CBSE Sample Paper-05 SUMMATIVE ASSESSMENT –I Class-IX MATHEMATICS

Time allowed: 3 hours **General Instructions:**

Maximum Marks: 90

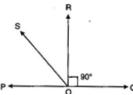
- a) All questions are compulsory.
- b) The question paper consists of 31 questions divided into four sections A, B, C and D.
- c) Section A contains 4 questions of 1 mark each. Section B contains 6 questions of 2 marks each, Section C contains 10 questions of 3 marks each and Section D contains 11 questions of 4 marks each.
- d) Use of calculator is not permitted.

Section A

- 1. Evaluate: $(25)^{\frac{1}{3}} \times (5)^{\frac{1}{3}}$.
- 2. Find the zero of the polynomial p(x) = 2x + 3.
- 3. The distance of the point (-6, -2) from y-axis is
- 4. Two angles of triangles are 65° and 45° respectively. Find third angles.

Section **B**

- 5. Shove that $\sqrt{7} 3$ is irrational.
- 6. If x = 2k is a factor of $f(x) = x^5 4k^2x^3 + 2x + 2k + 3$, find k.
- 7. Find the remainder when $2x^4 + 6x^3 + 2x^2 x + 2$ is divided by (x+2).
- 8. In figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that: $\angle ROS = \frac{1}{2} (\angle QOS \angle POS)$

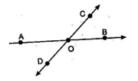


- 9. In a \triangle ABC, 30A + 6B = 5C. Determine \angle A, \angle B and \angle C.
- 10. Draw a triangle ABC where vertices A, B and C are (0, 2), (2, -2) and (-2, 2) respectively.

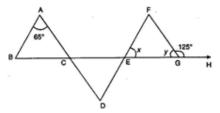
Section C

- 11. Express 2.4178 in the from $\frac{p}{q}$
- 12. Classify the following numbers as rational or irrational: (i) $2-\sqrt{5}$ (ii) $(3+\sqrt{23})-\sqrt{23}$

- 13. Factories $\left(9x \frac{1}{5}\right)^2 + \left(x + \frac{1}{3}\right)^2$
- 14. Without actual division, prove that $2x^4 6x^3 + 3x^2 + 3x 2$ is exactly divisible by $x^2 3x + 2$.
- 15. If the polynomials $px^3 + 4x^2 + 3x 4$ and $x^3 4x + p$ are divided by x 3, then the remainder in each case is the same. Find the value of p.
- 16. If a point C lies between two points A and B such that AC = BC, then point C is called the midpoint of line segment AB. Prove that every line segment has one and only one mid-point.
- 17. In the figure, if $\angle AOC + \angle BOD = 266^{\circ}$, then find all the four angles.



- 18. If a line is perpendicular to one of the two given parallel lines then prove that it is also perpendicular to the other line.
- 19. In a triangle ABC, $\angle A + \angle B = 84^{\circ}$ and $\angle B + \angle C = 146^{\circ}$. Find the measure of each of the angles of the triangle.
- 20. In the given figure, find x and y, if AB||DF and AD||FG.



Section D

21. If
$$a = \frac{\sqrt{2}+1}{\sqrt{2}-1}$$
 and $b = \frac{\sqrt{2}-1}{\sqrt{2}+1}$, then find the value of $a^2 + b^2 - 4ab$.

22. If $a = 2 + \sqrt{3}$, find the value of:

(i)
$$a^2 + \frac{1}{a^2}$$
 (ii) $a^3 + \frac{1}{a^3}$

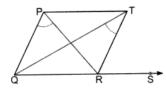
- 23. Using factor theorem, factories the polynomial $x^3 + x^2 4x 4$.
- 24. Factorise: $x^3 + 13x^2 + 32x + 20$.

