b). $b = 2R \sin B$, $\sin A = \frac{a}{2R}$. So, sides *a*, *b* and angle *A*, *B* are known. So $\angle C$ is known. Therefore two sides and included angle is known. So, Δ is uniquely known in case (c). $\frac{a}{\sin A} = R$. So, only a side and an angle is known. So, Δ is not uniquely known in case (d).

(c) b < a < c

Example: 33 In a triangle ABC, let $\angle C = \frac{\pi}{2}$. If r is the in radius and R is the circum-radius of the triangle, then 2(r + R) is equal to

Solution: (b)

 $r = 4R \sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2}$ For an equilateral triangle, $A = B = C = 60^{\circ}$ $\therefore r = 4R \sin 30^{\circ} \cdot \sin 30^{\circ} \cdot \sin 30^{\circ} = 4R \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{R}{2}$.

3.11 Cyclic Quadrilateral

A quadrilateral PQRS is said to be cyclic quadrilateral if there exists a circle passing through all its four vertices P, Q, R and S.

Let a cyclic quadrilateral be such that PQ = a, QR = b, RS = c and SP = d. Then $\angle Q + \angle S = 180^{\circ}$ and $\angle A + \angle C = 180^{\circ}$. Let 2s = a + b + c + d

and \Box = Area of cyclic quadrilateral *PQRS*

In $\triangle PQR$ and $\triangle PRS$,

From cosine rule,
$$PR^2 = PQ^2 + QR^2 - 2PQ.QR \cos Q = a^2 + b^2 - 2ab \cos Q$$
(ii)
and $PR^2 = PS^2 + RS^2 - 2PS.RS \cos S$
 $PR^2 = d^2 + c^2 - 2cd \cos(\pi - Q)$
 $PR^2 = d^2 + c^2 + 2cd \cos Q$ (iii)
From (ii) and (iii) we have, $\Box = \sqrt{(s-a)(s-b)(s-c)(s-d)}$ (iv)

Therefore, (1) Area of cyclic quadrilateral = $\frac{1}{2}(ab+cd)\sin Q$ (2) Area of cyclic quadrilateral = $\sqrt{(s-a)(s-b)(s-c)(s-d)}$, where 2s = a+b+c+d

(3)
$$\cos Q = \frac{a^2 + b^2 - c^2 - d^2}{2(ab + cd)}$$

(4) **Circumradius of cyclic quadrilateral :** Circum circle of quadrilateral *PQRS* is also the circumcircle of ΔPQR . Hence circumradius of cyclic quadrilateral PQRS = R = circumradius of $\Delta PQR = \frac{PR}{2\sin B} = \frac{PR(ab+cd)}{4\Delta}$

But
$$PR = \sqrt{\frac{(ac+bd)(ad+bc)}{(ab+cd)}}$$

Hence $R = \frac{1}{4\Delta}\sqrt{(ac+bd)(ad+bc)(ab+cd)} = \frac{1}{4}\sqrt{\frac{(ac+bd)(ad+bc)(ab+cd)}{(s-a)(s-b)(s-c)(s-d)}}$

(5) **Ptolemy's theorem :** In a cyclic quadrilateral *PQRS*, the product of diagonals is equal to the sum of the products of the length of the opposite sides *i.e.*, According to Ptolemy's theorem, for a cyclic quadrilateral *PQRS* PR.QS = PQ.RS + RQ.PS.

Example: 40 A cyclic quadrilateral *ABCD* of area
$$\frac{3\sqrt{5}}{4}$$
 is inscribed in a unit circle. If one of its sides *AB* = 1 and the diagonal *BD* = $\sqrt{3}$ then the lengths of the other sides are (Borrise 1995)
(a) 2, 1, 1 (b) 2, 1, 2 (c) 3, 1, 2 (d) None of these
Solution: (a) By sine formula in *AABC*, $\sqrt{\frac{5}{3mA}} = 2R \Rightarrow \sqrt{\frac{5}{3mA}} = 2R \Rightarrow \sqrt{\frac{5}{3mA}} = 2 \Rightarrow \sin A = \sqrt{\frac{3}{2}} \Rightarrow A = \frac{\pi}{3}$
Now, *AB* = $x = 1$
By cosine formula in *AABC*, $\sqrt{\frac{5}{3mA}} = 2R \Rightarrow \sqrt{\frac{5}{3mA}} = 2R \Rightarrow \sqrt{\frac{5}{2}} \Rightarrow A = \frac{1}{2} = \frac{1+y^2-3}{2y} \Rightarrow y = y^2 - 2$
 $\Rightarrow y^2 - y - 2 - 0 \Rightarrow (y - 2)(y + 1) = 0 \Rightarrow y = 2$ [: $y \neq -11$
 $\therefore AD = 2$
Since $2A = 60^\circ$: $\angle C = 120^\circ$
In *ABDC*, $3 = p^2 + q^2 - 2pq \cos 120^\circ \Rightarrow 3 = p^2 + q^2 + pq$ (i)
Also area of quadrilateral *ABCD* $= \frac{3\sqrt{3}}{4}$
 $\therefore \frac{3\sqrt{3}}{4} = \Delta ABD + \Delta BCD = \frac{1}{2}, 1, 2 \sin 60^\circ + \frac{1}{2}pq, \sin 120^\circ = \frac{\sqrt{3}}{2} \pm \frac{\sqrt{3}}{4}pq$
 $\Rightarrow \frac{\sqrt{3}}{4} q = \frac{3\sqrt{3}}{4} - \frac{\sqrt{3}}{2} = \frac{3\sqrt{3} - 2\sqrt{3}}{4} = \frac{\sqrt{3}}{4} \Rightarrow pq = 1$
 \therefore (i) gives, $3 = p^2 + q^2 + 1 \Rightarrow p^2 + q^2 = 2$, (p, q > 0)
 $\therefore p^2 + \frac{1}{p^2} = 2 \Rightarrow p^4 - 2p^2 + 1 = 0 \Rightarrow (p^2 - 1)^2 = 0 \Rightarrow p^2 = 1, \Rightarrow \therefore p = 1, q = 1$
 $\therefore AB = 1, AD = 2, BC = CD = 1$.
Example: 41 The two adjacent sides of a cyclic quadrilateral are 2 and 5 and the angle between them is 60°. If the third side is 3, the remaining form bis deis
 $\therefore \angle ADC = 180^\circ - 60^\circ = 120^\circ$
Let $AB = 2, BC = 5$ and $CD = 3$
In $\Delta ABC, AB^2 + AC^2 + 2AB, BC \cos 60^\circ = AC^2$ or $4 + 25 - 2 \times 2 \times 5 \times \frac{1}{2} = AC^2$
 $\therefore AC^2 = 19$; In *ABC* $AD^2 + CD^2 + 2AD, CD \cos 60^\circ = AC^2$
 $ar AD^2 + 9 + 2AD, 3, \frac{1}{2} = 19$ or $AD^2 + 3AD - 10 = 0$ or $AD^2 + 5AD - 2AD - 10 = 0$
 $ar AD(AD + 5) - 2(AD + 5) = 0$ or $(AD - 2)(AD + 5) = 0$. Therefore, fourth side is *A* $D = 2$.
Example: 41 Two adjacent sides of a cyclic quadrilateral are 2 and 5 and the angle between them is 60°. If the quadrilateral is $4\sqrt{3}$, then the remaining form voides are (BAD + 2)(D - 2)(D + 5) = 0. Therefore, fourth side is *A* $D = 2$.
Example: 42 Two adjacent sides of $a = cyclic quadrilate$

Given, Area of quadrilateral *PORS* = $4\sqrt{3}$

$$\Rightarrow \text{ Area of } (\Delta PQR + \Delta PRS) = \frac{1}{2} [2 \times 5 \sin 60^\circ + c \times d \sin 120^\circ]$$
$$\Rightarrow 4\sqrt{3} = \frac{5\sqrt{3}}{2} + \frac{\sqrt{3}}{4} cd \Rightarrow cd = 6 \qquad \dots \dots \dots (i)$$

Now by cosine formula $RS^{2} + SP^{2} - 2RS.SP.\cos 120^{\circ} = PR^{2} = PQ^{2} + QR^{2} - 2PQ.QR\cos 60^{\circ}$

$$\Rightarrow c^{2} + d^{2} - 2cd\left(-\frac{1}{2}\right) = 4 + 25 - 2(2)(5)\left(\frac{1}{2}\right) \Rightarrow c^{2} + d^{2} + cd = 19 \Rightarrow c^{2} + d^{2} = 19 - 6 = 13 \dots (ii)$$

Solving (i) and (ii) we get c = 2 and d = 3.

