NEWTON'S LAWS OF MOTION

Force: Force is defined as an external influence which changes or tends to change the state of rest, speed or direction of motion of an object. It is a vector quantity and its SI unit is newton (N).

When a force applied on an object, it can do the following things:

- (i) It can change the state of rest of a stationary object.
- (ii) It can change the speed of a moving object, i.e., it can accelerate or retard a moving object.
- (iii) It can change the direction of motion of an object.
- (iv) It can change the shape of an object.

Galileo's law of Intertia: This law states that when no force is exerted on a body, it stays at rest or it moves in a straight line-with constant speed.

Inertia: Inertia of an object is a property by virtue of which is opposes any change in its position of rest or of uniform motion along a straight line. It is an inherent property of all natural objects.

- (A) Inertia of rest: It is the property of matter due to which it opposes any change in its state of rest. For example,
 - (a) when a blanket is given a sudden jerk, the dust particle, fall off.
 - (b) passengers standing in a bus fall backwards when the bus suddenly starts moving.
 - (c) The fruits fall down when branches of the fruit tree are shaken.
- **(B)** Inertia of motion: It is the property of matter due to which it opposes any change in its state of uniform motion along a straight line. For example,
 - (a) A ball thrown upwards in a moving train comes back to the thrower.
 - (b) An athlete runs for some distance before taking a long jump.
 - (c) A passenger standing in a running bus falls forward when the bus comes to a sudden stop.

- **(C) Inertia of direction :** It is the property of matter due to which it opposes any change in its direction. For example,
 - (a) when a wheel rotates at high speed, the mud sticking to it flies off tangentially.
 - (b) when a running car suddenly takes a turn, the passengers experience a jerk in the outward direction.
 - (c) when a stone is tied at the end of a string being whirled in a horizontal circle and the string breaks, the stone tends to fly off tangentially along a straight line.

Newton's first law of motion (or law of inertia):

- (a) Every body continues its state of uniform motion or of rest until an external force is applied over it.
- (b) Newton's first law gives the qualitative definition of force according to which "force is that external cause which tends to change or actually change the state of motion of the body."
- (c) Newton's first law is called "Law of Inertia" by Galelio.
- (d) Inertia ∝ mass.

Momentum: The momentum of an object is equal to the product of its mass and its velocity, i.e.,

 $momentum = mass \times velocity$

$$\vec{P} = m\vec{v}$$

It is a vector quantity. Its SI unit is kg ms⁻¹. **Newton's second law of motion:**

- (a) According to this law "the rate of change of momentum is directly proportional to the applied force. The change in momentum takes place in the direction of applied force.
- (b) Newton's second law gives the quantitative definition of force, i.e.,

$$\vec{\mathrm{F}} \propto \frac{d\vec{p}}{dt}$$

or
$$\vec{F} \propto \frac{d}{dt}(m\vec{v})$$

or
$$\vec{F} \propto m \frac{d\vec{v}}{dt}$$
 (taking 'm' as constant)

or
$$\vec{F} \propto m\vec{a}$$

or
$$\vec{F} = m\vec{a}$$
 (taking constant of proportionality as unit)

Hence Force = $mass \times acceleration$.

Newton (N): The SI unit of force is newton (N) one newton is expressed as 1 N and is defined as the force which can produce an acceleration of 1 ms⁻² in a body of mass 1 kg. Hence,

 $1 \text{ N} = 1 \text{ kg ms}^{-2}$

Also 1 N = 10^5 dyne,

where dyne is the unit of force in CGS system.

- (c) Out of Newton's three laws of motion, the most fundamental one is second law, because first and third laws can be derived from it.
- (d) 1 kg. wt. = g newton.

Kilogram weight (kg. wt.) is gravitational unit of force in SI system.

One kilogram weight of force is that force with which an object of mass 1 kg is attracted towards the centre of the earth.

Also, 1 kg wt. = 9.8 N (at a place where $g = 9.8 \text{ ms}^{-2}$)

Newton's third law of motion:

(a) According to this law, every action has equal and opposite reaction. Action and reaction act on different bodies and they are simultaneous.

$$\vec{\mathbf{F}}_{\mathrm{AB}} = -\vec{\mathbf{F}}_{\mathrm{BA}}$$

(b) Newton's third law contradicts theory of relativity, because it states that force signals can travel with infinite speed while theory of relativity states that nothing can be travel with a velocity greater than velocity of light.

Basic Force in Nature

- (i) Gravitational forces
- (ii) Nuclear forces—the strong and weak forces
- (iii) Elastic forces
- (iv) Electric and magnetic forces electromagnetic forces

Law of conservation of linear momentum: This law states that, if the resultant external force acting on a system of particles is zero, the total linear momentum of the system is conserved or remain constant, i.e.,

$$\vec{p} = \text{constant}$$

Impulse: The total effect of a force is known as impulse. It is easily measured by the change in momentum produced in a body. Hence,

Impulse =
$$\vec{F} \times \Delta t$$

= $\Delta \vec{p}$
= change in momentum
= $m(\vec{v} - \vec{u})$

It is a vector quantity and its SI unit is Ns.

Friction: The force which opposes the motion of an object over another body in contact with it, is called as the force of friction, or simply friction.

- (i) Static friction: It is the force of friction which exactly balances the applied force during the stationary state of the object.
- (ii) Limiting friction: It is the maximum value of static friction when an object just starts sliding over the surface of another object.
- (iii) Dynamic or Kinetic friction: It is the force of friction which comes into play when the two objects in contact are in relative motion.
- (iv) Sliding friction: When an object slides over a surface, the friction between them is called as sliding friction.
 - (v) Rolling Friction: When an object rolls over a surface, the friction between them is called as rolling friction. It should be noted that rolling friction is always less than sliding friction.

Laws of friction

(i) Friction acts in a direction opposite to the direction of motion of the objects.

- (ii) Friction depends upon the nature of the two surfaces in contact.
- (iii) Friction is independent of the area of contact of the two surfaces.
- (iv) Rolling friction is less than sliding friction.
 - (v) Force of friction (F) is directly proportional to the normal (R), i.e.,

$$F \propto R$$

or $F = \mu R$, where μ is a constant of proportionality and is called as the coefficient of friction.

Angle of friction (θ): It is the angle which the resultant of limiting frictional force makes with the normal reaction.

Also, $\tan \theta = \mu_s$ where $\mu_s = \text{coefficient of static friction}$.