PRACTICE PAPER

Time allowed: 45 minutes Maximum Marks: 200

General Instructions: As given in Practice Paper - 1.

Section-A

(d) Symmetric matrix

Choose the correct option:

 If P and Q are symmetric matrix of same order then PQ - QP is a (a) Zero matrix

(b) Identity matrix

Let A be 5 x 5 matrix such that det A = -3, then det (-3 A⁻¹) + 3 det (A) equals

(d) -90

3. If matrix $A = \begin{bmatrix} 2 & 3 & -1 \\ x+4 & -1 & 2 \\ 3x+1 & 2 & -1 \end{bmatrix}$ is a singular matrix, then the value of x is

(d) $\frac{8}{10}$

4. Read the following statements.

(c) Skew Symmetric matrix

Statement 1 : If $y = x^x$ then $\frac{d^2y}{dx^2} = x^x \left\{ (1 + \log x)^2 + \frac{1}{x} \right\}$

Statement 2 : If $x = at^2$, y = at, then $\frac{d^2y}{dx^2} = -\frac{1}{2at^3}$

Choose the correct option:

- (a) Statement I is correct but statement II is not correct.
- (b) Statement II is correct but statement I is not correct.
- (c) Both statements I and II are correct.
- (d) None of these
- 5. The tangent to the curve $y = e^{2x}$ at the point (0, 1) meets x-axis at

	(a) (0, 1)	(b) (0, 2)	(c) $\left(-\frac{1}{2}, 0\right)$	(d) (2, 0)
6.	$\int \frac{dt}{t + \sqrt{a^2 - t^2}} $ equals			
	$(a) \ \frac{1}{2} \sin^{-1} \left(\frac{t}{a} \right) + \log(t + \sqrt{a})$	$a^2 - t^2) + C$	(b) $\frac{1}{2}\sin^{-1}\left(\frac{t}{a}\right) + \log\left(\sqrt{t+a}\right)$	$\sqrt{a^2-t^2}$)+C
	(c) $\frac{1}{2}\sin^{-1}\left(\frac{t}{a}\right) + \log\sqrt{a} + \frac{1}{2}\sin^{-1}\left(\frac{t}{a}\right)$	$\sqrt{a^2-t^2}+C$	(d) none of these	
7.	$\int \frac{(x-1)e^x}{(x+1)^3} dx$ equals			

(a)
$$\frac{e^x}{x+1} + C$$

(b)
$$e^x \left(\frac{x}{x+1} \right) + C$$

(a)
$$\frac{e^x}{x+1} + C$$
 (b) $e^x \left(\frac{x}{x+1}\right) + C$ (c) $\frac{e^x(x-1)}{(x+1)^2} + C$ (d) $\frac{e^x}{(x+1)^2} + C$

$$(d) \frac{e^x}{(x+1)^2} + C$$

8. $\int \frac{\log(x/e)}{(\log x)^2} dx$ is equal to

(a)
$$\frac{\log x}{x} + C$$

(b)
$$\frac{x}{\log x} + C$$

(c)
$$\frac{x}{(\log x)^2} + C$$

(d) none of these

9. $\int_0^{\pi/4} \log (1 + \tan \theta) d\theta$ is equal to

(a)
$$\frac{\pi}{2} \log 2$$

(b)
$$-\frac{\pi}{4}\log 2$$

(c)
$$\frac{\pi}{8} \log 2$$

(d) 0

10. Using integration, the area of the region bounded by the line 2y = 5x + 7, x-axis and the lines x = 2 and

(a) 90 sq. units

(b) 96 sq. units

(c) 40 sq. units

(d) 10 sq. units

11. The Integrating Factor of the differential equation $(1 - y^2) \frac{dx}{dy} + yx = ay(-1 < y < 1)$ is

(a)
$$\frac{1}{y^2 - 1}$$

(b)
$$\frac{1}{\sqrt{y^2-1}}$$

(c)
$$\frac{1}{1-y^2}$$

(d) $\frac{1}{\sqrt{1-v^2}}$

12. The solution of differential equation $\frac{dy}{dx} = \frac{1+y^2}{1+x^2}$ is

(a)
$$y = \tan^{-1} x$$

(b)
$$y - x = k(1 + xy)$$

(c)
$$x = \tan^{-1} y$$

(d) tan(xy) = k

13. The corner points of the feasible region determined by the system of linear constraints are (0, 10), (5, 5), (15, 15), (0, 20). Let Z = px + qy, where p, q > 0. Condition on p and q so that the maximum of Z occurs at both the points (15, 15) and (0, 20) is

