

DAILY PRACTICE PROBLEMS					
Торіс	s : Permutation & C	Combination, Binomi	al Theorem, Indefi	nite Integration	
Type of Questions M.M., Mi					
Multi	le choice Objective ple choice objective ective Questions (no	(no negative marl	king) Q.5	(3 marks, 3 min.) (5 marks, 4 min.) (4 marks, 5 min.)	[12, 12] [5, 4] [12, 15]
1.	There are 50 persons among whom 2 are brothers. The number of ways they can be arranged in a circle, if there is exactly one person between the two brothers is				
	(A) 47!	(B) 48!	(C) 2.48!	(D) 2.47!	
2.	The streets of a city are arranged like the lines of a chess board. There are 5 streets running North to South & '3' streets running East to West. The number of ways in which a man can travel from NW to SE corner going the shortest possible distance is:				
	(A) 34	(B) 64	(C) $\frac{8!}{5!.3!}$	(D) 15	
3.	The cofficient of x^n in (A) 2^{n+1}	the polynomial (x + 2n (B) $2^{2n+1} - 1$	$^{+1} C_0 (x + {}^{2n+1} C_1) (C) 2^{2n}$	$(x + {}^{2n+1}C_2)$ $(x + {}^{2n+1}C_2)$ (D) None of th	
4.	$\int \sqrt{1+2\cot x(\cot x+c)}$	osecx) dx is equal to	o		
	(A) 2 ln $\left(\cos\frac{x}{2}\right)$ + c	(B) 2 $ln\left(\sin\frac{x}{2}\right)$ +	$-c$ (C) $\frac{1}{2} ln \left(c\right)$	$\operatorname{os} \frac{x}{2} + c$ (D) $\frac{1}{2} \ln \left(\operatorname{sin} \right)$	$\left(\frac{x}{2}\right) + c$
5.	If $\int \frac{(x^{-7})^{1/3}}{x^{1/3}(x^2+x+1)^{1/3}}$	$(x^{1/6} - x^{5/6}))^{2} - x^{1/2}(x^{2} + x + 1)^{1/3}$	$dx = -\lambda \left(\frac{z^3}{3} + \frac{z^p}{2}\right)$	$+\frac{z^{q}}{r}+\ell n z-1 + k$, w	here
	$z = \left(x + \frac{1}{x} + 1\right)^{1/6}$, then				
	(A) λ = 6	(B) λ = 1	(C) p + q =	3 (D) q = r = 1	
6.	Out of 50 consecution	ve natural numbers i	n how many ways f	wo numbers can be chos	sen such that

7. Integrate : $\int \frac{\cos 2x - 3}{\sin^4 x \sqrt{4 - \tan^2 x}} dx$

their sum is divisible by 2.

8. Evaluate :
$$\int \frac{(1 + \log_e x)^2}{1 + \log_e x^{x+1} + \left(\log_e x^{\sqrt{x}}\right)^2} dx$$

Answers Key

1. C 2. D 3. C 4. B
5. ACD 6.
$$2^{25}C_2$$

7. $\frac{1}{8}\left(\frac{(4\cot^2 x - 1)^{3/2}}{3} + 9\sqrt{4\cot^2 x - 1}\right) + c$

8.
$$ln(1 + x ln x) + c$$