25. Prove that: $(x+y)^3 + (y+z)^3 + (z+x)^3 - 3(x+y)(y+z)(z+x) = 2(x^3 + y^3 + z^3 - 3xyz)$

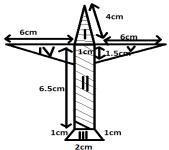
- 26. If $\left(x-\frac{1}{3}\right)$ and $\left(x-3\right)$ are factors of ax^2+5x+b , prove that a=b.
- 27. If *D* is the midpoint of the hypotenuse *AC* of a right angled $\triangle ABC$, prove that $BD = \frac{1}{2}AC$.
- 28. In a triangle, prove that the greater angle has the longer side opposite to it.

- 29. If the arms of one angle are respectively parallel to the arms of another angle, show that the two angles are either equal or supplementary.
- 30. In given figure, the side QR of ΔPQR is produced to point S. If the bisector of $\angle PQR$ and

 $\angle PRS$ meet at point *T*, then prove that $\angle QTR = \frac{1}{2} \angle QPR$.



31. Radha made a picture of an aeroplane with colored paper as shown in the following figure



Find the total area of the paper used.

CBSE Sample Paper-05 SUMMATIVE ASSESSMENT -I Class-IX MATHEMATICS

(Solutions)

SECTION-A

1.
$$(25)^{\frac{1}{3}} \times (5)^{\frac{1}{3}} = (25 \times 5)^{\frac{1}{3}} = (5^3)^{\frac{1}{3}}$$

=5.

2. For zero of the polynomial p(x), we put $p(x) = 0 \Rightarrow 2x + 3 = 0$

$$\Rightarrow 2x = -3 \Rightarrow x = -\frac{3}{2}$$

- 3. 6 units
- 4. 70°
- 5. Suppose $\sqrt{7} 3$ is rational

let $\sqrt{7} - 3 = x$ (x is a rational number)

$$\sqrt{7} = x + 3$$

x is a rational number 3 is also rational number therefore x+3 is rational number

but $\sqrt{7}$ is irrational number which is contradiction

therefore, $\sqrt{7} - 3$ is irrational number

6. Here, $f(x) = x^5 - 4k^2x^3 + 2x + 2k + 3$

since x + 2k is a factor of f(x), so by factor theorem, f(-2k) = 0

$$(-2k)^5 - 4k^2(-2k)^3 + 2(-2k) + 2k + 3 = 0$$

-32k⁵ + 32k⁵ - 4k + 2k + 3 = 0

 \Rightarrow -2k+3=0 \Rightarrow -2k=-3 \Rightarrow k= $\frac{3}{2}$

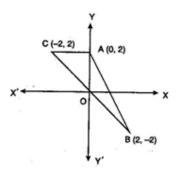
7. By remainder theorem,

 \Rightarrow

$$f(-2) = 2(-2)^{4} + 6(-2)^{3} + 2(-2)^{2} - (-2) + 2$$
$$f(-2) = 32 - 48 + 8 + 2 + 2 = -4$$

8. $\angle QOS - \angle POS = (\angle QOR + \angle ROS) - \angle POS$ = $90^{\circ} + \angle ROS - \angle POS$ = $(90^{\circ} - \angle POS) + \angle ROS$ = $(\angle ROP - \angle POS) + \angle ROS$ = $2 \angle ROS$ Hence, $\angle ROS = \frac{1}{2} (\angle QOS - \angle POS)$ 9. Given 30A = 6B = 5C $\Rightarrow \qquad \frac{A}{1} = \frac{B}{5} = \frac{C}{6}$ [Dividing by 30] $\Rightarrow \qquad \angle A : \angle B : \angle C = 1 : 5 : 6$ Let $\angle A = x, \angle B = 5x$ and $\angle C = 6x$ $\Rightarrow \qquad x + 5x + 6x = 180^{\circ} \Rightarrow \qquad 12x = 180^{\circ} \Rightarrow \qquad x = 15^{\circ}$ Hence $\angle A = 15^{\circ}, \angle B = 75^{\circ}$ and $\angle C = 90^{\circ}$

10.