3.12 Regular Polygon

(

Solution: (c)

A regular polygon is a polygon which has all its sides equal and all its angles equal.

- (1) Each interior angle of a regular polygon of *n* sides is $\left(\frac{2n-4}{n}\right) \times \text{right angles} = \left[\frac{2n-4}{n}\right]$ $\times \frac{\pi}{2}$ radians.
- (2) The circle passing through all the vertices of a regular polygon is called its *circumscribed* circle.

If a is the length of each side of a regular polygon of n sides, then the radius R of the circumscribed circle, is given by

$$R = \frac{a}{2} \cdot \operatorname{cosec}\left(\frac{\pi}{n}\right)$$

(3) The circle which can be inscribed within the regular polygon so as to touch all its sides is called its inscribed circle.

Again if a is the length of each side of a regular polygon of n sides, then the radius r of the inscribed circle is given by $\left| r = \frac{a}{2} \cdot \cot\left(\frac{\pi}{n}\right) \right|$

(4) The area of a regular polygon is given by $\Delta = n \times \text{area of triangle } OAB$

$$= \frac{1}{4}n a^{2} \cot\left(\frac{\pi}{n}\right) \qquad \text{(in terms of side)}$$
$$= nr^{2} \cdot \tan\left(\frac{\pi}{n}\right) \qquad \text{(in terms of in-radius)}$$
$$= \frac{n}{2} \cdot R^{2} \sin\left(\frac{2\pi}{n}\right) \qquad \text{(in terms of circum-radius)}$$

Example: 43 The sum of the radii of inscribed and circumscribed circles for an *n* sided regular polygon of side *a*, is [AIEEE 2003]

(a)
$$a \cot\left(\frac{\pi}{n}\right)$$
 (b) $\frac{a}{2} \cot\left(\frac{\pi}{2n}\right)$ (c) $a \cot\left(\frac{\pi}{2n}\right)$ (d) $\frac{a}{4} \cot\left(\frac{\pi}{2n}\right)$
 $\tan\left(\frac{\pi}{n}\right) = \frac{a}{2r} \text{ and } \sin\left(\frac{\pi}{n}\right) = \frac{a}{2R} \Rightarrow r + R = \frac{a}{2} \left[\cot\frac{\pi}{n} + \csc\frac{\pi}{n}\right] = \frac{a}{2} \cot\left(\frac{\pi}{2n}\right).$

Example: 44 The area of the circle and the area of a regular polygon of n sides and its perimeter equal to that of the circle are in the ratio of

(a)
$$\tan\left(\frac{\pi}{n}\right):\frac{\pi}{n}$$
 (b) $\cos\left(\frac{\pi}{n}\right):\frac{\pi}{n}$ (c) $\sin\left(\frac{\pi}{n}\right):\frac{\pi}{n}$ (d) $\cot\left(\frac{\pi}{n}\right):\frac{\pi}{n}$

Let *r* be the radius of the circle and A_1 be its area $\therefore A_1 = \pi r^2$ Solution: (a)

Since the perimeter of the circle is the same as the perimeter of a regular polygon of n sides $\therefore 2\pi r = na$, where 'a' is the length of one side of the regular polygon, $\therefore a = \frac{2\pi r}{r}$ Let A_2 be the area of the polygon, then $A_2 = \frac{1}{4}na^2 \cdot \cot \frac{\pi}{n} = \frac{1}{4}n \cdot \frac{4\pi^2 r^2}{n^2} \cot \frac{\pi}{n} = \pi r^2 \cdot \frac{\pi}{n} \cdot \cot \frac{\pi}{n}$ $\therefore A_1: A_2 = \pi r^2: \pi r^2 \cdot \frac{\pi}{n} \cdot \cot \frac{\pi}{n} = 1: \frac{\pi}{n} \cot \frac{\pi}{n} = \tan \frac{\pi}{n}: \frac{\pi}{n}.$ Example: 45 A regular polygon of nine sides, each of length 2 is inscribed in a circle. The radius of the circle is [IIT 1994] (c) $\cot \frac{\pi}{\alpha}$ (a) $co\sec\frac{\pi}{0}$ (d) $\tan \frac{\pi}{2}$ (b) cosec $\frac{\pi}{2}$ We know that radius of the circumcircle is given by $R = \frac{a}{2} \operatorname{cosec}\left(\frac{\pi}{n}\right)$; Here, a = 2, n = 9Solution: (a) \therefore Required radius = $\frac{2}{2}$ cosec $\frac{\pi}{2}$ = cosec $\frac{\pi}{2}$. Example: 46 If the number of sides of two regular polygons having the same perimeter be n and 2n respectively, their areas are in the ratio (a) $\frac{2\cos\left(\frac{\pi}{n}\right)}{\cos\left(\frac{\pi}{2n}\right)}$ (b) $\frac{2\cos\left(\frac{\pi}{n}\right)}{1+\cos\left(\frac{\pi}{n}\right)}$ (c) $\frac{\cos\left(\frac{\pi}{n}\right)}{\sin\left(\frac{\pi}{n}\right)}$ (d) None of these Let s be the perimeter of both the polygons. Then the length of each side of the first polygon is $\frac{s}{n}$ and that of second polygon is Solution: (b) $\frac{s}{2n}$. If A_1 , A_2 denote their areas, then $A_1 = \frac{n}{4} \left[\frac{s}{n} \right]^2 \cot \frac{\pi}{n}$ and $A_2 = \frac{1}{4} \cdot (2n) \left(\frac{s}{2n} \right)^2 \cdot \cot \left(\frac{\pi}{2n} \right)$ $\frac{A_1}{A_2} = \frac{2\cot\left(\frac{\pi}{n}\right)}{\cot\left(\frac{\pi}{2n}\right)} = \frac{2\cos\left(\frac{\pi}{n}\right)\sin\left(\frac{\pi}{2n}\right)}{\sin\left(\frac{\pi}{n}\right)\cos\left(\frac{\pi}{2n}\right)} = \frac{2\cos\left(\frac{\pi}{n}\right)\sin\left(\frac{\pi}{2n}\right)}{2\sin\left(\frac{\pi}{2n}\right)\cos\left(\frac{\pi}{2n}\right)\cos\left(\frac{\pi}{2n}\right)} \Rightarrow \frac{A_1}{A_2} = \frac{2\cos\left(\frac{\pi}{n}\right)}{1+\cos\left(\frac{\pi}{n}\right)}.$ 3.13 Solutions of Triangles Different formulae will be used in different cases and sometimes the same problem may be solved in different ways by different formulae. We should, therefore, look for that formula which will suit the problem best.

