Chapter 4

Stack:

Asstack is an Abstract Data Type (ADT), commonly used in most programming languages. It
is named stack as it behaves like a real-world stack, for example — a deck of cards or a pile of
plates, etc.

=

B ™ |
. o

A real-world stack anows operauois dt viE CuU VILLY. ¢ Ulmuuu place or remove a
card or plate from the top of the stack only. Likewise, Stack ADT allows all data operations at
one end only. At any given time, we can only access the top element of a stack. This feature
makes it LIFO data structure. LIFO stands for Last-in-first-out. Here, the element which is
placed (inserted or added) last, is accessed first. In stack terminology, insertion operation is
called PUSH operation and removal operation is called POP operation.

Stack Presentation: The following diagram depicts a stack and its operations —

E
g
Last In - First Out
Push Pop
Data Elamant Data Elernent
Data Elemant Din Elgmant
Data Element Data Elemand
Data Elamant Drata Elerment
Data Elemant Drin Elamant
A stack can b Stack Stack nked List. Stack

can either be a fixed size one or it may have a sense of dynamic resizing. Here, we are going to
implement stack using arrays, which makes it a fixed size stack implementation.

Basic Operations:
Stack operations may involve initializing the stack, using it and then de-initializing it. Apart
from these basic stuffs, a stack is used for the following two primary operations —

push() —Pushing (storing) an element on the stack.

pop() — Removing (accessing) an element from the stack.

(54)

To use a stack efficiently, we need to check the status of stack as well. For the same purpose,
the following functionality is added to stacks —

peek() — get the top data element of the stack, without removing it.
isFull() — check if stack is full.
isEmpty() — check if stack is empty.

At all times, we maintain a pointer to the last Pushed data on the stack. As this pointer always
represents the top of the stack, hence named TOP. The TOP pointer provides top value of the
stack without actually removing it.
Procedures to support stack functions —
peek():
Algorithm of peek() function—
begin procedure peek

return stack[top]
end procedure

Implementation of peek() function in C programming language —

intpeek() {
return stack[top];

}

isfull():
Algorithm of isfull() function —

begin procedure isfull

iftop equals to MAXSIZE
return true
else

return false
endif

end procedure
Implementation of isfull() function in C programming language —
boolisfull() {

if(top==MAXSIZE)
return true;

(55)

else
return false;
}

isempty():
Algorithm of isempty() function —

begin procedure isempty

iftop less than 1
return true
else
return false
endif

end procedure

Implementation of isempty() function in C programming language is slightly different. We
initialize top at-1, as the index in array starts from 0. So we check if the top is below zero or -1
to determine if the stack is empty. Here's the code —

bool isempty() {
if(top==-1)
return true;
else
return false;

}

Push Operation: The process of putting a new data element onto stack is known as a Push
Operation. Push operation involves a series of steps —

Step 1 — Checks ifthe stack is full.

Step 2 — If the stack is full, produces an error and exit.

Step 3 —If the stack is not full, increments top to point next empty space.

Step 4 — Adds data element to the stack location, where top is pointing.

Step 5 — Returns success.

E \ Push Operation

top—— £

If the linked list 1o wove w sipioinoie wiv swsvn, w1 oo w need to allocate space

dynamically.

(56)

Algorithm for Push Operation:
begin procedure push: stack, data
if stack is full
return null
endif

top «top+1

stack[top] «<data

end procedure
Implementation of algorithm in C —

void push(int data) {
if(!isFull()) {
top=top+1;
stack[top] =data;
telse {
printf("Could not insert data, Stack is full.\n");

}
}

Pop Operation: Accessing the content while removing it from the stack, is known as a Pop
Operation. In an array implementation of pop() operation, the data element is not actually
removed, instead top is decremented to a lower position in the stack to point to the next value.
But in linked-list implementation, pop() actually removes data element and deallocates
memory space.
A Pop operation may involve the following steps —

Step 1 — Checks if the stack is empty.

Step 2 —If the stack is empty, produces an error and exit.

Step 3 — Ifthe stack is not empty, accesses the data element at which top is pointing.

Step 4 — Decreases the value of top by 1.

