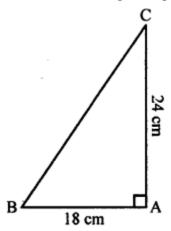
Pythagoras Theorem

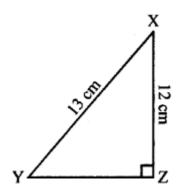

EXERCISE 16

Question 1.

Triangle ABC is right-angled at vertex A. Calculate the length of BC, if AB = 18 cm and AC = 24 cm.

Solution:

Given : \triangle ABC right angled at A and AB = 18 cm, AC = 24 cm.

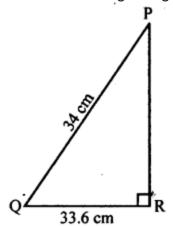

To find : Length of BC. According to Pythagoras Theorem, BC² = AB² + AC² = $18^2 + 24^2 = 324 + 576 = 900$ \therefore BC = $\sqrt{900} = \sqrt{30x30} = 30$ cm

Question 2.

Triangle XYZ is right-angled at vertex Z. Calculate the length of YZ, if XY = 13 cm and XZ = 12 cm.

Solution:

Given : \triangle XYZ right angled at Z and XY = 13 cm, XZ = 12 cm. **To find :** Length of YZ. According to Pythagoras Theorem, XY² = XZ² + YZ² 13² = 12² + YZ²


169= 144 +YZ² 169- 144 = YZ² 25 = YZ² ∴YZ = $\sqrt{25}$ cm $\sqrt{5x5}$ = 5 cm

Question 3.

Triangle PQR is right-angled at vertex R. Calculate the length of PR, if: PQ = 34 cm and QR = 33.6 cm.

Solution:

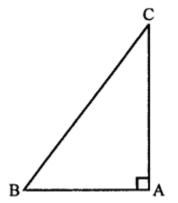
Given : \triangle PQR right angled at R and PQ = 34 cm, QR = 33.6 cm.

To find : Length of PR. According to Pythagoras Theorem, PR² + QR² = PQ² PR² + 33.6² = 34² PR² + 1128.96= 1156 PR² = 1156- 1128.96 ∴ PR = $\sqrt{27.04}$ = 5.2 cm

Question 4.

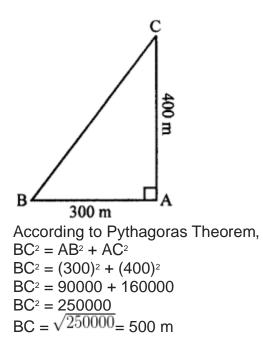
The sides of a certain triangle are given below. Find, which of them is righttriangle (i) 16 cm, 20 cm and 12 cm (ii) 6 m, 9 m and 13 m

Solution:

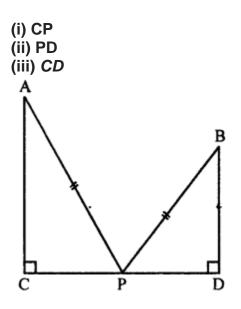

(i) 16 cm, 20 cm and 12 cm The given triangle will be a right-angled triangle if square of its largest side is equal to the sum of the squares on the other two sides.

i.e., If $(20)^2 = (16)^2 = (12)^2$ $(20)^2 = (16)^2 + (12)^2$ 400 = 256 + 144 400 = 400So, the given triangle is right angled. (ii) 6 m, 9 m and 13 m The given triangle will be a right-angled triangle if square of its largest side is equal to the sum of the squares on the other two sides. i.e., If $(13)^2 = (9)^2 + (6)^2$ 169 = 81+36 $169 \neq 117$

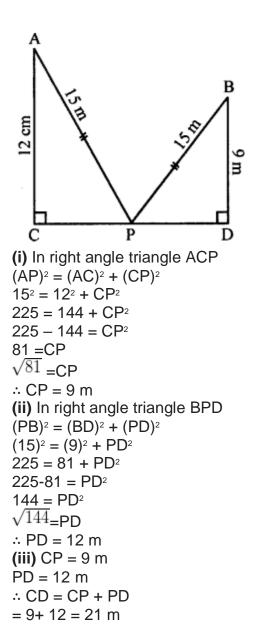
So, the given triangle is not right angled.