(1) Solution of a right angled triangle

(2) Solution of a triangle in general

(1) Solution of a right angled triangle

(i) When two sides are given: Let the triangle be right angled at *C*. Then we can determine the remaining elements as given in the following table

Given	Required

a,b	$\tan A = \frac{a}{b}, \ B = 90^{\circ} - A, \ c = \frac{a}{\sin A}$
<i>a</i> , <i>c</i>	$\sin A = \frac{a}{c}, \ b = c \cos A, B = 90^{\circ} - A$

(ii) When a side and an acute angle are given : In this case, we can determine the remaining elements as given in the following table

Given	Required
a, A	$B = 90^{\circ} - A, b = a \cot A, c = \frac{a}{\sin A}$
<i>c</i> , <i>A</i>	$B = 90^{\circ} - A, \ a = c \sin A, b = c \cos A$

(2) Solution of a triangle in general

(i) When three sides *a*, *b* and *c* are given in this case, the remaining elements are determined by using the following formulae, $\Delta = \sqrt{s(s-a)(s-b)(s-c)}$, where 2s = a+b+c = perimeter of triangle

(ii) When two sides *a*, *b* and the included angle *C* are given : In this case, we use the following formulae $\Delta = \frac{1}{2}ab\sin C ; \quad \tan\frac{A-B}{2} = \frac{a-b}{a+b}\cot\frac{C}{2} ; \quad \frac{A+B}{2} = 90^{\circ} - \frac{C}{2} \text{ and } c = \frac{a\sin C}{\sin A}$

(iii) When one sides *a* and two angles *A* and *B* are given : In this case, we use the following formulae to determine the remaining elements $A + B + C = 180^{\circ} \Rightarrow C = 180^{\circ} - A - B$

$$b = \frac{a \sin B}{\sin A}$$
 and $c = \frac{a \sin C}{\sin A} \Rightarrow \Delta = \frac{1}{2} ca \sin B$

(iv) When two sides *a*, *b* and the angle *A* opposite to one side is given : In this case, we use the following formulae

$$C = 180^{\circ} - (A+B), c = \frac{a \operatorname{sm} C}{\sin A}$$

Special Cases

Case I : When *a* is an acute angle

(a) If $a < b \sin A$, there is no triangle. When $a < b \sin A$, from (i), $\sin B > 1$, which is impossible.

b

A

90°

R

From the following figure, If $AC = b, \angle CAX = A$, then perpendicular $CN = b \sin A$. Now taking C as centre, If we draw an arc of radius a then it will never intersect the line AX and hence no triangle ABC can be constructed in this case.

(b) If $a = b \sin A$, then only one triangle is possible which is right angled at B. When $a = b \sin A$, then from sine rule. $\sin B = 1$, $\therefore \ \angle B = 90^{\circ}$

from fig. It is clear that $CB = a = b \sin A$

Thus, in this case, only one triangle is possible which is right angled at B.

But $B = 180^{\circ} - A \implies A + B = 180^{\circ}$, which is not possible in a triangle.

 \therefore In this case, we get $\angle A = \angle B$.

Hence, if $b = a > b \sin A$ then only one isosceles triangle ABC is possible in which $\angle A = \angle B$.

(ii) a > b In the following figure, Let AC = b, $\angle CAX = A$, and a > b, also $a > b \sin A$.

Now taking C as centre, if we draw an arc of radius a, it will intersect AX at one point B and hence only one $\triangle ABC$ is constructed. Also this arc will intersect XA produced at B' and $\triangle AB'C$ is also formed but this Δ is inadmissible (because $\angle CAB'$ is an obtuse angle in this triangle)

Hence, if a > b and $a > b \sin A$, then only one triangle is possible.

(iii) b > a (*i.e.*, $b > a > b \sin A$)

In fig. let $AC = b, \angle CAX = A$. Now taking C as centre, if we draw an arc of radius a, then it will intersect AX at two points B_1 and B_2 . Hence if $b > a > \sin A$, then there are two triangles.

Case II : When A is an obtuse angle: In this case, there is only one triangle, if a > b

Case III: b > c and $B = 90^{\circ}$

Again the circle with A as centre and b as radius will cut the line only in one point. So, only one triangle is possible.

 $a = b \sin A$

Case IV: $b \le c$ and $B = 90^{\circ}$

The circle with A as centre and b as radius will not cut the line in any point. So, no triangle is possible. This is, sometimes called an ambiguous case.

Alternative method: By applying cosine rule, we have $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$

$$\Rightarrow a^2 - (2c\cos B)a + (c^2 - b^2) = 0$$

$$\Rightarrow a = c \cos B \pm \sqrt{(c \cos B)^2 - (c^2 - b^2)}$$

$$\Rightarrow a = c \cos B \pm \sqrt{b^2 - (c \sin B)^2}$$

This equation leads to following cases:

Case I : If $b < c \sin B$, no such triangle is possible.

Case II : Let $b = c \sin B$, there are further following case.

(a) *B* is an obtuse angle $\Rightarrow \cos B$ is negative. There exists no such triangle.

(b) B is an acute angle $\Rightarrow \cos B$ is positive. There exists only one such triangle.

Case III : Let $b > c \sin B$. There are further following cases :

(a) *B* is an acute angle $\Rightarrow \cos B$ is positive.

In this case two values of *a* will exists if and only if $c \cos B > \sqrt{b^2 - (c \sin B)^2}$ or c > b

Two such triangle is possible. If c < b, only one such triangle is possible.

(b) *B* is an obtuse angle $\Rightarrow \cos B$ is negative. In this case triangle will exist if and only if $\sqrt{b^2 - (c \sin B)^2} \Rightarrow c \cos B \Rightarrow b > c$. So, in this case only one such triangle is possible. If b < c there exists no such triangle.

b Note: \Box If one side *a* and two angles *B* and *C* are given, then $A = 180^{\circ} - (B + C)$ and $b = \frac{a \sin B}{\sin A}$, $c = \frac{a \sin C}{\sin A}$

 \Box If the three angles *A*, *B*, *C* are given. We can only find the ratios of the sides *a*, *b*, *c* by using sine rule (since there are infinite similar triangle possible).

Important Tips

- *The Astriangle which does not contain a right angle is called an oblique triangle.*
- *The triangle is an acute angled triangle means every angle is less than 90°.*

 $\overset{\circ}{=}$ If triangle is an obtuse angled triangle means one of its angle is greater than 90°.

 \checkmark If A and B are complementry angles then $A + B = 90^{\circ}$.

 \Im If A and B are supplementary angle, then $A + B = 180^{\circ}$.

 $\Sigma(p+a)(q-r) = \Sigma p(q-r) + a\Sigma(q-r) = 0 .$

Example: 47 If in a right angled triangle the hypotenuse is four times as long as the perpendicular drawn to it from opposite vertex, then one of its acute angle is [MP PET 1998] (a) 15° (b) 30° (c) 45° (d) None of these If x is length of perpendicular drawn to it from opposite vertex of a right angled triangle, so, length of diagonal $AB = y_1 + y_2$ Solution: (a)(i) From $\triangle OCB$, $y_2 = x \cot \theta$ and from $\triangle OCA$, $y_1 = x \tan \theta$ Put the values in equation (i), then $AB = x(\tan \theta + \cot \theta)$(ii) Since, length of hypotenuse = 4 (Length of perpendicular) $\therefore x(\tan \theta + \cot \theta) = 4x \implies \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cdot \cos \theta} = 4$ $\Rightarrow \sin 2\theta = \frac{1}{2} \Rightarrow 2\theta = 30^{\circ} \Rightarrow \theta = 15^{\circ}.$ $\frac{\text{Length of hypotenuse}}{\text{Length of perpend icular drawn from opposite vertex to hypotenuse}} = \frac{2}{\sin 2\theta}$ Trick : $\Rightarrow 4 = \frac{2}{\sin 2\theta} \Rightarrow \sin 2\theta = \frac{1}{2} \Rightarrow \sin 2\theta = \sin 30^{\circ} \Rightarrow \theta = 15^{\circ}.$ The number of triangles ABC that can be formed with a = 3, b = 8 and $\sin A = \frac{5}{2}$ is Example: 48 [Roorkee 1998] (a) 0 (c) 2 (d) 3 (b) 1 Given, a = 3, b = 8 and $\sin A = \frac{5}{13}$. Solution: (a) $\therefore b \sin A = 8 \times \left(\frac{5}{13}\right) = \frac{40}{13} > a(=3)$ Thus in this case no triangle is possible. In any triangle AB = 2, BC = 4, CA = 3 and D is mid point of BC, then Example: 49 [Roorkee 1995] (a) $\cos B = \frac{11}{6}$ (b) $\cos B = \frac{7}{8}$ (c) AD = 2.4 (d) $AD^2 = 2.5$ From $\triangle ABC$, $\cos B = \frac{2^2 + 4^2 - 3^2}{2 \times 2 \times 4} = \frac{11}{16}$ Solution: (d) From $\triangle ABD$, $\cos B = \frac{2^2 + 2^2 - AD^2}{2 \times 2 \times 2} = \frac{11}{16}$ 3 2 $\therefore \frac{11}{16} = \frac{2^2 + 2^2 - AD^2}{2 \times 2 \times 2}$ 2 2 ת $\Rightarrow AD^2 = 2.5$. If b = 3, c = 4 and $B = \frac{\pi}{3}$, then the number of triangles that can be constructed is Example: 50 [Roorkee 1992] (a) Infinite (b) Two (c) One (d) Nil