Step 5 —Returns success.

Pop Operation

top— E |
o tDp‘ +| D
L | L
B | =]
Algorithm fo ‘ Stack Stack

(57)

begin procedure pop: stack

if stack is empty
return null
endif

data <stack|top]

top «top-1

return data
end procedure
Implementation of algorithminC—
intpop(int data) {

if(lisempty()) {
data=stack[top];
top=top-1;
return data;
telse {
printf("Could not retrieve data, Stack is empty.\n");

}
H

Application of Stack: Stack can be used for following purpose-
(a) Arithmetic expression evaluation

(b) Backtracking

(c) Memory Management

(a) Arithmetic expression evaluation: The way to write arithmetic expression is known as a
notation. An arithmetic expression can be written in three different but equivalent notations,
i.e., without changing the essence or output of an expression. These notations are —

Infix Notation

Prefix (Polish) Notation

Postfix (Reverse-Polish) Notation

These notations are named as how they use operator in expression.

Infix Notation

We write expression in infix notation, e.g. a - b + ¢, where operators are used in-between
operands. It is easy for us humans to read, write, and speak in infix notation but the same does
not go well with computing devices. An algorithm to process infix notation could be difficult
and costly in terms of time and space consumption.

(58)

Prefix Notation

In this notation, operator is prefixed to operands, i.e. operator is written ahead of operands.
For example, +ab. This is equivalent to its infix notation a + b. Prefix notation is also known
as Polish Notation.

Postfix Notation

This notation style is known as Reversed Polish Notation. In this notation style, the operator
is postfixed to the operands i.e., the operator is written after the operands. For example, ab+.
This is equivalent to its infix notationa+b.

So the stack is used for conversion an expression from one notation to another notation.

(b) Backtracking: Backtracking is used in algorithms in which there are steps along some
path (state) from some starting point to some goal.

Find your way through a maze.

Find a path from one point in a graph (roadmap) to another point.

In all of these cases, there are choices to be made among a number of options. We need some
way to remember these decision points in case we want/need to come back and try the other
alternative

Consider the maze. Ata point where a choice is made, we may discover that the choice leads
to a dead-end. We want to retrace back to that decision point and then try the other (next)
alternative.

Again, stacks can be used as part of the solution. Recursion is another, typically more
favored, solution, which is actually implemented by a stack.

(c) Memory Management: Any modern computer environment uses a stack as the primary
memory management model for a running program. Whether it's native code (x86, Sun,
VAX) or JVM, a stack is at the center of the run-time environment for Java, C++, Ada,
FORTRAN, etc.

Queue:

Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a queue is
open at both its ends. One end is always used to insert data (enqueue) and the other is used to
remove data (dequeue). Queue follows First-In-First-Out methodology, i.e., the data item
stored first will be accessed first.

LAST IN FIRST IN
LAST OUT FIRST OUT

(59)

first, exits first. More real-world examples can be seen as queues at the ticket windows of
bus-stops and others.

Queue presentation:
As we now understand that in queue, we access both ends for different reasons. The
following diagram given below tries to explain queue representation as data structure —

|
In Data Data Data Data Data Data Out
| >
Last In Last Out First In First Out

Queue

AS 1 briiu, © qutue tain WOy Uv aspivivies woiss 1Ak Uy st oy 1 Uiees wild

Structures. For the sake of simplicity, we shall implement queues using one-dimensional
array.

Basic Operations:
Queue operations may involve initializing or defining the queue, utilizing it, and then
completely erasing it from the memory. Here we shall try to understand the basic operations
associated with
queues —

enqueue() — add (store) an item to the queue.

dequeue() — remove (access) an item from the queue.