(a)
$$p = q$$

(b)
$$p = 2q$$

(c)
$$q = 2 p$$

(d)
$$q = 3p$$

 Let X be discrete random variable assuming values x₁, x₂, x₃, ..., x_n with probability p₁, p₂, p₃, ..., p_n respectively. Then the variance of X is given by

(b)
$$E(X^2) + E(X)$$

(c)
$$E(X^2) - [E(X)]^2$$

(d)
$$\sqrt{E(X^2) - (E(X))^2}$$

15. A box has 100 mangoes of which 10 are rotten. What is the probability that out of a sample of 5 mangos drawn one by one with replacement at most one is rotten?

(a)
$$\left(\frac{9}{10}\right)^5$$

(b)
$$\frac{1}{2} \left(\frac{9}{10} \right)^4$$

(c)
$$\frac{1}{2} \left(\frac{9}{10} \right)^5$$

$$(d) \left(\frac{9}{10}\right)^5 + \frac{1}{2} \left(\frac{9}{10}\right)^4$$

Section-B (B1)

16.	If a relation R on the set $\{1, 2, 3, 4\}$ is defined by $R = \{(1, 2), (3, 4)\}$. Then R is			
	(a) reflexive	(b) transitive	(c) symmetric	(d) none of these
17.	Let $A = \{x, y, z\}$ and $B = \{x, y, z\}$	a, b } then the number of on	to function from A to B is	
	(a) 0	(b) 3	(c) 6	(d) 8
18.	Let * be a binary operation	on on R (set of real number	s) such that $a * b = a^b$ then (2)	2 * 3) * 5 equal to
	(a) 2^3	(b) 3 ⁵	(c) 8 ⁵	(d) None of these
19.	If A and B have 4 element	nts each then the number of	one-one onto (bijective) fu	nction from A to B is
	(a) 0	(b) 24	(c) 4 ²	(d) None of these
20.	Let $f: R \to R$ be given by	by $f(x) = \tan x$. Then $f^{-1}(1)$ is		
	(a) does not exist	(b) $\frac{\pi}{4}$	(c) $n\pi + \frac{\pi}{4}$; $n \in \mathbb{Z}$	(d) None of these
21.	$\sin\left[\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right]$ is e	qual to		
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c) 1/4	(d) 1
22.	$\tan^{-1}\sqrt{3} - \cot^{-1}(-\sqrt{3})$ is equal to			
	(a) π	(b) $-\frac{\pi}{2}$	(c) 0	(d) 2√3
23.	$\sin(\tan^{-1}x)$, $ x < 1$ is ea	qual to		
	(a) $\frac{x}{\sqrt{1-x^2}}$	$(b) \ \frac{1}{\sqrt{1-x^2}}$	(c) $\frac{1}{\sqrt{1+x^2}}$	$(d) \ \frac{x}{\sqrt{1+x^2}}$
24.	$\sin^{-1}(1-x) - 2\sin^{-1}x = \frac{7}{2}$	$\frac{x}{x}$, then x is equal to		
	(a) $0, \frac{1}{2}$		(c) 0	(d) $\frac{1}{2}$
25.	If $A = \begin{bmatrix} p & q \\ 0 & 1 \end{bmatrix}$, then A^5 is			
	$(a) \begin{bmatrix} p^5 & q^5 \\ 0 & 1 \end{bmatrix}$	(b) $\begin{bmatrix} p^5 & q \left(\frac{p^5 - 1}{p - 1} \right) \\ 0 & 1 \end{bmatrix}$		(d) none of these
26.	The product of the matri	$x A = \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix}$	$\begin{bmatrix} \theta \end{bmatrix}$ and $B = \begin{bmatrix} \cos^2 \phi & \cos \phi \\ \cos \phi & \sin \phi \end{bmatrix}$	$\begin{bmatrix} s & \phi & \sin \phi \\ sin^2 \phi \end{bmatrix}$ is a null matrix if
	θ – ϕ equal to			
	(a) $(2n+1)\frac{\pi}{2}$		(c) 2nπ	(d) $n\frac{\pi}{2}$
27.	Let $\Delta = \begin{vmatrix} 2 & \cos \theta \\ -\cos \theta & 2 \\ -2 & -\cos \theta \end{vmatrix}$	$\begin{pmatrix} 2 \\ \cos \theta \\ 2 \end{pmatrix}$, where $0 \le \theta \le 2\pi$, then	hen	
	(a) $\Delta = 0$	(b) Δ ∈ (0, ∞)	(c) Δ ∈ [16, 20]	(d) $\Delta \in [16, \infty)$
28.	If A is a square matrix of	order 3 such that $ adj A =$		
	(a) ± 6	(b) 6	(c) -6	(d) ± 5

