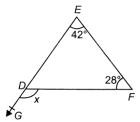


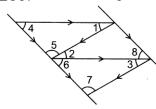
The Triangle and Its Properties

MATHEMATICAL REASONING

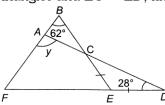
1. Find the measure of the angle x in the given figure.



- (a) 50°
- (b) 70°
- (c) 60°
- (d) 30°
- **2.** Which of the following options is INCORRECT?



- (a) $\angle 1 = \angle 3$
- (b) $\angle 1 + \angle 4 + \angle 5 = 180^{\circ}$
- (c) $\angle 8 = \angle 6$
- (d) $\angle 1 + \angle 3 = 180^{\circ}$
- 3. In the figure (not drawn to scale), ADF and BEF are triangles and EC = ED, find y.



- (a) 90°
- (b) 91°
- (c) 92°
- (d) 93°
- **4.** In a $\triangle ABC$, which of the given condition holds?
 - (a) AB BC > CA
 - (b) AB + BC < CA
 - (c) AB BC < CA
 - (d) AB + CA < BC

5. In the figure (not drawn to scale), ABC is an equilateral triangle and ABD is an isosceles triangle with DA = DB, find x.

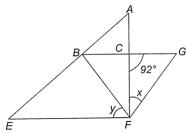
- (a) 14°
- (b) 16°
- (c) 12°
- (d) 32°
- **6.** ABC is an isosceles triangle with AB = AC and AD is altitude, then
 - (a) $\angle B > \angle C$
- (b) $\angle B < \angle C$
- (c) $\angle B = \angle C$
- (d) None of these
- 7. In the figure (not drawn to scale), ABCD is a square, ADE is an equilateral triangle and BFE is a straight line, find y.

- (a) 90°
- (b) 45°
- (c) 75°
- (d) 15°
- **8.** Find the measure of the angle x in the given figure.

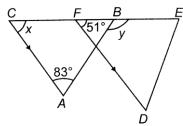
- (a) 72°
- (b) 82°
- (c) 90°
- (d) 40°
- **9.** The given figure shows three identical squares. Find x.

- (a) 30°
- (b) 27°
- (c) 36°
- (d) 16°

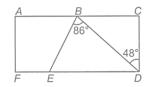
10. In the figure (not drawn to scale), EFA is a right-angled triangle with $\angle EFA = 90^{\circ}$ and FGB is an equilateral triangle, find y - 2x.



- (a) 2°
- (b) 8°
- (c) 17°
- (d) 20°
- 11. In the figure (not drawn to scale), ABC and DEF are two triangles, CA is parallel to FD and CFBE is a straight line. Find the value of x + y.

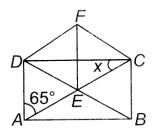


- (a) 185°
- (b) 134°
- (c) 148°
- (d) 176°
- 12. In a $\triangle ABC$, if AB+BC=10 cm, BC+CA=12 cm, CA+AB=16 cm, then the perimeter of the triangle is ____.
 - (a) 19 *cm*
- (b) 17 *cm*
- (c) 28 cm
- (d) 22 cm
- **13.** In the figure, not drawn to scale, ACDF is a rectangle and BDE is a triangle. Find $\angle BED$

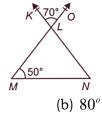


- (a) 42°
- (b) 52°
- (c) 128°
- (d) 134°

14. In the figure, ABCD is a rectangle, $\triangle CEF$ is an equilateral triangle. Find x.



- (a) 25°
- (b) 30°
- (c) 20°
- (d) 50°
- **15.** Find the measure of $\angle LNM$ in the given figure.



