ELECTROCHEMISTRY

ELECTRODE POTENTIAL

For any electrode \rightarrow oxidiation potential = – Reduction potential $E_{cell} = R.P$ of cathode – R.P of anode $E_{cell} = R.P$. of cathode + O.P of anode E_{cell} is always a +ve quantity & Anode will be electrode of low R.P $E_{cell}^{o} = SRP$ of cathode – SRP of anode.

O Greater the SRP value greater will be oxidising power.

GIBBS FREE ENERGY CHANGE :

$$\Delta G = - nFE_{cell}$$

 $\Delta G^{\circ} = - nFE_{cell}^{\circ}$

NERNST EQUATION : (Effect of concentration and temp on emf of cell)

$$\begin{split} \Delta G &= \Delta G^{\circ} + RT \ \ell n Q \qquad (\text{where Q is ratection quotient}) \\ \Delta G^{\circ} &= - RT \ \ell n \ K_{eq} \end{split}$$
$$\begin{aligned} E_{cell} &= E^{\circ}_{cell} - \frac{RT}{nF} \ \ell n \ Q \\ E_{cell} &= E^{\circ}_{cell} - \frac{2.303 \, RT}{nF} \log Q \end{split}$$

 $E_{cell} = E_{cell}^{o} - \frac{0.0591}{n} \log Q \qquad [At 298 K]$ At chemical equilibrium $\Delta G = 0 \qquad ; \qquad E_{cell} = 0.$ $\log K_{eq} = \frac{nE_{cell}^{o}}{0.0591}.$ $E_{cell}^{o} = \frac{0.0591}{n} \log K_{eq}$ For an electrode M(s)/Mⁿ⁺.

$$E_{M^{n+}/M} = E_{M^{n+}/M}^{o} - \frac{2.303RT}{nF} \log \frac{1}{[M^{n+}]}.$$

CONCENTRATION CELL :

0

A cell in which both the electrods are made up of same material.

For all concentration cell $E_{cell}^{o} = 0$.

(a) Electrolyte Concentration Cell : eg. $Zn(s)/Zn^{2+}(c_1) || Zn^{2+}(c_2)/Zn(s)$

$$E = \frac{0.0591}{2} \log \frac{C_2}{C_1}$$

(b) Electrode Concentration Cell : eg. Pt, $H_2(P_1 \text{ atm}) / H^+(1M) / H_2(P_2 \text{ atm}) / Pt$

$$\mathsf{E} = \frac{0.0591}{2} \log \left(\frac{\mathsf{P}_1}{\mathsf{P}_2}\right)$$

DIFFERENT TYPES OF ELECTRODES :

1. Metal-Metal ion Electrode $M(s)/M^{n+}$. $M^{n+} + ne^{-} \longrightarrow M(s)$

$$E = E^{\circ} + \frac{0.0591}{n} \log[M^{n+}]$$

2. Gas-ion Electrode $Pt/H_2(Patm)/H^+(XM)$ as a reduction electrode

$$H^{+}(aq) + e^{-} \longrightarrow \frac{1}{2}H_{2}(Patm)$$
$$E = E^{\circ} - 0.0591 \log \frac{P_{H_{2}}^{\frac{1}{2}}}{[H^{+}]}$$

3. Oxidation-reduction Electrode Pt / Fe²⁺, Fe³⁺ as a reduction electrode Fe³⁺ + $e^- \longrightarrow Fe^{2+}$

$$E = E^{\circ} - 0.0591 \log \frac{[Fe^{2+}]}{[Fe^{3+}]}$$

4. Metal-Metal insoluble salt Electrode eg. Ag/AgCl, Clas a reduction electrode AgCl(s) + $e^- \longrightarrow Ag(s) + Cl^-$

$$E_{CI^{-}/AgCI/Ag} = E_{CI^{-}/AgCI/Ag}^{0} - 0.0591 \log [CI^{-}].$$

ELECTROLYSIS:

(a) K⁺, Ca⁺², Na⁺, Mg⁺², Al⁺³, Zn⁺², Fe⁺², H⁺, Cu⁺², Ag⁺, Au⁺³.