29.	. $f:[-2a,2a] \rightarrow R$ is an odd function such that the left hand derivative at $x=a$ is zero and $f(x)=f(2a-x) \forall x \in (a,2a)$. Then its left hand derivative at $x=-a$ is					
	(a) 0	(b) a	(c) 1	(d) does not exist.		
30.	30. If $f(x) = x + x - 2 $, then					
	(a) $f(x)$ is continuous at $x = 0$ but not at $x = 2$.		(b) $f(x)$ is continu	(b) $f(x)$ is continuous at $x = 0$ and at $x = 2$.		
	(c) $f(x)$ is continuous at $x = 2$ but not at $x = 0$.		(d) None of these	(d) None of these.		

31. The function
$$f(x) = \frac{1}{x-1}$$
 at $x = 1$

(a) is continuous

(b) has removable discontinuity.

(c) has jump discontinuity.

(d) has asymptotic discontinuity.

32. The derivative of
$$f(\tan x)$$
 w.r.t. $g(\sec x)$ at $x = \frac{\pi}{4}$, where $f'(1) = g'(\sqrt{2}) = 4$ is

(a) √2

(b) $\frac{1}{\sqrt{2}}$

(c) 1

(d) none of these

33. Read the following statements.

Statement I :
$$\int \frac{dx}{\sqrt{9x - 4x^2}} = \frac{1}{2} \sin^{-1} \left(\frac{8x - 9}{9} \right) + C$$

Statement II :
$$\int e^x (f(x) + f'(x)) dx = e^x f(x) + C$$

Choose the correct option:

- (a) Statement I is correct but statement II is not correct.
- (b) Statement II is correct but statement I is not correct.
- (c) Both statements I and II are correct.
- (d) None of these

34. If
$$f(x) = \frac{1}{4x^2 + 2x + 1}$$
, then its maximum value is

(a) 0

(b) $\frac{4}{3}$

(c) ±5

(d) Maximum value does not exist.

35. $\int \cos \sqrt{x} dx$ equals

$$(a) = \frac{\sin\sqrt{x}}{2\sqrt{x}} + C$$

(b) $\sqrt{x} \cdot \sin \sqrt{x} + \cos \sqrt{x} + C$

(c) $2(\sqrt{x}\sin\sqrt{x} + \cos\sqrt{x}) + C$

(d) $2(\sqrt{x}\sin\sqrt{x} - \cos\sqrt{x}) + C$

36. Read the following statements.

Statement I : If f and g are continuous functions on [0, 1] satisfying f(x) = f(a - x) and g(x) + g(a - x) = a, then

$$\int_{0}^{a} f(x)g(x)dx = \frac{a}{2} \int_{0}^{a} f(x)dx$$

Statement II : $\int_{-\pi/4}^{\pi/4} \sin x \, dx = 0$

Choose the correct option:

- (a) Statement I is correct but statement II is not correct.
- (b) Statement II is correct but statement I is not correct.
- (c) Both statements I and II are correct.
- (d) None of these