- (a) 30°
- (c) 70°
- (d) 60°

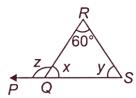
EVERYDAY MATHEMATICS

- **16.** A 26 m long ladder reached a window 24 m from the ground on placing it against a wall. Find the distance of the foot of the ladder from the wall.
 - (a) 10 m
- (b) 20m
- (c) 5 m
- (d) 25 m
- 17. A tree is broken at a height of 5 m from the ground and its top touches the ground at a distance of 12 m from the base of the tree. Find the original height of the tree.
 - (a) 20 m
- (b) 36*m*
- (c) 18m
- (d) 25 m
- **18.** Aryan wants to plant a flower on the ground in the form of a rhombus. The diagonals of the rhombus measures 42 cm and 56 cm. Find the perimeter of the field.
 - (a) 150 *cm*
- (b) 140 *cm*
- (c) 130 *cm*
- (d) 120 cm

- **19.** A 34 m long ladder reached a window 16 m from the ground on placing it against a wall. Find the distance of the foot of the ladder from the wall.
 - (a) 40 m
- (b) 30 m
- (c) 50*m*
- (d) 10*m*
- **20.** Mrs. Kaushik gives a problem to her students. Find the perimeter of a rectangle whose length is 28 cm and diagonal is 35 cm. What will be the correct answer?
 - (a) 90 cm
- (b) 45 cm
- (c) 89 cm
- (d) 98 cm

ACHIEVERS SECTION (HOTS)

21. If y is five times of x, find the values of x, y and z.



	Х	У	Z
(a)	20°	80	140^{o}
(b)	30°	80°	140°
(c)	20°	100^{o}	160°
(d)	30°	100^{o}	160°

- **22.** State T for true and T' for false.
 - (i) In the given right-angled triangle;

$$ABC$$
, $\angle B = 65^{\circ}$, $\angle C = 25^{\circ}$, then

$$AB^2 = BC^2 + CA^2.$$

- (ii) The length of the third side of a triangle cannot be smaller than the difference of the lengths of any two sides.
- (iii) A triangle can have only one median.;

	(i)	(ii)	(iii)
(a)	F	F	T
(b)	F	T	F
(c)	F	T	T
(d)	F	F	F

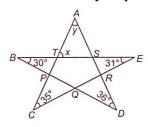
- **23.** Fill in the blanks.
 - (i) The line segment joining a vertex of a triangle to the midpoint of its opposite side is called a \underline{P} of the triangle.
 - (ii) The perpendicular line segment from a vertex of a triangle to its opposite side is called an \underline{Q} of the triangle.
 - (iii) A triangle has R altitudes and \underline{S} medians.

	P	Q	R	S
(a)	Altitude	Median	1	1
(b)	Altitude	Median	3	3
(c)	Median	Altitude	3	3
(d)	Median	Altitude	2	3

24. Which of the following statements is TRUE? **Statement 1:** The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

Statement-2: If P is a point on the side BC of $\triangle ABC$. Then (AB+BC+AC) > 2AP

- (a) Only Statement-1
- (b) Only Statement-2
- (c) Both Statement-1 and Statement-2
- (d) Neither Statement-1 nor Statement-2
- **25.** Find the values of x and y respectively.



- (a) $47^{\circ},66^{\circ}$
- (b) $66^{\circ}, 48^{\circ}$
- (c) $68^{\circ}, 47^{\circ}$
- (d) $47^{\circ}, 68^{\circ}$

	ANSWER KEY								
1.	В	2.	D	3.	Α	4.	С	5.	Α
6.	С	7.	С	8.	Α	9.	В	10.	Α
11.	Α	12.	Α	13.	В	14.	Α	15 .	D
16.	Α	17 .	С	18.	В	19.	В	20.	D
21.	С	22 .	D	23 .	С	24.	С	25 .	В

SOLUTION

1. (b): $\angle EFD + \angle FED = x$ (Exterior angle property of a triangle)

$$\Rightarrow$$
 $28^{\circ} + 42^{\circ} = \angle x$

or
$$\angle x = 70^{\circ}$$

2. (d): $\angle 1 = \angle 2$ and $\angle 2 = \angle 3$ [Alternate angles]

So,
$$\angle 1 = \angle 3$$

and
$$\angle 1 + \angle 4 + \angle 5 = 180^{\circ}$$

[Angle sum property]