Increasing order of deposition.

(b) Similarly the anion which is strogner reducing agent(low value of SRP) is liberated first at the anode.

FARADAY'S LAW OF ELECTROLYSIS : First Law :

w = zq w = Z it Z = Electrochemical equivalent of substance **Second Law :**

W
$$\alpha$$
 E $\frac{W}{E} = \text{constant}$ $\frac{W_1}{E_1} = \frac{W_2}{E_2} = \dots$
 $\frac{W}{E} = \frac{i \times t \times \text{current efficiency factor}}{96500}$.
Current efficiency = $\frac{\text{actual mass deposited/produced}}{\text{Theoritical mass deposited/produced}} \times 100$

CONDITION FOR SIMULTANEOUS DEPOSITION OF Cu & Fe AT CATHODE

$$\mathsf{E^{o}}_{\mathsf{Cu}^{2+}/\mathsf{Cu}} - \frac{0.0591}{2} \log \ \frac{1}{\mathsf{Cu}^{2+}} = \mathsf{E^{o}}_{\mathsf{Fe}^{2+}/\mathsf{Fe}} - \ \frac{0.0591}{2} \ \log \ \frac{1}{\mathsf{Fe}^{2+}}$$

Condition for the simultaneous deposition of Cu & Fe on cathode.

CONDUCTANCE :

Specific conductance or conductivity :

(Reciprocal of specific resistance)

 $K = \frac{1}{\rho}$

K = specific conductance Equivalent conductance :

$$\lambda_{\rm E} = \frac{\rm K \times 1000}{\rm Normality} \qquad \text{unit : -ohm^{-1} cm^2 eq^{-1}}$$

Molar conductance :

æ

(i)

$$\lambda_m = \frac{K \times 1000}{Molarity}$$

unit : -ohm⁻¹ cm² mole⁻¹

specific conductance = conductance × $\frac{\ell}{2}$

KOHLRAUSCH'S LAW :

Variation of λ_{eq} / λ_{M} of a solution with concentration : Strong electrolyte

 $\lambda_{M}^{c} = \lambda_{M}^{\infty} - b \sqrt{c}$

(ii) Weak electrolytes : $\lambda_{\infty} = n_{+} \lambda_{+}^{\infty} + n_{-} \lambda_{-}^{\infty}$ where λ is the molar conductivity $n_{+} = No$ of cations obtained after dissociation per formula unit $n_{-} = No$ of anions obtained after dissociation per formula unit

APPLICATION OF KOHLRAUSCH LAW :

1. Calculation of λ_{M}^{0} of weak electrolytes :

 $\lambda^{0}_{\ \ \mathsf{M}\ (\mathsf{CH3COOHI})} = \lambda^{0}_{\ \ \mathsf{M}(\mathsf{CH3COONa})} + \lambda^{0}_{\ \ \mathsf{M}(\mathsf{HCI})} - \lambda^{0}_{\ \ \mathsf{M}(\mathsf{NaCI})}$

2. To calculate degree of diossociation of a week electrolyte

$$\alpha = \frac{\lambda_m^c}{\lambda_m^0} \qquad ; \qquad \qquad \mathsf{K}_{\mathsf{eq}} = \frac{c\alpha^2}{(1-\alpha)}$$

3. Solubility (S) of sparingly soluble salt & their K_{sp}

$$\begin{split} \lambda_{\rm M}^{\ \ c} &= \lambda_{\rm M}^{\ \ \infty} \ = \ \kappa \, \times \, \frac{1000}{\text{solubility}} \\ K_{\rm sp} &= S^2. \end{split}$$

Transport Number :

$$\mathbf{t}_{\mathrm{c}} = \left[\frac{\mu_{\mathrm{c}}}{\mu_{\mathrm{c}} + \mu_{\mathrm{a}}}\right], \qquad \mathbf{t}_{\mathrm{a}} = \left[\frac{\mu_{\mathrm{a}}}{\mu_{\mathrm{a}} + \mu_{\mathrm{c}}}\right].$$

Where $t_c =$ Transport Number of cation & $t_a =$ Transport Number of anion