SUMMATIVE ASSESSMENT - I - 2017-2018

MATHEMATICS - Paper - I

(English Medium) PART - A & B

Class: X] (Max. Marks: 40) [Time: 2-45 Hrs.

Instructions:

- 1. Question paper contains 2 parts (Part A & B)
- 2. Part-A & B should be given at the beginning of the exam only.
- 3. 15 Minutes are allotted for reading the question paper (Part A &B) in addition to 2.30 hours for writing the answers.
- 4. Part A answers should be written in a separate answer book.
- 5. There are three Sections in Part A.
- 6. Answer all the questions.
- 7. Every answer should be visible and legible.
- 8. There is internal choice in Section III.

Marks: 30]

PART - A

[Time : 2-15 Hrs.

Section - I

Note:

1. Answer ALL the questions.

2. Each question carries 1 Mark.

 $4 \times 1 = 4$

- Find the Quadratic polynomial whose sum and product of zeroes are 3 and 2 respectively.
- 2. Find the discriminant of the Quadratic equation $2x^2 4x + 3 = 0$
- 3. State the fundamental theorm of Arithmetic.
- 4. Represent A and B, If $A \cap B = \phi$ using Venn Diagram

[Turn Over

Section - II

Note: 1. Answer ALL the questions.

2. Each question carries 2 Marks.

 $5 \times 2 = 10$

5. If sum of the squares of zeroes of the Quadratic polynomial $f(x) = x^2 - 8x + k$ is 40, find the value of k.

(Hint: a, b are zeroes then $a^2 + b^2 = 40$)

Solve the following pair of linear equation.

$$21x + 47y = 110$$

$$47x + 21y = 162$$

- 7. Find the roots of the Quadratic equation $2x^2 2\sqrt{2}x + 1 = 0$
- 8. State which of the following sets are finite or infinite. Give reasons
- i) $P = \{x: x \in \mathbb{N} \text{ and } x^2 = 4\}$
 - ii) $Q = \{x:x \text{ is an integer, } x < 10\}$
- A cylinder and a cone are of the same radius and same height. Express ratio of the their curved surface areas.

Section - III

Note:

- 1. Answer ALL the questions.
- 2. Each question has internal choice.
- 3. Each question carries 4 Marks.

 $4 \times 4 = 16$

10. a) If $A = \{x:x \text{ is a natural number less than 20}\}$

 $B = \{x:x \text{ is an even natural number less than } 20\}$

 $C = \{x:x \text{ is an odd natural number less than } 20\}$

 $D = \{x:x \text{ is a prime number less than } 20\}$

then find (i) A-B

- (ii) C D
- (iii) $A \cup C$
- (iv) $B \cap D$

(OR)

b) Slove the pair of equations by reducing them into "a pair of linear equations".

$$\frac{2}{x} + \frac{3}{y} = 13; \frac{5}{x} - \frac{4}{y} = -2 \text{ (When } x \neq 0, y \neq 0\text{)}$$

11. a) Prove that $\sqrt{3} + \sqrt{5}$ is an irrational number by contradiction method.

(OR)

b) If 1,-1 and -3 are the Zeroes of the cubic polynomial $x^3 + 3x^2 - x - 3$ then study the instructions in the table given and write your observations?

Step1: Find $(\alpha + \beta + \gamma)$ sum of the zeroes

Step2: Find $(\alpha\beta + \beta\gamma + \gamma\alpha)$ sum of the zeroes

Step3: Find the value of $\alpha\beta\gamma$

Step4: Compare the polynomial with $ax^3 + bx^2 + cx + d$

Step5: Find a, b, c, d by comparison

Step6: Find $\frac{-b}{a}$, $\frac{c}{a}$, $\frac{-d}{a}$

Step7: Write your Obsevation

12. a) A right circular cone of height 8.4 cm and the radius of its base is 2.1 cm. It is melted and recast into a sphere. Find the radius of the sphere.

(OR)

b) The hypotenutes of a right angled triangle is 25m. If one side is 5m, more than the other side, find its area.

13. a) Draw the graph of the given polynomial and find the zeroes from the graph

$$p(x) = x^2 + 3x - 4$$

(OR)

b) Solve the following pair of equations graphically

$$x+y=3$$

$$3x-2y=4$$

58 (A)

SUMMATIVE ASSESSMENT - I - 2017-2018 MATHEMATICS - Paper - I

(English Medium) PART - B

Class: X]

C) a = 2, b = -6

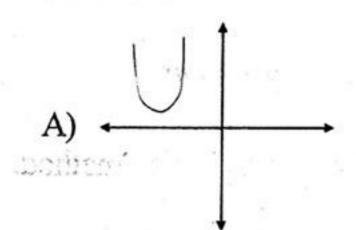
(Max. Marks: 10)

[Time : 1/2 Hr.