Also,
$$\angle 8 = \angle 6$$
 [Alternate angles]

(a): In $\triangle CED$, 3.

$$CE = ED$$

[Angles opposite to equal sides are equal]

$$\Rightarrow \angle ECD = 28^{\circ}$$

Also, $\angle ECD = \angle BCA$ (Vertically opposite angles)

$$\Rightarrow \angle BCA = 28^{\circ}$$

In $\triangle BCA$,

$$y = 62^{\circ} + 28^{\circ}$$
 [Exterior angle property]

$$\Rightarrow y = 90^{\circ}$$

- 4. (c)
- **5**. (a): Since ABC is an equilateral triangle.

$$\therefore \angle CAB = \angle ABC = \angle BCA = 60^{\circ}$$

And

$$\angle DBA = \angle DAB = (60^{\circ} - x) \ [\because DA = DB]$$

In $\triangle DAB$,

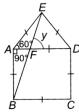
$$\angle DAB \angle DAB + \angle ADB = 180^{\circ}$$

$$\Rightarrow 2(60^{\circ} - x) + 88^{\circ} = 180^{\circ}$$

 \Rightarrow

$$2(60^{\circ} - x) = 92^{\circ} \implies 60^{\circ} - x = 46^{\circ} \implies x = 14^{\circ}$$

- 6. (c):
- **7**. (c): In $\triangle AEB$,



$$\angle A = \angle DAE + \angle BAD$$

$$\Rightarrow \angle A = 60^{\circ} + 90^{\circ} = 150^{\circ}$$

And,
$$AE = AB$$

$$\Rightarrow \angle ABE = \angle AEB$$

[Angles opposite to equal sides are equal]

Now,
$$\angle A + \angle ABE + \angle AEB = 180^{\circ}$$

(Angle sum property)

$$\implies 2\angle AEB = 180^{\circ} - 150^{\circ} = 30^{\circ} \implies \angle AEB = 15^{\circ}$$

Now,
$$\angle E = 60^{\circ}$$

$$\Rightarrow \angle DEF = 60^{\circ} - 15^{\circ} = 45^{\circ}$$

 \therefore In $\triangle EFD$,

$$\angle DEF + \angle EDF + \angle EFD = 180^{\circ}$$

$$\Rightarrow 45^{\circ} + 60^{\circ} + y = 180^{\circ}$$

$$\Rightarrow y = 180^{\circ} - (45^{\circ} + 60^{\circ}) = 75^{\circ}$$

8. (a): $\angle UXV = y$ (Vertically opposite angles)

$$\therefore$$
 $y = 45^{\circ}$

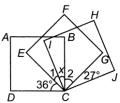
In ΔXYZ

$$y + x + 63^\circ = 180^\circ$$
 (Angle sum property)

$$\Rightarrow 45^{\circ} + x + 63^{\circ} = 180^{\circ} \Rightarrow x = 180^{\circ} - (45^{\circ} + 63^{\circ})$$

$$\Rightarrow x = 180^{\circ} - 108^{\circ} = 72^{\circ}$$

9. (b): We have, ABCD, CEFG and CIHJ are all squares.



So,
$$\angle 1 + \angle 2 + x = 90^{\circ}$$

$$36^{\circ} + \angle 1 + x = 90^{\circ} \text{ q}$$

 $x + \angle 2 + 27^{\circ} = 90^{\circ}$

Adding (ii) and (iii), we get

$$36^{\circ} + x + 27^{\circ} + (\angle A + \angle 2 + x) = 180^{\circ}$$

$$\Rightarrow 63^{\circ} + x + 90^{\circ} = 180^{\circ}$$
 (From (i))

10.