Solution: (d)	Here, $c \sin B = 4 \sin \left(\frac{\pi}{3}\right) = 2\sqrt{3} > b(=3)$		
	Thus, we have $b < c \sin B$ Hence no triangle is possible, <i>i.e.</i> , the number of triangles the	nat can be construct	ted is nil.
Example: 51	If two sides of a triangle are $2\sqrt{3}$ and $2\sqrt{2}$ the angle opposition	osite the shorter sid	le is 45° . The maximum value of the third side is
	(a) $2 + \sqrt{6}$ (b) $\sqrt{2} + \sqrt{6}$	(c) $\sqrt{6} - 2$	(d) None of these
Solution: (b)	Let $a = 2\sqrt{3}, b = 2\sqrt{2}$: $B = 45^{\circ}$		
	$\therefore \ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \implies \frac{2\sqrt{3}}{\sin A} = \frac{2\sqrt{2}}{\sin 45^{\circ}} = \frac{c}{\sin C}$	(i)	
	$\therefore \sin A = \frac{\sqrt{3}}{2} \implies A = 60^{\circ} .$		
	$\therefore C = 180^{\circ} - A - B = 75^{\circ}$		
	From (i) $c = 4 \sin C = 4 \sin(45^{\circ} + 30^{\circ}) = \sqrt{2} + \sqrt{6}$.		
Example: 52	In an ambiguous case, If the remaining angles of the	triangles formed	with a , b and A be B_1, C_1 and B_2, C_2 the
	$\frac{\sin C_1}{\sin B_1} + \frac{\sin C_2}{\sin B_2} =$		
	(a) $2\cos A$ (b) $\cos A$	(c) $2\sin A$	(d) sinA
Solution: (a)	In Δ 's ACB ₁ and ACB ₂		
	$\frac{\sin C_1}{\sin B_1} = \frac{AB_1}{AC} = \frac{c_1}{b} \text{ and } \frac{\sin C_2}{\sin B_2} = \frac{c_2}{b}$		$C_2 \xrightarrow{C} C_1$ $b \xrightarrow{C} C_1$
	$\sin C_{i} = \sin C_{i} = c_{i} + c_{i}$		
	$\therefore \frac{\sin e_1}{\sin B_1} + \frac{\sin e_2}{\sin B_2} = \frac{e_1 + e_2}{b}$		$A \xrightarrow{A \xrightarrow{I} b \text{ sin}A} B_2 \xrightarrow{N} B_1 X$
	$\therefore \frac{\sin c_1}{\sin B_1} + \frac{\sin c_2}{\sin B_2} = \frac{c_1 + c_2}{b}$ $\therefore \cos A = \frac{b^2 + c^2 - a^2}{2bc} \text{ or } c^2 - (2b\cos A)c + (b^2 - a^2) = \frac{b^2 + c^2 - a^2}{2bc}$	= 0	$A \xrightarrow{[b \text{ sin}A]} B_2 \xrightarrow{N} B_1 X$

				Relation between Sides and Angles
			Basic Level	
ι.	The triangle <i>PQR</i> of whic	th the angles P , Q , R satisfy $\cos P$	$=\frac{\sin Q}{2\sin R}$ is	[Orissa JEE 2002]
	(a) Equilateral	(b) Right angled	(c) Any triangle	(d) Isosceles
2.	If angles of a triangle are i	n the ratio of $2:3:7$, then the side	es are in the ratio of	IMP PET 1996-1993: BIT Ranchi 1992]
	(a) $\sqrt{2}: 2: (\sqrt{3}+1)$	(b) $2:\sqrt{2}:(\sqrt{3}+1)$	(c) $\sqrt{2}:(\sqrt{3}+1):$	2 (d) $2:(\sqrt{3}+1):\sqrt{2}$
3.	The smallest angle of the t	riangle whose sides are $6 + \sqrt{12}$,	$\sqrt{48}, \sqrt{24}$ is	[EAMCET 1985]
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{\epsilon}$	(d) None of these
1	$\int D a A A B C \text{if} a^2 + a^2 = b$	4^{2} - as then P -	0	[MD DET 1002 1000 1000]
•.	In a ΔABC , If $C + a - b$	$ab = ac$, then $\Delta b = \pi$	π	[MP PE1 1983, 1989, 1990]
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{3}$	(d) None of these
5.	In a triangle ABC , $(b+c)$	$\cos A + (c+a)\cos B + (a+b)\cos C$	2 =	[MP PET 1985]
	(a) 0	(b) 1	(c) $a+b+c$	(d) $2(a+b+c)$
6.	In a $\triangle ABC$, $a\sin(B-C)$ +	$b\sin(C-A)+c\sin(A-B)=$		[ISM Dhanbad 1973]
	(a) 0	(b) $a+b+c$	(c) $a^2 + b^2 + c^2$	(d) $2(a^2+b^2+c^2)$
7.	In any triangle ABC, the va	alue of $a(b^{2} + c^{2})\cos A + b(c^{2} + c^$	a^2)cos $B + c(a^2 + b^2)$ cos C	is [MP PET 1994]
	(a) $3abc^2$	(b) $3a^2bc$	(c) 3 <i>abc</i>	(d) $3ab^2c$
8.	If in a triangle, $a\cos^2\frac{C}{2}$	$+c\cos^2\frac{A}{2} = \frac{3b}{2}$, then its sides we	ill be in [MP PET 19	82; AIEEE 2003]
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of these
9.	If <i>a</i> , <i>b</i> , <i>c</i> are the sides and <i>c</i>	A, B, C are the angles of a triangle	ABC, then $\tan\left(\frac{A}{2}\right)$ is equal	to [MP PET 1994]
	(a) $\frac{\sqrt{(s-c)(s-a)}}{s(s-b)}$	(b) $\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$	(c) $\sqrt{\frac{(s-a)(s-b)}{s(s-c)}}$	(d) $\sqrt{\frac{(s-a)s}{(s-b)(s-c)}}$
10.	In a $\triangle ABC (b-c)\cot \frac{A}{2} +$	$(c-a)\cot\frac{B}{2} + (a-b)\cot\frac{C}{2}$ is equation	ual to	[WB JEE 1989]
	(a) 0	(b) 1	(c) ±1	(d) 2
11.	In a triangle ABC , $a = 2ca$	m, b = 3cm, c = 4cm then angle A	is	[MP PET 2002]
	(a) $\cos^{-1}\left(\frac{1}{24}\right)$	(b) $\cos^{-1}\left(\frac{11}{16}\right)$	(c) $\cos^{-1}\left(\frac{7}{8}\right)$	$(d) \cos^{-1}\left(-\frac{1}{4}\right)$
12.	In a $\triangle ABC$, if $(\sin A + \sin A)$	$B + \sin C$) $(\sin A + \sin B - \sin C)$	$= 3 \sin A \sin B$, then the angle	le <i>C</i> is equal to [AMU 1999]
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{6}$
13.	In a triangle ABC, right an	gled at C , the value of $\tan A + \tan A$	<i>B</i> is [Pb. C	ET 1990; Karnataka CET 1999; MP PET 2001]
	(a) $a+b$	(b) $\frac{a^2}{2}$	(c) $\frac{b^2}{2}$	(d) $\frac{c^2}{1-c^2}$
	(/ W + 0	bc	ac	ab

