Ex 13.1

Answer 1A.

In the given $\triangle ABC$ the greatest angle is $\angle B$ and the opposite side to the $\angle B$ is AC. Hence, the greatest side is AC. The smallest angle in the $\triangle ABC$ is $\angle A$ and the opposite side to the $\angle A$ is BC. Hence, the smallest side is BC.

Answer 1B.

In the given ΔDEF the greatest angle is $\angle F$ and the opposite side to the $\angle F$ is DE. Hence, the greatest side is DE. The smallest angle in the ΔDEF is D and the opposite side to the $\angle D$ is EF. Hence, the smallest side is EF.

Answer 1C.

In ΔXYZ , $\angle X + \angle Y + \angle Z = 180^{\circ}$ $76^{\circ} + 84^{\circ} + \angle Z = 180^{\circ}$ $160^{\circ} + \angle Z = 180^{\circ}$ $\angle Z = 180^{\circ} - 160^{\circ}$ $\angle Z = 20^{\circ}$ Hence, $\angle X = 76^{\circ}$, $\angle Y = 84^{\circ}$, $\angle Z = 20^{\circ}$ In the given ΔXYZ the greatest angle is $\angle Y$ and the opposite side to the $\angle Y$ is XZ. Hence, the greatest side is XZ. The smallest angle in the ΔXYZ is $\angle Z$ and the opposite side to the $\angle Z$ is XY. Hence, the smallest side is XY.

Answer 2A.

In $\triangle ABC$, $\angle A + \angle B + \angle C = 180^{\circ}$ $45^{\circ} + 65^{\circ} + \angle C = 180^{\circ}$ $110^{\circ} + \angle C = 180^{\circ}$ $\angle C = 180^{\circ} - 110^{\circ}$ $\angle C = 70^{\circ}$ Hence, $\angle A = 45^{\circ}$, $\angle B = 65^{\circ}$, $\angle C = 70^{\circ}$ $45^{\circ} < 65^{\circ} < 70^{\circ}$ Hence, ascending order of the angles in the given triangle is $\angle A < \angle B < \angle C$. Hence, ascending order of sides in triangle BC, AC, AB.

Answer 2B.

In ΔDEF , $\angle D + \angle E + \angle F = 180^{\circ}$ $38^{\circ} + 58^{\circ} + \angle F = 180^{\circ}$ $96^{\circ} + \angle F = 180^{\circ}$ $\angle F = 180^{\circ} - 96^{\circ}$ $\angle F = 84^{\circ}$ Hence, $\angle D = 38^{\circ}$, $\angle E = 58^{\circ}$, $\angle F = 84^{\circ}$ $38^{\circ} < 58^{\circ} < 84^{\circ}$ Hence, ascending order of the angles in the given triangle is $\angle D < \angle E < \angle F$. Hence, ascending order of sides in triangle EF, DF, DE.

Answer 3.

(i) It is known that, in a triangle, the angle opposite to the smallest side is the smallest.

In $\triangle ABC$, AC = 4.2cm is the smallest side.

 $\therefore \angle B$ is the smallest angle.

(ii) It is known that, in a triangle, the angle opposite to the smallest side is the smallest.

In ΔPQR , QR = 5.4cm is the smallest side.

 $\therefore \angle P$ is the smallest angle.

(iii) It is known that, in a triangle, the angle opposite to the smallest side is the smallest.

In ΔXYZ , YZ = 5cm is the smallest side.

 $\therefore \angle X$ is the smallest angle.

Answer 4.

In $\triangle ABC$, BC = AC (given) $\Rightarrow \angle A = \angle B = 35^{\circ}$ Let $\angle C = x^{\circ}$ In $\triangle ABC$, $\angle A + \angle B + \angle C = 180^{\circ}$ $35^{\circ} + 35^{\circ} + x^{\circ} = 180^{\circ}$ $70^{\circ} + x^{\circ} = 180^{\circ}$ $x^{\circ} = 180^{\circ} - 70^{\circ}$ $x^{\circ} = 110^{\circ}$ $\angle C = x^{\circ} = 110^{\circ}$ Hence, $\angle A = \angle B = 35^{\circ}$ and $\angle C = 110^{\circ}$ In $\triangle ABC$, the greatest angle is $\angle C$. As the smallest angles are $\angle A$ and $\angle B$, smallest sides are BC and AC.

Answer 5.