Question 5.

In the given figure, angle BAC = 90° , AC = 400 m and AB = 300 m. Find the length of BC.



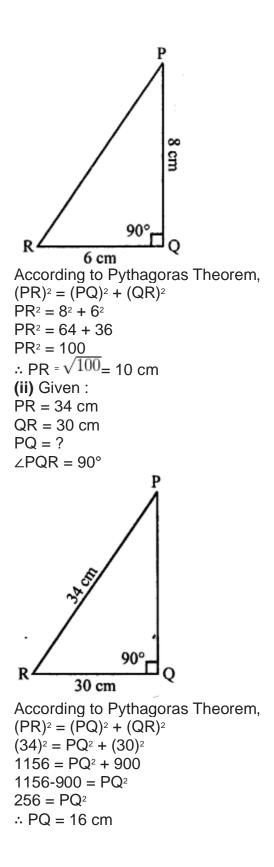
AC = 400 m AB = 300 m BC = ?


Question 6.

In the given figure, angle ACP = \angle BDP = 90°, AC = 12 m, BD = 9 m and PA= PB = 15 m. Find:

Solution:

Given : AC = 12 m BD = 9 m PA = PB= 15 m

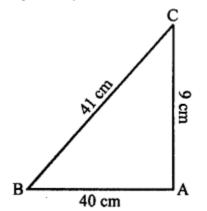


Question 7.

In triangle PQR, angle Q = 90° , find : (i) PR, if PQ = 8 cm and QR = 6 cm (ii) PQ, if PR = 34 cm and QR = 30 cm

Solution:

(i) Given: PQ = 8 cm QR = 6 cm PR = ? ∠PQR = 90°

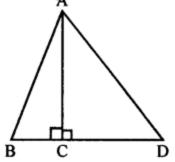


Question 8.

Show that the triangle ABC is a right-angled triangle; if: AB = 9 cm, BC = 40 cm and AC = 41 cm

Solution:

AB = 9 cmCB = 40 cmAC = 41 cm

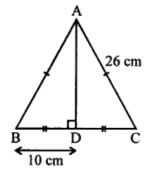


The given triangle will be a right angled triangle if square of its largest side is equal to the sum of the squares on the other two sides.

According to Pythagoras Theorem, $(AC)^2 = (BC)^2 + (AB)^2$ $(41)^2 = (40)^2 + (9)^2$ 1681 = 1600 + 81 1681 = 1681Hence, it is a right-angled triangle ABC.

Question 9.

In the given figure, angle ACB = 90° = angle ACD. If AB = 10 m, BC = 6 cm and AD = 17 cm, find : (i) AC (ii) CD A

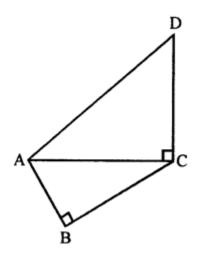


Solution: Given:

```
∆ABD
\angle ACB = \angle ACD = 90^{\circ}
and AB = 10 cm, BC = 6 cm and AD = 17 cm
B 6 cm C
                        D
To find:
(i) Length of AC
(ii) Length of CD
Proof:
(i) In right-angled triangle ABC
BC = 6 \text{ cm}, AB = 110 \text{ cm}
According to Pythagoras Theorem,
AB^2 = AC^2 + BC^2
(10)^2 = (AC)^2 + (6)^2
100 = (AC)^2 + 36
AC^2 = 100-36 = 64 \text{ cm}
AC^{2} = 64 \text{ cm}
\therefore AC = \sqrt{8x8} = 8 \text{ cm}
(ii) In right-angle triangle ACD
\overrightarrow{AD} = 17 cm, \overrightarrow{AC} = 8 cm
According to Pythagoras Theorem,
(AD)^2 = (AC)^2 + (CD)^2
(17)^2 = (8)^2 + (CD)^2
289 - 64 = CD^2
225 = CD^2
CD = \sqrt{15x15} = 15 \text{ cm}
```

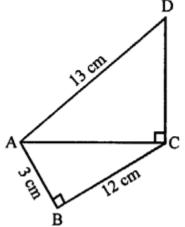
Question 10.