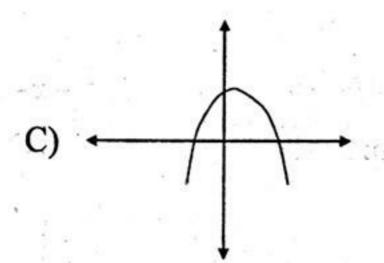
[Turn Over

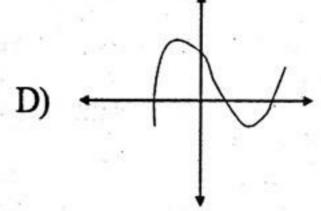
Acadamic Standards		1		A	S	1	1.5	-	I	AS2	2	7.	11	AS3	A	S4		A	S5	Par	T	G
Q.No.	1	2	5	6	7	10	14-21	8	11	22	-25	3	9	26-27	12	28 - 31	4	13	32	- 33	t a	a
Marks					П						10		7	- 1							ĩ	e
Total										in.				13 (22)	4							

Nan	e of the St	udent:		Roll No.:		
Note	·:	0 = 1				
1.	Answer	ALL questions	in Part - B.			
2.		estion has 4 op n the given bra		he capital letter	indicati	ng the
3.	Marks a	re not awarded	d for over writ	ting answers.		
4.	All quest	ions carry equ	ıal (½) mark	S.		
•	· · · ·	1				
14.	HCF of 2	231, 396 is			. (· · (
	A) 33	B) 66	C) 165	D) 231		
15.	n(A)=3	n(B) = 5 and n	$(A \cup B) = 7$ then	$n(A \cap B) = ?$. ()
	A) 3	B) 5	C) 7	D) 1		
16.	If the zer	oes of quadratic p	polynomial x^2 +	(a+1)x+b are 2 and	nd - 3	
	then the	valus of a and b a	are)
	A) $a = -7$	7, b = -1	B) $a = 5$, b	0 = -1		


D) a = 0, b = -6

17.	For what valu	e of k, do the eq	uations $3x - y$	+8=0 and $6x-k$	v = -16	~				
	represent coinc				()				
	A) $\frac{1}{2}$	B) $-\frac{1}{2}$	C) 2	D) -2						
18.	If $\frac{1}{2}$ is a root of	of the equation	$x^2 + kx - \frac{5}{4} = 0$	then the value of k	. ()				
	A) 2	B) -2	C) $\frac{1}{4}$	D) $\frac{1}{2}$						
19.	Value(s) of 'k'	for which the Q	uadratic equation	$ on 2x^2 - kx + k = 0 $	has					
	equal roots ar	е			(,)				
	A) 0 only	B) 4	C) 8 only	D) 0 or 8						
20.	Volumes of two spheres are in the ratio 64:27 then the ratio of their									
1	surface areas				()				
	A) 3:4	B) 4:3	C) 9:16	D) 16:9						
21.	If $x = a$, $y = b$	is the solution	of the equation	as x - y = 2 and x + 1	y=4					
	then the value				()				
	A) 3 and 5	B) 5 and 3	C) 3 and 1	D) -1 and -3						
22.	The Decimal	expansion of the	rational number	$\frac{33}{2^2 \times 5}$ will		v (-				
	terminate afte			2 73	, ()				
	A) one decim	al place	B) two decim	B) two decimal places						
	C) three decir	mal places	D) more than	3 decimal places		42				
23.	The pair of ed	quations $5x - 15$	y = 8 and $3x -$	$9y = \frac{2}{5} \text{ has}$	(,)				
	A) One soluti		B) two soluti							
	C) Infinitely n	nany	D) no solutio	n ·		2				


[Contd... 3


					[Turn	Over					
	C) hemisphere	and cylinder	D) two cylinde	ers		,					
	A) a cone and	a cylinder	B) cylinder an	d sphere							
31.	A cylindrical p	encil sharpened	at one edge is the	e combination of	of ().					
	A) -53	B) -67	C) -60	D) 53							
	$\alpha + \beta + \alpha \beta$ is				()					
30.	If α and β are	e the roots of x^2	+7x-60=0 t	hen the value of	f						
	A) 35 and 15	B) 35 and 20	C) 15 and 3	5 D) 25 and 2:	5						
		ne has 50 and the er of Rs1 and Rs			75.)					
29.	Neeraja has only Rs.1 and Rs.2 coins with her. If the total number										
	A) 4	B) 2	C) 1	D) 3	- 5 1						
28.	If the HCF of the value of m	65 and 117 is ex	pressible in the	form 65m - 117	then (·)					
	C) no real root	ts	D) more than	two roots	'Y :						
	A) two distinc	t real roots	B) two equal r	roots		4					
27.	If the discriminent of Quadratic equations less than zero then the roots are (
	A) ab	B) a^2b^2	C) a^3b^2	D) a^3b^3		170					
		eing prime num	7.	3 12 12 26 26	()					
26.		e intergers <i>p</i> and	u	a ssed as $p = ab^2$	and						
	A) $\frac{-b}{a}$	B) $\frac{b}{a}$	C) $\frac{c}{a}$	D) $\frac{-d}{a}$							
25.	Given that two	zeroes of the cu	bic polynomial	$ax^3 + bx^2 + cx$	+d (
	A) $9.7 cm^3$	B) 77.6 cm ³	C) 58.2 cm ³	D) 19.4 cm ³							
2	a cube of edge		irounur como unu	. cuir oc cutour i	()					
24.	The volume of	t a largest right c	ircular cone that	can be cutout to	rom						

32. Which of the following is not the graph of a Quadratic equation

B) -

33. Graphically the pair of equations 6x-3y+10=0, 2x-y+9=0 represents two lines which are

- A) Intersecting at exactly one point
- B) Intersecting exactly in two points
- C) Coincident
- D) Parallel to each other