 $\Rightarrow x = 180^{\circ} - 153^{\circ} = 27^{\circ}$

(a): In $\triangle FGC$, $\angle CBF = 60^{\circ}$

(Angle of equilateral triangle)

$$\therefore x + 60^{\circ} + 92^{\circ} = 180^{\circ}$$

$$\Rightarrow x = 180^{\circ} - 152^{\circ} = 28^{\circ}$$

Now, In $\triangle BCF$, $\angle CBF = 60^{\circ}$

$$\angle FCB = 180^{\circ} - 92^{\circ}$$
 (Linear pair)

$$\Rightarrow \angle FCB = 88^{\circ}$$

$$\therefore \angle BFC + 88^{\circ} + 60^{\circ} = 180^{\circ}$$

(Angle sum property)

$$\Rightarrow \angle BFC = 180^{\circ} - 148^{\circ} = 32^{\circ}$$

And $\angle AFE = 90^{\circ}$

$$\Rightarrow y + 32^{\circ} = 90^{\circ} \Rightarrow y = 90^{\circ} - 32^{\circ} = 58^{\circ}$$

$$\therefore y-2x=58^{\circ}-2\times28^{\circ}=58^{\circ}-56^{\circ}=2^{\circ}$$

11. (a): $\angle FCA = \angle BFD$ (Corresponding angles)

$$\Rightarrow x = 51^{\circ}$$

Now, in $\triangle ABC$

 $y = 51^{\circ} + 83^{\circ}$ (Exterior angle property)

$$\Rightarrow$$
 $y = 134^{\circ}$

So,
$$x + y = 51^{\circ} + 134^{\circ} = 185^{\circ}$$

12. (a): It is given that,

$$AB + BC = 10 cm \qquad \dots (i)$$

$$BC + CA = 12 cm$$
(ii)

$$CA + AB = 16 cm$$
(iii)

Adding (i), (ii) and (iii); we get

$$2(AB + BC + CA) = 10 + 12 + 16$$

$$\Rightarrow AB + BC + CA = 19 cm$$

13. (b): $\angle CDB + \angle BDE = 90^{\circ}$ (Angle of a rectangle)

$$\Rightarrow$$
 48° + $\angle BDE = 90^{\circ}$

$$\Rightarrow$$
 $\angle BDE = 90^{\circ} - 48^{\circ} = 42^{\circ}$

In $\triangle BED$

$$\angle EBD + \angle BDE + \angle BED = 180^{\circ}$$

(Angle sum property)

$$\Rightarrow$$
 86° + 42° + $\angle BED$ = 180°

$$\Rightarrow \angle BED = 180^{\circ} - (86^{\circ} + 42^{\circ}) = 52^{\circ}$$

14. (a): It is given that, ABCD is a rectangle

$$\therefore \angle ADC = 90^{\circ}$$

In $\triangle ADC$,

$$\angle DAC + \angle ADC + \angle DCA = 180^{\circ}$$

(Angle sum property)

$$\Rightarrow$$
 65° + 90° + $x = 180° \Rightarrow x = 25°$

15. (d): $\angle KLO = \angle MLN$

$$\therefore$$
 $\angle MLN = 70^{\circ}$

in $\angle LMN$,

$$\angle MLN + \angle LNM + \angle LMN = 180^{\circ}$$

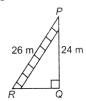
(Angle sum property)

$$\Rightarrow 70^{\circ} + \angle LNM + 50^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle LNM = 180^{\circ} - (70^{\circ} + 50^{\circ}) = 60^{\circ}$$

16. (a): In ΔPRQ ,

$$PR^2 = PQ^2 + QR^2$$



(By Pythagoras theorem)

$$(26)^2 = (24)^2 + QR^2$$

or
$$QR^2 = 676 - 576 = 100$$

$$\Rightarrow OR = \sqrt{100} \Rightarrow OR = 10$$

 \therefore The distance of the foot of the ladder from the wall is 10 m.

17. (c): Let KB is original height of the tree. In $\triangle ABC$,

$$AC^2 = AB^2 + BC^2 = 52 + 122$$

$$=25+144=169$$

$$\therefore AC = \sqrt{169} = 13m$$

$$KB = KA + AB$$

$$=(13+5) m = 18m$$

.. Original height of the tree is 18m.