11. Let $\frac{p}{q} = 2.4\overline{178}$ $\frac{p}{q} = 2.4178178178$ Multiplying by 10 $10\frac{p}{q} = 24.178178$ Multiplying by 1000 $10,000\frac{p}{q} = 1000 \times 24.178178$ $10,000\frac{p}{q} = 24178.178178$ $10000\frac{p}{q} - \frac{p}{q} = 24178.178178 - 24.178178$ $9999\frac{p}{q} = 24154$ $\frac{p}{q} = \frac{24154}{9999}$ 12. (i) $2 - \sqrt{5}$

We know that $\sqrt{5} = 2.236...$, which is an irrational number.

 $2 - \sqrt{5} = 2 - 2.236....$

= -0.236...., which is also an irrational number.

Therefore, we conclude that $2-\sqrt{5}$ is an irrational number.

(ii)
$$(3+\sqrt{23})-\sqrt{23}$$

 $(3+\sqrt{23})-\sqrt{23} = 3+\sqrt{23}-\sqrt{23}$
 $= 3$

Therefore, we conclude that $(3 + \sqrt{23}) - \sqrt{23}$ is a rational number.

13. We have,
$$\left(9x - \frac{1}{5}\right)^2 + \left(x + \frac{1}{3}\right)^2$$

$$= \left[\left(9x - \frac{1}{5}\right) - \left(x + \frac{1}{3}\right) \right] \left[\left(9x - \frac{1}{5}\right) + \left(x + \frac{1}{3}\right) \right]$$

$$\left[\because a^2 - b^2 = (a - b)(a + b) \right]$$

$$= \left(9x - \frac{1}{5} - x - \frac{1}{3}\right) \left(9x - \frac{1}{5} + x + \frac{1}{3}\right)$$

$$= \left(8x - \frac{1}{5} - \frac{1}{3}\right) \left(10x - \frac{1}{5} + \frac{1}{3}\right)$$

$$= \left(\frac{120 - 3 - 5}{15}\right) \left(\frac{150 + 3 + 5}{15}\right)$$

$$= \left(\frac{120x - 8}{15}\right) \left(\frac{150x + 2}{15}\right)$$
14. Let $p(x) = 2x^4 - 6x^3 + 3x - 2$ and $g(x) = x^2 - 3x + 2$
Then, $g(x) = x^2 - 3x + 2$

$$= (x - 1)(x - 2)$$
Clearly $(x - 1)$ and $(x - 2)$ are factors of $g(x)$
Let $x - 1 = 0 \Rightarrow x = 1$

$$p(1) = 2(1)^4 - 6(1)^3 + 3(1)^2 + 3(1) - 2$$

$$= 2 - 6 + 3 + 3 - 2 = 0$$
Let $x - 2 = 0 \Rightarrow x = 2$

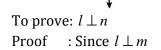
$$p(2) = 2(2)^4 - 6(2)^3 + 3(2)^2 + 3(2) - 2$$

$$= 32 - 48 + 12 + 6 - 2$$

$$= 50 - 50 = 0$$

 \therefore (x-1) and (x-2) are factors of p(x)

 $\Rightarrow g(x) = (x-1)(x-2)$ is a factor of p(x)Hence, p(x) is exactly divisible by g(x)15. Let $A(x) = px^3 + 4x^2 + 3x - 4$ $B(x) = x^3 - 4x + p$ g(x) = x - 3According to question, A(3) = B(3) $\Rightarrow p(3)^{3} + 4(3)^{2} + 3(3) - 4 = (3^{3}) - 4(3) + p$ $\Rightarrow 27 p + 41 = 15 + p$ $\Rightarrow 27 p - p = 15 - 41$ $\Rightarrow p = -1$ 16. Given AC = BC.....(i) Û Û Û-С D Α B If possible let D be another mid-point of AB *:*. AD = DB.....(ii) Subtracting eq. (i) from eq. (ii), we get AD - AC = DB - CB-CD = CD \Rightarrow 2CD = 0 \Rightarrow CD = 0 \Rightarrow *.*.. C and D coincide. Hence every line segment has one and only one mid-point. 17. $\angle AOC + \angle BOD = 266^{\circ}$(i) [Vertically opposite] But $\angle BOD = \angle AOC$ $\angle AOC + \angle AOC = 266^{\circ}$ *.*.. $\angle AOC = 133^{\circ}$ \Rightarrow $\angle AOC + \angle BOC = 180^{\circ}$ [Linear pair] Now $133^\circ + \angle BOC = 180^\circ$ \Rightarrow $\angle BOC = 47^{\circ}$ \Rightarrow $\angle AOD = \angle BOC$ \Rightarrow $\angle AOD = 47^{\circ}$ \Rightarrow : l,m,n are three lines such that $m \parallel n$ and $l \perp m$. 18. Given m 🚽 72