It is given that $\angle PBC > \angle QCB - (1)$ $\angle PBC + \angle ABC = 180^{\circ}$ [Linear pair angles] $\Rightarrow \angle PBC = 180 - \angle ABC$ Similarly, $\angle QCB = 180^{\circ} - \angle ACB$ From (1) and (2) $180 - \angle ABC > 180 - \angle ACB$ $\Rightarrow -\angle ABC > - \angle ACB$ $\Rightarrow \angle ABC > - \angle ACB$ $\Rightarrow \angle ABC < \angle ACB$ or $\angle ACB > \angle ABC$ It is known that, in a triangle, the greater angle has the longer ide opposite to it. $\therefore AB > AC$

Answer 6.

Using the exterior angle property in $\triangle ACD$, we have $\angle ACB = \angle CDA + \angle CAD$ $\Rightarrow \angle ACB > \angle CDA -----(1)$ Now, AB = AC $\Rightarrow \angle ACB = \angle ABC -----(2)$ From (1) and (2) $\angle ABC > \angle CDA$ It is known that, in a triangle, the greater angle has the longer side opposite to it. Now, In $\triangle ABD$, we have $\angle ABC > \angle CDA$ $\therefore AD > AB$

Answer 7.

Given: A △ ABC in which AD, BE and CF are its medians.

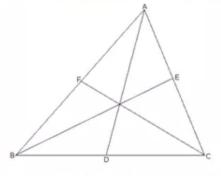
To Prove: We know that the sum of any two dies of a triangle is greater than twice the median bisecting the third side. Therefore,

AD is the median bisecting BC

 $\Rightarrow AB + AC > 2 AD ...(i)$

BE is the median bisecting AC ...(ii)

And, CF is the median bisecting AB



 \Rightarrow BC + AC > 2EF

...(iii)

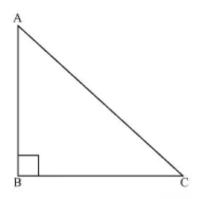
Adding (i), (ii) and (iii), we get

(AB + AC) + (AB + BC) + (BC + AC) > 2. AD + 2. BE + 2.CF

 \Rightarrow 2 (AB + BC + AC) > 2 (AD + BE + CF)

 \Rightarrow AB + BC + AC > AD + BE + CF

Answer 8.



Let us consider a right angled triangle ABC, right angle at B.

In ∆ABC

 $\angle A + \angle B + \angle C = 180^{\circ}$ (angle sum property of a triangle)

 $\angle A + 90^\circ + \angle C = 180^\circ$

∠A + ∠C = 90°

Hence, the other two angles have to be acute (i.e. less than 90°).

 $\therefore \angle B$ is the largest angle in $\triangle ABC$.

 $\Rightarrow \angle \mathsf{B} > \angle \mathsf{A} \text{ and } \angle \mathsf{B} > \angle \mathsf{C}$

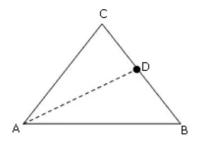
 \Rightarrow AC > BC and AC > AB

[In any triangle, the side opposite to the larger (greater) angle is longer]

So, AC is the largest side in ∆ABC.

But AC is the hypotenuse of \triangle ABC. Therefore, hypotenuse is the longest side in a right angled triangle.

Answer 9.



Construction: Join AD

In triangle ACD,

AC+CD>AD ... (i)

(Sum of two sides of a triangle greater than the third side)

Similarly, in triangle ADB,

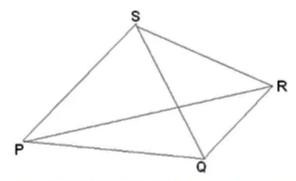
AB+BD>AD ... (ii)

Adding (i) and (ii),

AC+CD+AB+BD>2AD

AB+BC+AC>2AD (Since, CD + BD = BC)

Answer 10.



Given: PQRS is a quadrilateral. PR and QS are its diagonals.

To Prove: PQ+QR+SR+PS > PR+QS

Proof: In ∆PQR

PQ+QR>PR (Sum of two sides of triangle is greater than the third side) Similarly, In Δ PSR, PS+SR>PR

In ΔPQS , PS+PQ>QS and in ΔQRS we have QR+SR>QS

Now we have PQ+QR>PR

PS+SR>PR

PS+PQ>QS

QR+SR>QS

After adding above inequalities we get

2(PQ+QR+PS+SR) > 2(PR+QS)

 \Rightarrow PQ+QR+PS+SR>PR+QS.

Answer 11.