14.	In a $\triangle ABC$, if $b = 20, c = 21$	and $\sin A = \frac{3}{5}$, then $a =$				[EAMCET 2003]
	(a) 12	(b) 13	(c)	14	(d)	15
15.	In $\triangle ABC$, if $a = 16, b = 24$	and $c = 20$, then $\cos \frac{B}{2}$ equ	ual to			[MP PET 1988]
	(a) $\frac{3}{4}$	(b) $\frac{1}{4}$	(c)	$\frac{1}{2}$	(d)	$\frac{1}{3}$
16.	The angles of a triangle are in	the ratio 1 : 3 : 5 then the gre	eatest angle is	2		[Kerala (Engg.) 2002]
	(a) $\frac{5\pi}{2}$	(b) $\frac{2\pi}{2\pi}$	(c)	<u>7</u> π	(b)	<u>11<i>π</i></u>
	(d) 9	9	(0)	9	(u)	9
17.	If in a triangle <i>ABC</i> , $2 \cos A =$	$= \sin B \operatorname{cosec} C$, then				[MP PET 1996]
	(a) $a=b$	(b) $b = c$	(c)	c = a	(d)	2a = bc
18.	If in a triangle the angles are in	n A.P. and $b: c = \sqrt{3}: \sqrt{2}$,	then $\angle A$ is equivalent to the equivalent term of term o	ual to	[1]	IT 1981; Haryana CEE 1998]
	(a) 30°	(b) 60°	(c)	15 °	(d)	75 <i>°</i>
19.	In $\triangle ABC$, $\frac{\sin(A-B)}{\sin(A+B)} =$					[MP PET 1986]
	(a) $\frac{a^2 - b^2}{c^2}$	(b) $\frac{a^2 + b^2}{c^2}$	(c)	$\frac{c^2}{a^2 - b^2}$	(d)	$\frac{c^2}{a^2+b^2}$
20.	If the lengths of the sides of a	triangle are 3, 5, 7 then the la	argest angle of t	he triangle is		[IIT 1994]
	(a) $\frac{\pi}{2}$	(b) $\frac{5\pi}{2}$	(c)	2π	(d)	3π
	2	6		3	(-)	4
21.	The lengths of the sides of a tr	iangle are $\alpha - \beta$, $\alpha + \beta$ are	nd $\sqrt{3\alpha^2 + \beta^2}$,	$(\alpha > \beta > 0)$. Its largest angle	e is	[Roorkee 1999]
	(a) $\frac{3\pi}{4}$	(b) $\frac{\pi}{2}$	(c)	$\frac{2\pi}{3}$	(d)	$\frac{5\pi}{6}$
22.	In $\triangle ABC$, cosec $A(\sin B \cos \theta)$	$C + \cos B \sin C =$				[MP PET 1986, 1995]
	(a) c	(b) a	(a)	1	(4)	С
	$(a) \frac{a}{a}$	$\begin{pmatrix} 0 \end{pmatrix} \frac{-}{c}$	(0)	1	(u)	\overline{ab}
23.	If $a = 9, b = 8$ and $c = x$ sat	isfies $3\cos C = 2$, then				[MP PET 1984]
	(a) $x = 5$	(b) $x = 6$	(c)	x = 4	(d)	<i>x</i> = 7
24.	If in a triangle <i>ABC</i> side $a = ($	$\sqrt{3}$ +1) <i>cms</i> and $\angle B = 30^{\circ}$.	$\angle C = 45^{\circ}$, th	en the area of the triangle is		[MP PET 1997]
	(a) $\frac{\sqrt{3}+1}{3}$ cm ²	(b) $\frac{\sqrt{3}+1}{2}cm^2$	(c)	$\frac{\sqrt{3}+1}{2\sqrt{2}}cm^2$	(d)	$\frac{\sqrt{3}+1}{3\sqrt{2}}cm^2$
25.	In $\triangle ABC$, if $\cos \frac{A}{2} = \sqrt{\frac{b+c}{2c}}$	- - , then				[MP PET 1990]
	(a) $a^2 + b^2 = c^2$	(b) $b^2 + c^2 = a^2$	(c)	$c^2 + a^2 = b^2$	(d)	b-c=c-a
26.	In $\triangle ABC$, $\frac{\sin B}{\sin(A+B)} =$					[MP PET 1989]
	(a) $\frac{b}{a+b}$	(b) $\frac{b}{c}$	(c)	$\frac{c}{b}$	(d)	None of these
27.	If $\angle B = 60^{\circ}$, then					[Karnataka CET 1992]
	(a) $(a-b)^2 + ab = c^2$	(b) $(b-c)^2 + bc = a^2$	(c)	$\left(c-a\right)^2 + ca = b^2$	(d)	$a^2 + b^2 + c^2 = 2b^2 + ac$
28.	If $b^2 + c^2 = 3a^2$, then $\cot B$ -	$+\cot C - \cot A =$				[MP PET 1991]
	(a) 1	(b) $\frac{ab}{4\Delta}$	(c)	0	(d)	$\frac{ac}{4\Delta}$

				Properties of Triangles	and S	Solutions of Triangles 101 }
29.	In triangle <i>ABC</i> , $A = 30^{\circ}$, $b =$	8, $a = 6$, then $B = \sin^{-1} x$, where $x =$				[Karnataka CET 1990]
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c)	$\frac{2}{3}$	(d)	1
30.	In $\triangle ABC$, $1 - \tan \frac{A}{2} \tan \frac{B}{2} =$					[Roorkee 1973]
	(a) $\frac{2c}{a+b+c}$	(b) $\frac{a}{a+b+c}$	(c)	$\frac{2}{a+b+c}$	(d)	$\frac{4a}{a+b+c}$
31.	If $\cos^2 A + \cos^2 C = \sin^2 B$,	then $\triangle ABC$ is				[MP PET 1991]
	(a) Equilateral	(b) Right angled	(c)	Isosceles	(d)	None of these
32.	If in a triangle <i>ABC</i> , $\angle C = 60$	0^{o} , then $\frac{1}{a+c} + \frac{1}{b+c} =$				[IIT 1975]
	(a) $\frac{1}{a+b+c}$	(b) $\frac{2}{a+b+c}$	(c)	$\frac{3}{a+b+c}$	(d)	None of these
33.	In $\triangle ABC$, if $a = 3, b = 4, c =$	= 5, then $\sin 2B =$				[MP PET 1983]
	(a) 4/5	(b) 3/20	(c)	24/25	(d)	1/50
34.	If in a triangle $ABC, b = \sqrt{3}$,	$c = 1$ and $B - C = 90^{\circ}$, then $\angle A$ is				[MP PET 1983]
	(a) 30 °	(b) 45 °	(c)	75 °	(d)	15 °
35.	If in a triangle <i>ABC</i> , $\cos A + \frac{1}{2}$	$\cos B + \cos C = \frac{3}{2}$, then the triangle is	8			[IIT 1984]
	(a) Isosceles	(b) Equilateral	(c)	Right angled	(d)	None of these
36.	If a^2, b^2, c^2 are in A.P., then	n which of the following are also in A.F	P .			[ISM Dhanbad 1989]
	(a) $\sin A, \sin B, \sin C$	(b) $\tan A$, $\tan B$, $\tan C$	(c)	$\cot A, \cot B, \cot C$	(d)	None of these
37.	$\cot\frac{A+B}{2} \cdot \tan\frac{A-B}{2} =$					[Roorkee 1975]
	(a) $\frac{a+b}{a-b}$	(b) $\frac{a-b}{a+b}$	(c)	$\frac{a}{a+b}$	(d)	None of these
38.	If the sides of a triangle are in	A.P., then the cotangent of its half the	angl	es will be in		[MP PET 1993]
	(a) H.P.	(b) G.P.	(c)	A.P.	(d)	No particular order
39.	In $\triangle ABC$, if $\cot A$, $\cot B$, $\cot B$	C be in A.P., then a^2, b^2, c^2 are in				[MP PET 1997]
	(a) H.P.	(b) G.P.	(c)	A.P.	(d)	None of these
		Advance	e Lev	pel		
40.	If the perpendicular AD divide	es the base of the triangle ABC such that	at <i>BD</i>	, <i>CD</i> and <i>AD</i> are in the ratio 2,	3 and	6, then angle A is equal to
	(a) $\frac{\pi}{2}$	(b) $\frac{\pi}{3}$	(c)	$\frac{\pi}{4}$	(d)	$\frac{\pi}{6}$
41.	In a triangle ABC , $\frac{2\cos A}{a}$ +	$\frac{\cos B}{b} + \frac{2\cos C}{c} = \frac{a}{bc} + \frac{b}{ca}, \text{ then the v}$	alue	of angle A is		[IIT 1993]