 \Rightarrow $\angle 1 = 90^{\circ}$(i) Now, $m \parallel n$ and transversal intersects them. \Rightarrow $\angle 2 = \angle 1$ [Corresponding angles](ii) From eq. (i) and (ii), we get, $\angle 2 = \angle 1 = 90^{\circ}$ \Rightarrow $\angle 2 = 90^{\circ}$ $l \perp n$... $\angle A + \angle B = 84^{\circ}$ 19. Given(i) $\angle B + \angle C = 146^{\circ}$ And(ii) Adding eq. (i) and (ii), we get, $\angle A + \angle B + \angle B + \angle C = 230^{\circ}$ $(\angle A + \angle B + \angle C) + \angle B = 230^{\circ}$ \Rightarrow $180^{\circ} + \angle B = 230^{\circ}$ \Rightarrow $\angle B = 50^{\circ}$ \Rightarrow Putting the value of $\angle B$ in eq. (i), we get, $\angle A + 50^\circ = 84^\circ$ \Rightarrow $\angle A = 34^{\circ}$ Putting the value of $\angle B$ in eq. (ii), we get, $50^\circ + \angle C = 146^\circ$ $\angle C = 96^{\circ}$ \Rightarrow 20. $\angle y + 125^{\circ} = 180^{\circ}$ [Straight angle] $\angle y = 55^{\circ}$(i) \Rightarrow Now AB is parallel to FD and transversal AD cuts them. $\angle D = \angle A$ [Alternate angles] $\angle D = 65^{\circ}$ Again $AD \parallel FG$, transversal FD cuts them. $\angle F = \angle D$ $\angle F = 65^{\circ}$(ii) In triangle EFG, $\angle x + \angle F + \angle y = 180^{\circ}$ $\angle x + 65^{\circ} + 55^{\circ} = 180^{\circ}$ \Rightarrow $\angle x = 60^{\circ}$ \Rightarrow 21. Here, $a = \frac{\sqrt{2}+1}{\sqrt{2}-1} = \frac{\sqrt{2}+1}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1} = \frac{\left(\sqrt{2}+1\right)^2}{\left(\sqrt{2}\right)^2 - \left(1\right)^2}$ $=\frac{\left(\sqrt{2}\right)^2 + 1 + 2\sqrt{2}}{\sqrt{2} - 1} = \frac{2 + 1 + 2\sqrt{2}}{1} + 2\sqrt{2}$

$$\therefore a = 3 + 2\sqrt{2}$$

$$b = \frac{\sqrt{2} - 1}{\sqrt{2} + 1} = \frac{\sqrt{2} - 1}{\sqrt{2} + 1} \times \frac{\sqrt{2} - 1}{\sqrt{2} - 1} = \frac{(\sqrt{2} + 1)^{2}}{(\sqrt{2})^{2} - (1)^{2}}$$