In the given figure, angle $ADB = 90^{\circ}$, AC = AB = 26 cm and BD = DC. If the length of AD = 24 cm; find the length of BC.



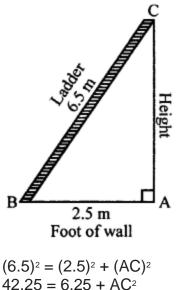
Solution:

Given: $\triangle ABC$ $\angle ADB = 90^{\circ}$ and AC = AB = 26 cm AD = 24 cm **To find :** Length of BC In right angled $\triangle ADC$ AB = 26 cm, AD = 24 cm According to Pythagoras Theorem, $(AC)^2 = (AD)^2 + (DC)^2$ $(26)^2 = (24)^2 + (DC)^2$ $676 = 576 + (DC)^2$ $\Rightarrow (DC)^2 = 100$ $\Rightarrow DC = \sqrt{100} = 10$ cm \therefore Length of BC = BD + DC = 10 + 10 = 20 cm


Question 11.

In the given figure, AD = 13 cm, BC = 12 cm, AB = 3 cm and angle ACD = angle $ABC = 90^{\circ}$. Find the length of DC.

Solution: Given : $\triangle ACD = \angle ABC = 90^{\circ}$ and AD = 13 cm, BC = 12 cm, AB = 3 cm

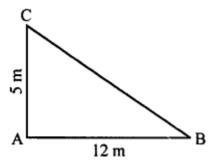

(i) In right angled $\triangle ABC$ AB = 3 cm, BC = 12 cmAccording to Pythagoras Theorem, $(AC)^2 = (AB)^2 + (BC)^2$ $(AC)^2 = (3)^2 + (12)^2$ $AC)^2 = (3)^2 + (12)^2$ $AC)^2 = (3)^2 + (12)^$

Question 12.

A ladder, 6.5 m long, rests against a vertical wall. If the foot of the ladcler is 2.5 m from the foot of the wall, find upto how much height does the ladder reach?

Solution:

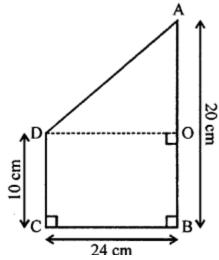
Given : Length of ladder = 6.5 m Length of foot of the wall = 2.5 m To find : Height AC According to Pythagoras Theorem, $(BC)^2 = (AB)^2 + (AC)^2$


 $42.25 = 6.25 + AC^2$ AC² = 42.25 - 6.25 = 36 m AC = $\sqrt{6x6}$ = 6 m ∴ Height of wall = 6 m

Question 13.

A boy first goes 5 m due north and then 12 m due east. Find the distance between the initial and the final position of the boy.

Solution:


Given : Direction of north = 5 m i.e. AC Direction of east = 12 m i.e. AB

To find: BC According to Pythagoras Theorem, In right angled AABC (BC)² = (AC)² + (AB)² (BC)² = (5)² + (12)² (BC)² = 25 + 144 (BC)² = 25 + 144 (BC)² = 169 ∴ BC = $\sqrt{169} = \sqrt{13x13} = 13$ m

Question 14.

Use the information given in the figure to find the length AD.

Solution:

Given : AB = 20 cm ∴AO = $\frac{AB}{2} = \frac{20}{2} = 10$ cm BC = OD = 24 cm To find : Length of AD In right angled triangle AOD (AD)² = (AO)² + (OD)² (AD)² = (10)² + (24)² (AD)² = 100 + 576 (AD)² = 676 ∴ AD = $\sqrt{26x26}$ AD = 26 cm