37.	he area under the curve $y = \sqrt{a^2 - x^2}$ included between the lines $x = 0$ and $x = a$ is					
	(a) $\frac{\pi a^2}{4}$ sq. units	(b) $\frac{a^2}{4}$ sq. units	(c) πa^2 sq. units	(d) 4π sq. units		
38. Which of the following is a homogeneous differential equation?						
	(a) $(4x + 6y + 5) dy - (3y + 6y + $	-2x + 4) dx = 0	(b) $(xy) dx - (x^3 + y^3) dy = 0$)		
	(c) $(x^3 + 2y^3) dx + 2xy dy =$	= 0	(d) $y^2 dx + (x^2 - xy - y^2) dy$	= 0		
39.	The degree and order o respectively	e degree and order of the differential equation of the family of all parabola whose axis is x-axis, are pectively				
	(a) 1, 2	(b) 2, 3	(c) 3, 2	(d) 2, 1		
40.	If $ \vec{a} = 8$, $ \vec{b} = 3$ and $ \vec{a} $	$\times \vec{b}$ = 12, then value of \vec{a}	$.\vec{b}$ is			
	(a) 6√3	(b) 8√3	(c) 12√3	(d) None of these		
41.		The two vectors $\hat{j} + \hat{k}$ and $3\hat{i} - \hat{j} + 4\hat{k}$ represents the two sides AB and AC , respectively of $\triangle ABC$. The length of the median through A is				
	(a) $\frac{\sqrt{34}}{2}$	(b) $\frac{\sqrt{48}}{2}$	(c) $\sqrt{18}$	(d) None of these		
42.	The projection of vector $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$ along $\vec{b} = \hat{i} + 2\hat{j} + 2\hat{k}$ is					
	(a) $\frac{2}{3}$	(b) $\frac{1}{3}$	(c) 2	(d) √2		
43.	If $ \vec{a} = 2$, $ \vec{b} = 3$ and $\vec{a} \cdot \vec{b} = 1$ then the angle between \vec{a} and \vec{b} is					
	(a) $\cos^{-1}\left(\frac{1}{6}\right)$	(b) $\cos^{-1}\left(\frac{1}{2}\right)$	(c) $\cos^{-1}\left(\frac{1}{3}\right)$	(d) None of these		
44.	The DRs of normal to the plane passing through (1, 0, 0), (0, 1, 0) which makes an angle $\frac{\pi}{4}$ with plane $x + y = 3$ are					
	(a) $\frac{1}{3}$, $\frac{2}{3}$, $\frac{2}{3}$	(b) -1 , 1, $\sqrt{2}$	(c) $-1, -1, \sqrt{2}$	(d) 1, 1, √2		
45.		line makes angle θ , with each of the x and z axis. If the angle β , which it makes with y -axis, is such that $\sin^2\beta = 3\sin^2\theta$, then $\cos^2\theta$ equals				
	(a) $\frac{3}{5}$	(b) 1/5	(c) 0	(d) $\frac{2}{3}$		
46.	 A(3, 2, 0), B(5, 3, 2), C(-9, 6, -3) are three points forming a triangle. If AD, the bisector of BC in D, then coordinates of D are 			e bisector of ∠BAC meets		
	(a) $\left(\frac{1}{13}, \frac{2}{13}, \frac{20}{3}\right)$	(b) $\left(\frac{19}{8}, \frac{57}{16}, \frac{17}{16}\right)$	(c) $\left(\frac{11}{3}, \frac{12}{5}, \frac{21}{5}\right)$	(d) $\left(\frac{17}{3}, \frac{2}{13}, \frac{2}{3}\right)$		
47.	If a line makes angle wi made by the line with z-	makes angle with positive direction of x-axis and y-axis 120° and 60° respectively, then the angle the line with z-axis is				
	(a) 60°	(b) 45°	(c) 135°	(d) (b) and (c)		
48.	Two dice are thrown. If it getting a sum 3, is	it is known that the sum of	numbers on the dice was le	ss than 6, the probability of		
	(a) $\frac{1}{18}$	(b) $\frac{5}{18}$	(c) 1/5	(d) $\frac{2}{5}$		
49.	그리아 나는 아이에 가게 되었다. 그는 집에 되는 이번에 가지 않는데 가게 되었다. 생기에 다른데	ts play cricket, 25% play v	. 하나의 마니터 적용한 가장되면 하고 하라니까 살아가지 않는데 가게 하면 하다면 하고 하는데 하다.	h. One student is chosen at		

(c) $\frac{9}{20}$

(d) $\frac{1}{3}$

 $(a)~\frac{1}{10}$

(b) $\frac{2}{5}$

50. For two events A and B, if $P(A) = P\left(\frac{A}{B}\right) = \frac{1}{4}$ and $P\left(\frac{B}{A}\right) = \frac{1}{2}$, then

(a) A and B are dependent events

(b) A and B are independent events

(c) P(A) = P(B)

(d) none of these