$$= \frac{(\sqrt{2})^{2} + 1^{2} - 2\sqrt{2}}{2 - 1} = \frac{2 + 1 - 2\sqrt{2}}{1} - 3 - 2\sqrt{2}$$
From equation (i) and (ii)
 $a + b = 3 - 2\sqrt{2}$
From equation (i) and (iii)
 $a + b = 3 + 2\sqrt{2} + 3 - 2\sqrt{2} = 6$
 $a b = (3 + 2\sqrt{2})(3 - 2\sqrt{2}) = 3^{2} - (2\sqrt{2})^{2}$
 $= 9 - 4 \times 2 = 9 - 8 = 1$
 $\therefore a^{2} + b^{2} - 4ab = a^{2} + b^{2} + 2ab - 6ab$
 $= (a + b)^{2} - 6ab$
 $= 6^{2} - 6 \times 1 = 36 - 6 = 30$
22. (i) We have, $a = 3 + 2\sqrt{2}$ and $\frac{1}{a} = \frac{1}{3 + 2\sqrt{3}}$
 $\frac{1}{a} = \frac{1}{3 + 2\sqrt{2}} \times \frac{3 - 2\sqrt{2}}{3 - 2\sqrt{2}} = \frac{3 - 2\sqrt{2}}{3^{2} - (2\sqrt{2})^{2}} = \frac{3 - 2\sqrt{2}}{9 - 8}$
 $\therefore \frac{1}{a} = 3 - 2\sqrt{2}$
 $\left(a + \frac{1}{a}\right)^{2} = a^{2} + \frac{1}{a^{2}} + 2$
Putting the value of $a + \frac{1}{a}$, we get
 $66^{2} = a^{2} + \frac{1}{a^{2}} = 36 - 2$ $\Rightarrow a^{2} + \frac{1}{a^{2}} = 34$

(ii) We have,

$$\left(a+\frac{1}{a}\right)^3 = a^3 + \frac{1}{a^3}3 \times a^2 \times \frac{1}{a} \times 3 \times a \times \frac{1}{a^2}$$

$$\Rightarrow \left(a + \frac{1}{a}\right)^3 = \left(a^3 + \frac{1}{a^3}\right) + \left(a + \frac{1}{a}\right)$$

Putting the value of $a + \frac{1}{a}$, we get

$$6^{3} = a^{3} + \frac{1}{a^{3}} + 3 \times 6$$

 $\Rightarrow a^{3} + \frac{1}{a^{3}} = 216 - 18 = 198$

23. Let $p(x) = x^3 + x^2 - 4x - 4$

The constant term in p(x) is equal – 4 and factors of – 4 are ±1, ±2,

Putting x = -1 in p(x), we have

$$p(-1) = (-1)^3 + (-1)^2 - 4 \times (-1) - 4$$

= -1+1+4-4 = 0
∴ (x+1) is a factor of $p(x)$.

Putting x = 2 in p(x), we have

$$p(2) = 2^{3} + 2^{2} - 4 \times 2 - 4$$

= 8 + 4 - 8 - 4
$$p(2) = 0$$

∴ (x-2) is a factor of $p(x)$

Putting x = 2 in p(x), we have

$$p(-2) = (-2)^{3} + (-2)^{2} - 4(-2) - 4$$

= -8+4+8-4
p(-2) = 0
∴ (x+2) is a factor of p(x)

As p(x) is a polynomial of degree 3, so it cannot have more than three linear factors.

$$\therefore p(x) = k(x+1)(x+2)(x-2)$$

$$x^{3} + x^{2} - 4x - 4 = k(x+1)(x+2)(x-2)$$

Putting x – 0 on both the sides, we get

$$0+0-4 \times 0-4 = k(0+1)(0+2)(0-2)$$

-4 = -4k $\Rightarrow k = \frac{4}{4} = 1$
Putting k = 1, we get

 $x^{3} + x^{2} - 4k - 4 = 1(x+1)(x+2)(x-2)$ = (x+1)(x+2)(x-2)

24. Let $p(x) = x^3 + 13x^2 + 31x + 20$

The constant term in p(x) is equal to 20 and the factors of 20 are $\pm 1, \pm 2, \pm 4, \pm 5, \pm 10$.