102	2 Properties of Triangles and	d Solutions of Triangles					
	(a) 45°	(b) 30°	(c)	90 ^o	(d)	60 ^o	
42.	If the two angles on the base	of a triangle are $\left(22\frac{1}{2}\right)^{o}$ and	$d\left(112\frac{1}{2}\right)^{o}$, the	en the ratio of the heig	ght of the triang	le to the length	of the base is
	(a) 1:2	(b) 2:1	(c)	2:3	(d)	1:1	
43.	If $\Delta = a^2 - (b - c)^2$, where Δ	Δ is the area of triangle <i>ABC</i> ,	, then tan A is eq	lual to		[Karı	nataka CET 1990]
	(a) $\frac{15}{16}$	(b) $\frac{8}{15}$	(c)	$\frac{8}{17}$	(d)	$\frac{1}{2}$	
44.	The perimeter of a $\triangle ABC$ is	s 6 times the arithmetic mean	of the sines of it	ts angles. If the side a	is 1, then the a	ngle A is	[IIT 1992]
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{3}$	(c)	$\frac{\pi}{2}$	(d)	π	
45.	If $A_1 A_2 A_3 \dots A_n$ be a regul	ar polygon of <i>n</i> sides and $\frac{1}{A_1}$	$\frac{1}{A_2} = \frac{1}{A_1 A_3} + \frac{1}{A_2}$	$\frac{1}{A_1A_4}$, then			[IIT 1994]
	(a) $n = 5$	(b) $n = 6$	(c)	<i>n</i> = 7	(d)	None of these	e
46.	If an triangle <i>PQR</i> , sin <i>P</i> , sin (a) The altitudes are in A.P (c) The medians are in G.P	<i>Q</i> , sin <i>R</i> are in A.P., then	(b) (d)	The altitudes are in I The medians are in A	H.P. A.P.		[IIT 1998]
47.	Points D , E are taken on the	e side BC of a triangle ABC	C such that BD=	$=DE=EC.$ If $\angle BAD =$	$= x, \angle DAE = y,$	$\angle EAC = z$, th	en the values of
	$\frac{\sin(x+y)\sin(y+z)}{\sin x \sin z} =$						
	(a) 1	(b) 2	(c)	4	(d)	None of these	e
48.	In a $\triangle ABC$, $2\cos\left(\frac{A-C}{2}\right)$	$=\frac{a+c}{\sqrt{a^2+c^2-ac}}$, then					
	(a) $B = \frac{\pi}{3}$	(b) $B = C$	(c)	A, B, C are in A.P.	(d)	Both (a) and	(c)
49.	If P is the product of the sequation	sines of angles of a triangle,	and q the prod	uct of their cosines, t	then the tangent	ts of the angle	are roots of the
	(a) $qx^3 - px^2 + (1+q)x -$	-p = 0	(b)	$px^{3} - qx^{2} + (1 + p)$	(x-q=0)		
	(c) $(1+q)x^3 - px^2 + qx - qx^2$	-p=0	(d)	None of these			
					Circ	le Connected	l with Triangle
		<	Basic Le	vel			
50.	Which is true in the followin	g					[UPSEAT 1999]
	(a) $a\cos A + b\cos B + c\cos B$	$s C = R \sin A \sin B \sin C$	(b)	$a\cos A + b\cos B + c$	$c\cos C = 2R\sin \theta$	$A\sin B\sin C$	
	(c) $a\cos A + b\cos B + c\cos B$	$s C = 4R \sin A \sin B \sin C$	(d)	$a\cos A + b\cos B + c$	$c\cos C = 8R\sin^2 t$	$A \sin B \sin C$	
51.	In $\triangle ABC$, $a\cos A + b\cos B + b\cos B$	$+c\cos C =$					[WB JEE 1971]
52.	(a) $4R \sin A \sin B \sin C$ The in-radius of the triangle	(b) $3R\sin A\sin B\sin C$ whose sides are 3, 5, 6 is	(c)	$\sin A \sin B \sin C$	(d)	$4R\cos A\cos \theta$	B cos C [EAMCET 1982]
	(a) $\sqrt{\frac{8}{7}}$	(b) $\sqrt{8}$	(c)	$\sqrt{7}$	(d)	$\sqrt{\frac{7}{8}}$	
53.	In an equilateral triangle of s	ide $2\sqrt{3}$ cm, the circum-radi	us is				[EAMCET 1978]
	(a) 1 <i>cm</i>	(b) $\sqrt{3} cm$	(c)	2 <i>cm</i>	(d)	$2\sqrt{3}$ cm	
54.	If the lengths of the sides of	a triangle are 3, 4 and 5 units.	then R the circu	ım-radius is			[MNR 1990]
	(a) 2.0	(b) 2.5	(c)	3.0	(d)	3.5	
55.	In a triangle <i>ABC</i> , $a : b : c =$	4:5:6. The ratio of the radiu	us of the circum	circle to that of the in	circle is	[IIT 1996]	