In $\triangle AOB$, we have		
OA + OB > AB	(i)	
In $\triangle BOC$, we have		
OB + OC > BC	(ii)	
In $\triangle COD$, we have		
OC + OD > CD	(iii)	
In $\triangle AOD$, we have		
OA + OD > AD	(iv)	
Adding (į), (ii), (iii) and (iv), we get		
2(OA + OB + OC + OD) > AB + BC + CD + AD		
\Rightarrow 2 [(OA + OC) + (OB + OD)] > AB + BC + CD + AD		
\Rightarrow 2 (AC + BD) > AB + BC + CD + AD		
[$:: OA + OC = AC and OB + OD = BD$]		
\Rightarrow AB + BC + CD + AD < 2 (AC + BD)		

Answer 12.

In triangle APR,
AP+AR>PR(i)
In triangle BPQ,
BQ+PB>PQ(ii)
In triangle QCR,
QC+CR>QR(iii)
Adding (i), (ii) and (iii)
AP+AR+BQ+PB+QC+CR > PR+PQ+QR
(AP+PB)+(BQ+QC)+(CR+AR) > PR+QR+PQ

 $\Rightarrow AB + BC + AC > PQ + QR + PR.$

Answer 13.

In $\triangle PQT$, we have PT = PQ ... (1) In $\triangle PQR$, PQ + QR > PR PQ + QR > PT + TR PQ + QR > PQ + TR [Using (1)] QR > TRHence, proved.

Answer 14.

	(i). In $\triangle ABC$, we have	
	AB + BC > AC	(i)
	In $\triangle ACD$, we have	
	AD + CD > AC	(ii)
	Adding (i) and (ii), we get	
	AB + BC + AD + CD > 2 AC	
	(ii). In $\triangle ACD$, we have	
	CD + DA > CA	
	\Rightarrow CD + DA + AB > CA + AB	
=	⇒ CD + DA + AB > BC	[∴ AB + AC > BC]

Answer 15.

a. In the given ΔPQR, (Of all the straight lines that can ` be drawn to a given straight line from a point outside it, the PS < PR perpendicular is the shortest. PN < PR(i) ($\cdot PN < PS$) Also, (Of all the straight lines that can) be drawn to a given straight line from a point outside it, the RT < PRperpendicular is the shortest. RN < PR(ii) (∵RN < RT) Dividing (i) by (ii), $\frac{PN}{RN} < \frac{PR}{PR}$ $\frac{PN}{RN} < 1$ PN < RN b. In∆RTQ, \angle RTQ + \angle TQR + \angle TRQ = 180° 90° + 60° + ∠TRQ = 180° 150° + ∠TRQ = 180° ∠TRQ = 180° - 150° $\angle TRQ = 30^{\circ}$ ∠TRQ = ∠SRN = 30°(iii) In ANSR, $\angle RNS + \angle SRN = 90^\circ$ (: $\angle NSR = 90^\circ$)[from(iii)] ∠RNS + 30° = 90° ∠RNS = 90° - 30°(iv) $\angle RNS = 60^{\circ}$(from(iii)and(iv)) ZSRN < ZRNS SN < SR

Answer 16.

```
In AACD,
                    ....(Given)
AC = CD
\angleCDA = \angleDAC ....(\triangleACD is isosceles triangle.)
Let \angle CDA = \angleDAC = \times^{\circ}
\angleCDA + \angleDAC + \angleACD = 180°
\times^{\circ} + \times^{\circ} + 105^{\circ} = 180^{\circ}
2x^{\circ} + 105^{\circ} = 180^{\circ}
2x^{\circ} = 180^{\circ} - 105^{\circ}
2x° = 75°
x = \frac{75^{\circ}}{2}
x = 37.5^{\circ}
\angle C = \angle DAC = x^\circ = 37.5^\circ....(i)
\angle DAB = \angle DAC + \angle BAC
125° = 37.5° + ∠BAC ....from(i)
125º - 37.5º = ∠BAC
87.5º = ∠BAC
Also,∠BCA + ∠ACD = 180°
⇒∠BCA + 105° = 180°
\Rightarrow \angle BCA = 75^{\circ}
So, in ABAC,
\angle ACB + \angle BAC + \angle ABC = 180^{\circ}
\Rightarrow 75° + 87.5° + \angleABC = 180°
\Rightarrow \angle ABC = 17.5^{\circ}
As 87.5° > 17.5°
∠BAC > ∠ABC
\Rightarrow BC > AC
\Rightarrow BC > CD ....(Sin \infty AC = CD)
```

Answer 17A.

In ∆PQS,

PS < PQ	all the straight lines that can drawn to a given straight line om a point outside it, the prpendicular is the shortest.			
i.e. PQ > PS				
Also,QS < QP	Of all the straight lines that can be drawn to a given straight line from a point outside it, the perpendicular is the shortest.			

i.e. PQ > QS

Answer 17B.