Putting x = -2 in p(x), we have

$$p(-2) = (-2)^3 + 13(-2)^2 + 32(-2) + 20$$

= -8 + 52 - 64 + 20 = -72 + 72 = 0
$$p(-2) = 0$$

As p(-2) = 0, so (x + 2) is a factor of p(x). Now, divided P(x) by (x + 2)

$$\begin{array}{r} x^{2} + 1 lx + 10 \\ x + 2 \overline{\smash{\big)}} x^{3} + 13x^{2} + 32x + 20 \\ \\ \underline{-x^{3} \pm 2x^{2}} \\ 1 lx^{2} + 32x + 20 \\ \underline{-1 lx^{2} \pm 22x} \\ \hline 1 0x + 20 \\ \underline{-10x \pm 20} \\ 0 \end{array}$$

$$\therefore \quad p(x) = (x+2)(x^2+11x+10) = (x+2)\left[x^2+10x+x+10\right] \\ = (x+2)\left[x(x+10)+1(x+10)\right] = (x+2)\left[(x+10)(x+1)\right] \\ = (x+1)(x+2)(x+10)$$

25. Let
$$x + y = p$$
, $y + z = q$, $z + x = r$

$$LHS = p^{3} + q^{3} + r^{3} - 3pqr$$

= $(p+q+r)(p^{2} + q^{2} + r^{2} - pq - pr - rp)$
Now, $p+q+r = 2(x+y+z)$

$$p^{2} + q^{2} + r^{2} - pq - pr - rp = (x + y)^{2} + (y + z)^{2} + (z + y)(y + z) - (y + z)(z + x) - (z + x)(x + y)$$

Solving we get, $= x^2 + y^2 + z^2 - xy + yz - xz$

$$\therefore (p+q+r)(p^{2}+q^{2}+r^{2}-pq-rq-rp) = 2(x+y+z)(x^{2}+y^{2}+z^{2}-xy-yz-zx)$$
$$= 2(x^{3}+y^{3}+z^{3}-3xyz)$$

26. Let $f(x) = ax^2 + 5x + b$

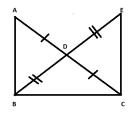
$$f(3) = 0 \Rightarrow 9a + 15 + b = 0 \Rightarrow 9a + b = -15 \dots (1)$$

Similarly, $f\left(\frac{1}{3}\right) = 0 \Rightarrow \frac{a}{9} + \frac{5}{3} + b = 0 \Rightarrow \frac{a}{3} + b = -\frac{5}{3} \dots (2)$
$$(1) = (2) \Rightarrow a = b$$

27. **Given**: $\triangle ABC$ in which $\angle B = 90^{\circ}$ and *D* is the mid-point of *AC*.

To prove:
$$BD = \frac{1}{2}AC$$

Construction: Produce *BD* to *E* so that BD = DE. Join *EC*



Proof: In $\triangle ADB$ and $\triangle CDE$, we have

$AD = DC \ \Delta ABC$ (Given)		
BD = DE	(By construction)	
$\angle ADB = \angle CDE$	(Vertically opp. Angles)	
$\therefore \Delta ADB \cong \Delta CDE$	(By SAS congruence criterion)	
$\Rightarrow AB = CE \text{ and } \angle CED = \angle ABD$	(1) (CPCT)	

Thus, transversal *BE* cuts *AB* and *CE* such that the alternate angles $\angle CED$ and $\angle ABD$ are

equal. So, $CE \parallel AB$

$\Rightarrow \angle ABC + \angle ECB = 180^{\circ}$	(co-interior angles)
$\Rightarrow \angle ECB = 90^{\circ}$	$(:: \angle ABC = 90^\circ)$

Thus, in $\triangle ABC$ and $\triangle ECB$, we have

AB = AC (From (1))BC = CB (common)

 $\angle ABC = \angle ECB = 90^{\circ}$

$\therefore \Delta ABC \cong \Delta ECB$	(By SAS)
$\Rightarrow AC = BE$	(CPCT)

$$\Rightarrow \frac{1}{2}AC = \frac{1}{2}BE \Rightarrow \frac{1}{2}AC = BD$$

28. **Given**: A triangle *ABC* in which $\angle ABC > \angle ACB$ **To prove**: AC > AB

Proof: There are three possibilities

(1) AB > AC

- (2) AB = AC
- $(3) \qquad AB < AC$

CASE 1: AB > AC

 $\angle C > \angle B$, as the greater side has greater angle opposite to it.