	(a) $\frac{16}{9}$	(b) $\frac{16}{7}$	(c) $\frac{11}{7}$	(d) $\frac{7}{16}$
56.	If <i>R</i> is the radius of the circ	umcircle of the $\triangle ABC$ a	nd Δ is its area, then	[Karnataka CET 2000]
	(a) $R = \frac{a+b+c}{\Delta}$	(b) $R = \frac{a+b+c}{4\Delta}$	(c) $R = \frac{abc}{4\Delta}$	(d) $R = \frac{abc}{\Delta}$
57.	A circle is inscribed in an e	quilateral triangle of side	a. The area of any square inscribed	in this circle is [IIT 1994]
	(a) $\frac{a^2}{12}$	(b) $\frac{a^2}{6}$	(c) $\frac{a^2}{3}$	(d) $2a^2$
58.	The diameter of the circum	-circle whose sides are 61	, 60, 11	[EAMCET 1988]
	(a) 60	(b) 61	(c) 62	(d) 63
59.	In a equilateral triangle, cire	cum-radius : in-radius : e	x-radius <i>i.e.</i> , $R:r:r_1 =$	[Kurukshetra CEE 1999]
	(a) 1:1:1	(b) 1:2:3	(c) 2:1:3	(d) 3:2:4
60.	In a $\triangle ABC$, <i>I</i> is the in-cent	tre. The ratio IA: IB: IC	is equal to	
	(a) $\sin\frac{A}{2}:\sin\frac{B}{2}:\sin\frac{C}{2}$	(b) $\cos\frac{A}{2}:\cos\frac{B}{2}$	$\cos \frac{C}{2}$ (c) $\csc \frac{A}{2}$: co	$\sec \frac{B}{2} : \csc \frac{C}{2}$ (d) $\sec \frac{A}{2} : \sec \frac{B}{2} : \sec \frac{C}{2}$
61.	In a triangle <i>ABC</i> if $r_1 = 2r_1$	$r_2 = 3r_3$, then		
	(a) $2a = b + c$	(b) $a + c = 2b$	(c) $a+b-2c = 0$	0 (d) None of these
62.	If in a triangle <i>R</i> and <i>r</i> are t	he circumradius and in-ra	dius respectively, then the H.M. of	the ex-radii of the triangle is
	(a) 3 <i>r</i>	(b) 2 <i>R</i>	(c) $R+r$	(d) None of these
			Advance Level	
63.	If the radius of the circumc	rcle of an isosceles trians	gle PQR is equal to PQ (= PR), then	n the angle <i>P</i> is [IIT 1992]
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{2}$	(d) $\frac{2\pi}{3}$
64.	If p_1, p_2, p_3 are respectivel	y the perpendiculars from	n the vertices of a triangle to the opp	posite sides, then $p_1 \cdot p_2 \cdot p_3 =$
				[DCE 1997; EAMCET 1994]
	(a) $\frac{a^2b^2c^2}{R^2}$	(b) $\frac{a^2b^2c^2}{4R^2}$	(c) $\frac{4a^2b^2c^2}{R^2}$	(d) $\frac{a^2b^2c^2}{8R^2}$
65.	If r_1, r_2, r_3 are the radii of t	he escribed circles of a t	riangle ABC and if r is the radius of	f its incircle, then $r_1r_2r_3 - r(r_1r_2 + r_2r_3 + r_3r_1)$ is equal
	(a) 0	(b) 1	(c) 2	(d) 3
66.	In a triangle, the line joinin,	g the circum centre to the	incentre is parallel to BC, then cos	$B B + \cos C =$ [EAMCET 1994]
	(7) 3	(1-) 1	(-) 3	(1) 1
	(a) $\frac{1}{2}$	(0) 1	(c) $\frac{1}{4}$	(d) $\frac{1}{2}$
67.	The sides of a triangle (-7)	inscribed in a given c	ircle subtend angles α, β, γ at	the centre. The minimum value of the A.M. of
	$\cos\left(\alpha + \frac{\pi}{2}\right), \cos\left(\beta + \frac{\pi}{2}\right)$	and $\cos\left(\gamma + \frac{\pi}{2}\right)$ is equal	to	[UPSEAT 1996; IIT 1994]
	(a) $\frac{\sqrt{3}}{2}$	(b) $\frac{-\sqrt{3}}{2}$	(c) $\frac{-2}{\sqrt{3}}$	(d) $\sqrt{2}$
				Solution of Triangle
			Basic Level	

68.	In a $\triangle ABC$, if $\angle C = 30^{\circ}, a$	= 47 cm and $b = 94 cm$, then the	e triangle is			[MP PET 1986]
	(a) Right angled	(b) Right angled isosceles	(c)	Isosceles	(d)	Obtuse angled
69.	In a triangle ABC , if $a \sin A$	$= b \sin B$, then the nature of the t	triangle			[MP PET 1983]
	(a) $a > b$	(b) <i>a</i> < <i>b</i>	(c)	a = b	(d)	a+b=c
70.	If the sides of a triangle be 6	, 10 and 14 then the triangle is				[MP PET 1982]
	(a) Obtuse angled	(b) Acute angled	(c)	Right angled	(d)	Equilateral
71.	If in a triangle ABC, a, b, c a	and angle A is given and $c \sin A < c \sin A$	< a < c, then			[UPSEAT 1999]
	(a) $b_1 + b_2 = 2c \cos A$	(b) $b_1 + b_2 = c \cos A$	(c)	$b_1 + b_2 = 3c\cos A$	(d)	$b_1 + b_2 = 4c\sin A$
72.	In a triangle <i>ABC</i> if $\frac{\cos A}{a}$ =	$=\frac{\cos B}{b}=\frac{\cos C}{c}$, then the triangl	e is			[Karnataka CET 1991]
	(a) Right angled	(b) Obtuse angled	(c)	Equilateral	(d)	Isosceles
73.	If $\cot \frac{A}{2} = \frac{b+c}{2}$, then the A	ΔABC is				[EAMCET 1994]
	(a) Isosceles	(b) Equilateral	(c)	Right angled	(d)	None of these
74.	In any $\triangle ABC$ if $a \cos B = b$	cos A, then the triangle is				[MP PET 1984]
	(a) Equilateral Triangle		(b)	Isosceles Triangle		
	(c) Scalene Triangle		(d)	Right angled Triangle		
75.	If one side of a triangle is tw	vice the other side and the angles	opposite to th	hese sides differ by 60° , th	en the tria	angle is
	(a) Equilateral	(b) Isosceles	(c)	Right angled	(d)	None of these
76.	The sides of a triangle are 3	x + 4y, 4x + 3y and $5x + 5y$ un	nits where x	>0, y > 0. The triangle is		[AIEEE 2002]
	(a) Right angled	(b) Equilateral	(c)	Obtuse angled	(d)	None of these
77.	(a) Right angled If $A = 60^{\circ}, a = 5, b = 4\sqrt{3}$	(b) Equilateral in $\triangle ABC$, then $B =$	(c)	Obtuse angled	(d)	None of these
77.	(a) Right angled If $A = 60^{\circ}, a = 5, b = 4\sqrt{3}$ (a) 30°	(b) Equilateral in $\triangle ABC$, then $B =$ (b) 60°	(c) (c)	Obtuse angled 90 °	(d) (d)	None of these
77. 78.	(a) Right angled If $A = 60^{\circ}, a = 5, b = 4\sqrt{3}$ (a) 30° If $A = 30^{\circ}, a = 7, b = 8$ in A	(b) Equilateral in $\triangle ABC$, then $B =$ (b) 60° $\triangle ABC$, then <i>B</i> has	(c) (c)	Obtuse angled 90 °	(d) (d)	None of these
77. 78.	(a) Right angled If $A = 60^{\circ}, a = 5, b = 4\sqrt{3}$ (a) 30° If $A = 30^{\circ}, a = 7, b = 8$ in <i>a</i> (a) One solution	(b) Equilateral in $\triangle ABC$, then $B =$ (b) 60° $\triangle ABC$, then <i>B</i> has (b) Two solutions	(c) (c) (c)	Obtuse angled 90 ° No solution	(d) (d) (d)	None of these None of these
77. 78. 79.	(a) Right angled If $A = 60^{\circ}, a = 5, b = 4\sqrt{3}$ (a) 30° If $A = 30^{\circ}, a = 7, b = 8$ in A (a) One solution If one angle of a triangle is $a = 1$	(b) Equilateral in $\triangle ABC$, then $B =$ (b) 60° $\triangle ABC$, then <i>B</i> has (b) Two solutions 30° and the lengths of the sides a	(c) (c) (c) adjacent to it	Obtuse angled 90° No solution are 40 and $40\sqrt{3}$, the trian	(d) (d) (d) ngle is	None of these None of these
77. 78. 79.	(a) Right angled If $A = 60^{\circ}, a = 5, b = 4\sqrt{3}$ (a) 30° If $A = 30^{\circ}, a = 7, b = 8$ in A (a) One solution If one angle of a triangle is a (a) Right angled	(b) Equilateral in $\triangle ABC$, then $B =$ (b) 60° $\triangle ABC$, then <i>B</i> has (b) Two solutions 30° and the lengths of the sides a (b) Isosceles	(c) (c) (c) adjacent to it (c)	Obtuse angled 90° No solution are 40 and $40\sqrt{3}$, the trian Both (a) and (b)	(d) (d) (d) ngle is (d)	None of these None of these None of these
77. 78. 79. 80.	(a) Right angled If $A = 60^{\circ}, a = 5, b = 4\sqrt{3}$ (a) 30° If $A = 30^{\circ}, a = 7, b = 8$ in a (a) One solution If one angle of a triangle is (a) Right angled If in $\triangle ABC$, $a = 5; b = 4; A$	(b) Equilateral in $\triangle ABC$, then $B =$ (b) 60° $\triangle ABC$, then <i>B</i> has (b) Two solutions 30° and the lengths of the sides a (b) Isosceles $= \frac{\pi}{2} + B$, then the value of <i>C</i>	(c) (c) (c) adjacent to it (c)	Obtuse angled 90° No solution are 40 and $40\sqrt{3}$, the trian Both (a) and (b)	(d) (d) (d) ngle is (d)	None of these None of these None of these
77. 78. 79. 80.	(a) Right angled If $A = 60^{\circ}, a = 5, b = 4\sqrt{3}$ (a) 30° If $A = 30^{\circ}, a = 7, b = 8$ in A (a) One solution If one angle of a triangle is a (a) Right angled If in $\triangle ABC$, $a = 5; b = 4; A$ (a) Cannot be evaluated	(b) Equilateral in $\triangle ABC$, then $B =$ (b) 60° $\triangle ABC$, then <i>B</i> has (b) Two solutions 30° and the lengths of the sides a (b) Isosceles $A = \frac{\pi}{2} + B$, then the value of <i>C</i> (b) Is equal to $\tan^{-1}\frac{1}{9}$	(c) (c) adjacent to it (c) (c)	Obtuse angled 90° No solution are 40 and $40\sqrt{3}$, the trian Both (a) and (b) Is equal to $\tan^{-1}\frac{1}{40}$	(d) (d) (d) (d) (d)	None of these None of these None of these Is equal to $2 \tan^{-1} \frac{1}{9}$
 77. 78. 79. 80. 81. 	(a) Right angled If $A = 60^{\circ}, a = 5, b = 4\sqrt{3}$ (a) 30° If $A = 30^{\circ}, a = 7, b = 8$ in A (a) One solution If one angle of a triangle is a (a) Right angled If in ΔABC , $a = 5; b = 4; A$ (a) Cannot be evaluated We are given b, c and sin B s	(b) Equilateral in $\triangle ABC$, then $B =$ (b) 60° $\triangle ABC$, then <i>B</i> has (b) Two solutions 30° and the lengths of the sides a (b) Isosceles $ABC = \frac{\pi}{2} + B$, then the value of <i>C</i> (b) Is equal to $\tan^{-1}\frac{1}{9}$ uch that <i>B</i> is acute and $b < c \sin A$	(c) (c) (c) adjacent to it (c) <i>B</i> . Then	Obtuse angled 90° No solution are 40 and $40\sqrt{3}$, the trian Both (a) and (b) Is equal to $\tan^{-1}\frac{1}{40}$	(d) (d) (d) ngle is (d) (d)	None of these None of these None of these Is equal to $2 \tan^{-1} \frac{1}{9}$ [Karnataka CET 1993]
 77. 78. 79. 80. 81. 	(a) Right angled If $A = 60^{\circ}, a = 5, b = 4\sqrt{3}$ (a) 30° If $A = 30^{\circ}, a = 7, b = 8$ in A (a) One solution If one angle of a triangle is a (a) Right angled If in ΔABC , $a = 5; b = 4; A$ (a) Cannot be evaluated We are given b, c and sin B s (a) No triangle is possible	(b) Equilateral in $\triangle ABC$, then $B =$ (b) 60° $\triangle ABC$, then <i>B</i> has (b) Two solutions 30° and the lengths of the sides a (b) Isosceles $x = \frac{\pi}{2} + B$, then the value of <i>C</i> (b) Is equal to $\tan^{-1}\frac{1}{9}$ uch that <i>B</i> is acute and $b < c \sin A$	(c) (c) (c) adjacent to it (c) (c) B. Then (b)	Obtuse angled 90° No solution are 40 and $40\sqrt{3}$, the trian Both (a) and (b) Is equal to $\tan^{-1}\frac{1}{40}$ One triangle is possible	(d) (d) (d) ngle is (d) (d)	None of these None of these None of these Is equal to $2 \tan^{-1} \frac{1}{9}$ [Karnataka CET 1993]