Few more functions are required to make the above-mentioned queue operation efficient.
These are —

peek() — Gets the element at the front of the queue without removing it.
isfull() — Checks if the queue is full.
isempty() — Checks if the queue is empty.

supportive functions of a queue —

peek()
The algorithm of peek() function is as follows —

begin procedure peek
return queue[front]

end procedure

(60)

Implementation of peek() function in C programming language —
Example

int peek() {
return queue[front];

}
isfull():

As we are using single dimension array to implement queue, we just check for the rear
pointer to reach at MAXSIZE to determine that the queue is full. In case we maintain the
queue in a circular linked-list, the algorithm will differ. Algorithm of isfull() function —

begin procedure isfull

ifrear equals to MAXSIZE
return true

else
return false

endif

end procedure

Implementation of isfull() function in C programming language —

boolisfull() {
if(rear==MAXSIZE-1)
return true;
else
return false;
}

isempty():
Algorithm of isempty() function —
begin procedure isempty
if front is less than MIN or front is greater than rear
return true
else

return false
endif

(61)

end procedure

If the value of front is less than MIN or 0, it tells that the queue is not yet initialized, hence
empty.

Here's the C programming code —
bool isempty() {
if(front <0 || front >rear)
return true;
else
return false;
Enqueue Operation:
Queues maintain two data pointers, front and rear. Therefore, its operations are
comparatively difficult to implement than that of stacks.
The following steps should be taken to enqueue (insert) data into a queue —
Step 1 — Check ifthe queue is full.
Step 2 —If'the queue is full, produce overflow error and exit.
Step 3 —Ifthe queue is not full, increment rear pointer to point the next empty space.

Step 4 — Add data element to the queue location, where the rear is pointing.

Step 5 — Return success.

Rear Front

\—’ ¢ 8 A before

Rear Front
D C B A after
Algor Queue Enqueue

(62)

procedure enqueue(data)
if queue s full
return overflow
endif

rear <rear+ 1

queue[rear] «data
return true
end procedure
Implementation of enqueue() in C programming language —

intenqueue(int data)
if(isfull())
return 0;

rear=rear+1;
queue[rear] =data;

return 1;

end procedure
Dequeue Operation:
Accessing data from the queue is a process of two tasks — access the data where front is
pointing and remove the data after access. The following steps are taken to perform dequeue
operation —

Step 1 —Check if the queue is empty.

Step 2 —Ifthe queue is empty, produce underflow error and exit.

Step 3 — Ifthe queue is not empty, access the data where front is pointing.

Step 3 — Increment front pointer to point to the next available data element.

Step 5 — Return success.

Rear Front
before o 5 - 5
Hear F"t:lnt
— = c g dequeue
Queue
[
Algorithn Queue Dequeue

(63)

procedure dequeue
if queue is empty
return underflow
endif

data=queue[front]
front <front+ 1

return true
end procedure

Implementation of dequeue() in C programming language —

intdequeue() {

if(isempty())
return 0;

int data= queue[front];
front=front+1;

return data;

}

Important Points

e A stack is an Abstract Data Type (ADT), commonly used in most
programming languages.

e A stack can be implemented by means of Array, Structure, Pointer, and
Linked List. Stack can either be a fixed size one or it may have a sense of
dynamicresizing.

e Queue is an abstract data structure, somewhat similar to Stacks. Unlike
stacks, a queue is open at both its ends.

e Any modern computer environment uses a stack as the primary memory
management model for a running program.

Exercise

Objective type questions.

Q1. Which of the following name does not relate to stacks.
a. FIFO lists
b. LIFO list
c. Pop
d. Push-down lists

Q2. The term "push" and "pop" is related to the
a. array

(64)

b. lists
c. stacks
d. all of above
Q3. A data structure where elements can be added or removed at either end but not in the
middle.
a. Linked lists
b. Stacks
c¢. Queues
d. Dequeue
Q4.The data structure required for Breadth First Traversal on a graph is.
a .Stack
b. Array
¢. Queue
d. Tree
Q5. A queue is a.
a. FIFO (First In First Out) list
b. LIFO (Last In First Out) list.
c. Ordered array
d. Linear tree

Short answer type questions.

Q1. Define stack ?

Q2. Define Queue ?

Q3. What is Push operation ?

Q4. What is Pop operation ?

Essay type questions.

Q1. What are some of the applications for the stack data structure ?
Q2. Explain stack operations in detail ?

Q3. Explain circular queue in detail ?

Q4. Explain dequeue ?

Answers
Ansl.a Ans2.c Ans3.d
Ans4.c AnsS.a

(65)