It is not possible as we are given that $\angle B > \angle C$

CASE 2: AB = AC

Then $\angle C = \angle B$ as angles opposite to equal sides are equal.

But $\angle B > \angle C$ is given. So it is also not possible.

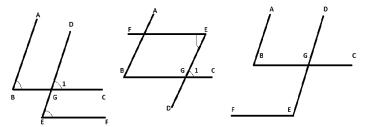
CASE 3: AB < AC

As only one case is left, it has to be true.

Hence, if two sides of a triangle are unequal, the greater side has greater angle opposite to it.

29. **Given**: Two angles $\angle ABC$ and $\angle DEF$ such that $BA \square ED$ and $BC \square EF$. **To prove**: $\angle ABC = \angle DEF$ or $\angle ABC + \angle DEF = 180^{\circ}$

Proof: The arms of the angles may be parallel in the same sense or in the opposite sense. So, three cases arise.



Case1: When both pairs of arms are parallel in the same sense.

In this case, $BA \parallel ED$ and BC is the transversal.

 $\therefore \angle ABC = \angle 1$ (corresp. angles)

Again, $BC \parallel EF$ and DE is the transversal.

 $\therefore \angle 1 = \angle DEF$ (corresp. Angles)

Hence, $\angle ABC = \angle DEF$

CASE 2: When both pairs of arms are parallel in opposite sense.

In this case, $BA \parallel ED$ and BC is transversal.

 $\therefore \angle ABC = \angle 1$ (corresp. Angles)

Again, $FE \parallel BC$ and ED is the transversal

 $\therefore \angle DEF = \angle 1$ (alternate int. angles)

Hence, $\angle ABC = \angle DEF$

CASE 3: When one pair of arms are parallel in same sense and other pair parallel in opposite sense.

In this case, $BA \parallel ED$ and BC is the transversal.

 $\therefore \angle EGB = \angle ABC$ (alternate int. angles)

Now, $BC \parallel EF$ and DE is the transversal

 $\therefore \angle DEF + \angle EGB = 180^{\circ}$ (co-int. angles)

 $\Rightarrow \angle DEF + \angle ABC = 180^{\circ} (\because \angle EGB = \angle ABC)$

Hence, $\angle ABC$ and $\angle DEF$ are supplementary.

30. **Given:** A $\triangle PQR$, whose side QR is produced to **S**. The bisectors of \angle PQR and \angle PRS meet at point **T**.

To prove:
$$\angle QTR = \frac{1}{2} \angle QPR$$

Proof: Side QR of $\triangle PQR$ is produced to **S**. therefore, $\angle PRS = \angle P + \angle Q$

Again, side OR of TQR is produced to S Therefore, \angle TRS = \angle QTR + \angle RQT

$$\Rightarrow \frac{1}{2} \text{TRS} = \angle \text{T} + \frac{1}{2} \angle \text{Q} \qquad \dots \dots \dots \text{(ii)}$$

From (i) and (ii), we get

$$\frac{1}{2} \angle P + \frac{1}{2} \angle Q = \angle T + \frac{1}{2} \angle Q$$

$$\Rightarrow \qquad \angle T = \frac{1}{2} \angle P \text{ or } \angle QTR = \frac{1}{2} \angle QPR$$

31. Area of region 1:

Region 1 is enclosed by a triangle of sides a = 4cm, b = 5cm and c = 1cm

Let 2s be the perimeter of the triangle. Then,

 $2s = 4 + 4 + 1 \Longrightarrow s = \left(\frac{9}{2}cm\right)$

Using Heron's formula, area of region 1 = 19875 sq.cm

Area of region 2:

Region 2 is a rectangle of length 65*cm* and breadth 1*cm*

: Area of region 2 = 6.5 * 1 sq.cm

Area of region 3:

Region 3 is an isos. Trapezium

Using pythagoras theorem for $\triangle ABC$, find *BE*

Area of region 3 = 1.3 sq.cm

Area of region 4 = 4.5sq.cm using area of triangle

Area of region 5: Region 4 and 5 are congruent, so, area = 4.5sq.cm

Hence, the total area = 18.7875 sq.cm