82. In a right angled triangle the hypotenuse is $2\sqrt{2}$ times the length of perpendicular drawn from the opposite vertex on the hypotenuse, then the other two angles are [UPSEAT 1999, 94; MP PET 1998]

(a)
$$\frac{\pi}{3}, \frac{\pi}{6}$$
 (b) $\frac{\pi}{4}, \frac{\pi}{4}$ (c) $\frac{\pi}{8}, \frac{3\pi}{8}$ (d) $\frac{\pi}{12}, \frac{5\pi}{12}$

83. In a triangle ABC, $a = 4, b = 3, \angle A = 60^{\circ}$. Then c is the root of the equation

(a) $c^2 - 3c - 7 = 0$ (b) $c^2 + 3c + 7 = 0$ (c) $c^2 - 3c + 7 = 0$ (d) $c^2 + 3c - 7 = 0$

[Roorkee 1993]

84. In a triangle ABC, angle A is greater than angle B. If the measure of angles A and B satisfy the equation $3 \sin x - 4 \sin^3 x - k = 0, 0 < k < 1$, then the measure of angle C is [IIT 1990; DCE 2001] (a) $\frac{\pi}{3}$ (c) $\frac{2\pi}{3}$ (d) $\frac{5\pi}{6}$ (b) $\frac{\pi}{2}$ 85. In a $\triangle ABC$ a, b, A are given and b_1, b_2 are two values of the third side b such that $b_2 = 2b_1$. Then $\sin A = b_1$. (c) $\sqrt{\frac{9a^2 + c^2}{8a^2}}$ (a) $\sqrt{\frac{9a^2 - c^2}{8a^2}}$ (b) $\sqrt{\frac{9a^2-c^2}{8c^2}}$ (d) None of these 86. The exists a triangle ABC satisfying (b) $\frac{\sin A}{2} = \frac{\sin B}{3} = \frac{\sin C}{7}$ (a) $\tan A + \tan B + \tan C = 0$ (d) $\sin A + \sin B = \frac{\sqrt{3} + 1}{4}, \cos A \cos B = \frac{\sqrt{3}}{2} = \sin A \sin B$ (c) $(a+b)^2 = c^2 + ab$ and $\sqrt{2}(\sin A + \cos A) = \sqrt{3}$ 87. In the ambiguous case, given a, b and A. Then the difference between the two values of c is [AMU 1998] (c) $2\sqrt{a^2 - b^2 \sin^2 A}$ (b) $\sqrt{a^2 - b^2 \sin^2 A}$ (a) $2\sqrt{a^2-b^2}$ (d) $\sqrt{a^2 - b^2}$ The sides of a triangle are in A.P. and its area is $\frac{3}{5} \times$ (Area of an equilateral triangle of the same perimeter). Then the ratio of the sides is 88. (b) 3:5:7 (c) 1:3:5 (d) None of these (a) 1:2:3 89. There exists a triangle ABC satisfying the conditions [IIT 1996] (a) $b \sin A = a, A < \frac{\pi}{2}$ or $b \sin A < a, A < \frac{\pi}{2}, b < a$ (b) $b \sin A > a, A > \frac{\pi}{2}$ (c) $b \sin A > a, A < \frac{\pi}{2}$ (d) None of these 106

Assignment (Basic & Advance Level)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Properties of Triangles and Solutions of Triangles

d	a	c	c	с	a	с	a	b	a	с	b	d	b	a	a	с	d	a	c
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
с	c	d	b	a	b	с	c	c	а	b	c	c	a	b	с	b	с	с	с
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
с	a	b	a	с	b	с	d	a	с	a	a	с	b	b	с	b	b	с	c
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
b	а	d	d	a	b	b	d	c	а	а	с	c	b	с	с	d	b	b	d
81	82	83	84	85	86	87	88	89											
a	c	a	c	b	c	c	b	a											

106 Properties of Triangles and Solutions of Triangles