18. (b): Since diagonals of a rhombus bisect each other at 90° .

Given:
$$BD = 42 cm$$
 and $AC = 56 cm$

$$BK = \frac{1}{2}BD = \frac{42}{2} = 21cm$$

$$AK = \frac{1}{2}AC = \frac{56}{2} = 28cm$$

In
$$\triangle$$
 KAB, $AB^2 = AK^2 + BK^2$
= $(28)^2 + (21)^2 = 784 + 441 = 1225$

$$\therefore AB = \sqrt{1225} = 35 \, cm$$

$$\therefore$$
 Perimeter of the field
 $ABCD = 4 \times 35 = 140 \ cm$:

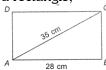
19. (b): Let AB = length of ladder, AC = height of window

In $\triangle ABC$,

$$(AB)^2 = (AC)^2 + (BC)^2$$

 $\Rightarrow (34)^2 = (16)^2 + BC^2$
or $BC^2 = (34)^2 - (16)^2$
 $\Rightarrow BC^2 = 1156 - 256 = 900$
 $\therefore BC = \sqrt{900} = 30m$

20. (d): ABCD is a rectangle,



In $\triangle ACB$.

$$AC^2 = AB^2 + BC^2$$
 (By Pythagoras theorem)

$$(35)^2 = (28)^2 + BC^2 \text{ or } BC^2 = (35)^2 - (28)^2$$

 $\Rightarrow BC^2 = 1225 - 784 \Rightarrow BC^2 = 441$

$$\therefore BC = \sqrt{441} = 21cm$$

$$\therefore$$
 Perimeter of rectangle = $2 \times (28 + 21) cm$
= $2 \times (49) cm = 98 cm$

21. (c): As,
$$y = 5x$$

In $\triangle RQS$, $x + y + 60^\circ = 180^\circ$ (Angle sum property)

$$\Rightarrow x + 5x + 60^{\circ} = 180^{\circ}$$

$$\Rightarrow 6x = 180^{\circ} - 60^{\circ} = 120^{\circ} \Rightarrow x = \frac{120^{\circ}}{6} = 20^{\circ}$$

$$\therefore y = 5 \times 20^{\circ} = 100^{\circ}$$
Also $\angle QRS + \angle QSR = z$
(Exterior angle property)
$$\Rightarrow z = 60^{\circ} + 100^{\circ} = 160^{\circ}$$

- **22.** (d): (i) In the given right angled triangle, $BC^2 = AB^2 + AC^2$
 - (ii) The length of the third side of a triangle is always greater than the difference of lengths of any two sides.
 - (iii) A triangle can have three medians.
- **23.** (c)
- **24.** (c): Statement 2

In $\triangle ABP$,

$$AB + BP > AP$$
(i)

In $\triangle APC$

$$PC + AC > AP$$
(ii)

Adding (i) & (ii), we get

$$AB+BP+PC+AC>AP+AP$$

$$\Rightarrow AB + BC + AC > 2AP$$

- \therefore Both Statement -1 and Statement-2 are true.
- **25.** (b): In ΔTCE , $x = \angle TCE + \angle TEC$ (Exterior angle property)

$$\Rightarrow x = 35^{\circ} + 31^{\circ}$$

$$\Rightarrow x = 66^{\circ}$$

In $\triangle SBD$,

$$\angle AST = \angle SBD + \angle SDB$$

(Exterior angle property)

$$\angle AST = 30^{\circ} + 36^{\circ} = 66^{\circ}$$

In $\triangle ATS$,

$$y + x + \angle AST = 180^{\circ}$$
 (Angle sum property)

$$\Rightarrow$$
 $y + 66^{\circ} + 66^{\circ} = 180^{\circ}$

$$\Rightarrow y = 180^{\circ} - (66^{\circ} + 66^{\circ}) \Rightarrow y = 48^{\circ}$$