In ∆PQS,	
PS⊥QR	(Given)
PS < PR	Of all the straight lines that can be drawn to a given straight line from a point outside it, the perpendicular is the shortest.

i.e. PR > PS

Answer 17C.

In ∆PQR,

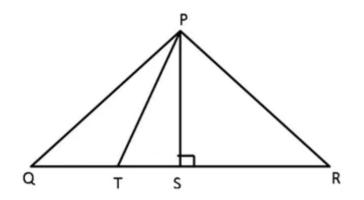
	Constant States of a			
PQ + PR > QR	(: Sum of two sides of a triangle is always greater than third side.			
	(than third side.			
In ∆PQS,				
	(∵Sum of two sides of a triangle is always greater than third side.			
PQ + QS > PS	triangle is always greater			
	(than third side.			
(i)				
In ΔPRS,				
	(∵Sum oftwo sides of a)			
PR + SR > PS	triangle is always greater			
	(∵Sum oftwo sides of a triangle is always greater than third side.			
(ii)				
Adding (i) and (ii)	1			
PQ + QS + PR + SR	> 2PS			
PQ + (QS + SR) + PR > 2PS				
PQ + QR + PR > 2P	s			
Since PQ + PR > Q				
\Rightarrow PQ + QR > 2PS				

Answer 18.

Note : The question is incomplete. Question should be : In the given figure, T is a point on the side PR of an **equilateral** triangle PQR. Show that : a.PT < QT b. RT < QT Solution: a.In ∆PQR, PQ = QR = PR $\Rightarrow \angle P = \angle Q = \angle R = 60^{\circ}$ In∆PQT, ∠PQT < 60° ∴ ∠PQT <∠P :: PT < QT b.In ∆TQR, ∠TQR < 60° ∴ ∠TQR <∠R ∴ RT <QT

Answer 19.

In Δ PQR, PQ + PR > QR PQ + PR > QR (: Sum of the two sides of a triangle is always greater than the third side.(i) Also, in Δ SQR, SQ + SR > QR (: Sum of the two sides of a triangle is always greater than the third side.(ii) Dividing(i)by(ii), $\frac{PQ + PR}{SQ + SR} > \frac{QR}{QR}$ $\frac{PQ + PR}{SQ + SR} > 1$ PQ + PR > SQ + SR i.e. SQ + SR < PQ + PR Answer 20.



Let the triangle be $\triangle PQR$. PS ⊥ QR, the straight line joining vertex P to the line QR. To prove: PQ > PT and PR > PT In <u>A</u>PSQ, $PS^2 + SQ^2 = PQ^2$(Pythagoras theorem) $PS^2 = PQ^2 - SQ^2$ -----(i) In ∆PST,(Pythagoras theorem) $PS^2 + ST^2 = PT^2$ $PS^2 = PT^2 - ST^2$ (ii) $PQ^2 - SQ^2 = PT^2 - ST^2 \dots [from(i) and(ii)]$ $PQ^{2} - (ST + TQ)^{2} = PT^{2} - ST^{2}$ $PQ^{2} - (ST^{2} + 2ST \times TQ + TQ^{2}) = PT^{2} - ST^{2}$ $PQ^2 - ST^2 - 2ST \times TQ - TQ^2 = PT^2 - ST^2$ $PQ^2 - PT^2 = TQ^2 + 2ST \times TQ$ $PQ^2 - PT^2 = TQ \times (2ST + TQ)$ As, TQ × (2ST + TQ) > 0 always. $PQ^2 - PT^2 > 0$ $PQ^2 > PT^2$ PQ > PTAlso, PQ = PR PR > PT

Answer 21.

∠AEF > ∠ABC ...(Exterior angle property) ∠AFE = ∠DFC ∠ACB > ∠DFC...(Exterior angle property) ⇒ ∠ACB > ∠AFE Since AB = AC ⇒ ∠ACB = ∠ABC So, ∠ABC > ∠AFE ⇒ ∠AEF > ∠ABC > ∠AFE that is, ∠AEF > ∠AFE ⇒ AF > AE

Answer 22.

```
In the \triangle ABE and \triangle ADE,

AB = AD ....(Given)

\angle BAE = \angle DAE ....(AE is the bisector of \angle BAC)

AE = AE ....(Common side)

\therefore \triangle ABE \cong \triangle ADE ....(SAS test)

\Rightarrow BE = DE ....(cp.ct.c)

In \triangle ABD,

AB = AD

\Rightarrow \angle ABD = \angle ADB

\angle ADB > \angle C ...(Exterior angle property)

\Rightarrow \angle ABD > \angle C
```

```
Answer 23.
```

