
PART THREE 

ELECTRODYNAMICS 

3.1. CONSTANT ELECTRIC FIELD IN VACUUM 

• Strength and potential of the field of a point charge q: 
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• Relation between field strength and potential: 

E = —VT, 	 (3.1b) 

i.e. field strength is equal to the antigradient of the potential. 
• Gauss's theorem and circulation of the vector E: 

IS)E dS = q/so, 	1;;,E dr = 0. 	 (3.1c) 

• Potential and strength of the field of a point dipole with electric mo-
ment p: 
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where 0 is the angle between the vectors r and p. 
• Energy W of the dipole p in an external electric field, and the moment 

N of forces acting on the dipole: 

W = —pE, N = [pE]. 	 (3.1e) 

• Force F acting on a dipole, and its projection Fx: 
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where alai is the derivative of the vector E with respect to the dipole direction, 
VE is the gradient of the function Ex. 

3.1. Calculate the ratio of the electrostatic to gravitational inter-
action forces between two electrons, between two protons. At what 
value of the specific charge qlm of a particle would these forces be-
come equal (in their absolute values) in the case of interaction of 
identical particles? 

3.2. What would be the interaction force between two copper 
spheres, each of mass 1 g, separated by the distance 1 m, if the total 
electronic charge in them differed from the total charge of the nuclei 
by one per cent? 

3.3. Two small equally charged spheres, each of mass m, are 
suspended from the same point by silk threads of length 1. The 
distance between the spheres x << 1. Find the rate dqldt with which 



the charge leaks off each sphere if their approach velocity varies as 
v = all/ x, where a is a constant. 

3.4. Two positive charges q1  and q2  are located at the points with 
radius vectors r1  and r2. Find a negative charge q3  and a radius vector 
r3  of the point at which it has to be placed for the force acting on 
each of the three charges to be equal to zero. 

3.5. A thin wire ring of radius r has an electric charge q. What 
will be the increment of the force stretching the wire if a point charge 
q0  is placed at the ring's centre? 

3.6. A positive point charge 50 RC is located in the plane xy 
at the point with radius vector r0  = 2i + 3j, where i and j are 
the unit vectors of the x and y axes. Find the 
vector of the electric field strength E and its 

	

magnitude at the point with radius vector 	
\ 	

 T#4 

	

r = 8i — 5j. Here I-, and r are expressed in 	
\) , x/  metres. 

	

3.7. Point charges q and —q are located at the 	I // 

	

vertices of a square with diagonals 2/ as shown 	4-q 
in Fig. 3.1. Find the magnitude of the electric 
field strength at a point located symmetrically 

Fig. 3.1. 
with respect to the vertices of the square at a 
distance x from its centre. 

3.8. A thin half-ring of radius R = 20 cm is uniformly charged 
with a total charge q = 0.70 nC. Find the magnitude of the electric 
field strength at the curvature centre of this half-ring. 

3.9. A thin wire ring of radius r carries a charge q. Find the magni-
tude of the electric field strength on the axis of the ring as a function 
of distance 1 from its centre. Investigate the obtained function at 
1> r. Find the maximum strength magnitude and the correspond-
ing distance 1. Draw the approximate plot of the function E(l). 

3.10. A point charge q is located at the centre of a thin ring of 
radius R with uniformly distributed charge —q. Find the magnitude 
of the electric field strength vector at the point lying on the axis 
of the ring at a distance x from its centre, if x » R. 

3.11. A system consists of a thin charged wire ring of radius R 
and a very long uniformly charged thread oriented along the axis 
of the ring, with one of its ends coinciding with the centre of the 
ring. The total charge of the ring is equal to q. The charge of the 
thread (per unit length) is equal to 2■,. Find the interaction force be-
tween the ring and the thread. 

3.12. A thin nonconducting ring of radius R has a linear charge 
density = A.0  cos cp, where X0  is a constant, p  is the azimuthal 
angle. Find the magnitude of the electric field strength 

(a) at the centre of the ring; 
(b) on the axis of the ring as a function of the distance x from its 

centre. Investigate the obtained function at x >> R. 
3.13. A thin straight rod of length 2a carrying a uniformly distri-

buted charge q is located in vacuum. Find the magnitude of the 

106 



electric field strength as a function of the distance r from the rod's 
centre along the straight line 

(a) perpendicular to the rod and passing through its centre; 
(b) coinciding with the rod's direction (at the points lying outside 

the rod). 
Investigate the obtained expressions at r >> a. 
3.14. A very long straight uniformly charged thread carries 

a charge A. per unit length. Find the magnitude and direction of 
the electric field strength at a point which is at a distance y from 
the thread and lies on the perpendicular passing through one of the 
thread's ends. 

3.15. A thread carrying a uniform charge X per unit length has 
the configurations shown in Fig. 3.2 a and b. Assuming a curvature 
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Fig. 3.2. 	 Fig. 3.3. 

radius R to be considerably less than the length of the thread, find 
the magnitude of the electric field strength at the point 0. 

3.16. A sphere of radius r carries a surface charge of density a 
ar, where a is a constant vector, and r is the radius vector of 

a point of the sphere relative to its centre. Find the electric field 
strength vector at the centre of the sphere. 

3.17. Suppose the surface charge density over a sphere of radius R 
depends on a polar angle 0 as a = ao  cos 0, where ao  is a positive 
constant. Show that such a charge distribution can be represented as 
a result of a small relative shift of two uniformly charged balls 
of radius R whose charges are equal in magnitude and opposite in 
sign. Resorting to this representation, find the electric field strength 
vector inside the given sphere. 

3.18. Find the electric field strength vector at the centre of a ball 
of radius R with volume charge density p = ar, where a is a constant 
vector, and r is a radius vector drawn from the ball's centre. 

3.19. A very long uniformly charged thread oriented along the 
axis of a circle of radius R rests on its centre with one of the ends. 
The charge of the thread per unit length is equal to Find the flux 
of the vector E across the circle area. 

3.20. Two point charges q and —q are separated by the distance 
21 (Fig. 3.3). Find the flux of the electric field strength vector across 
a circle of radius R. 

3.21. A ball of radius R is uniformly charged with the volume 
density p. Find the flux of the electric field strength vector across 



the ball's section formed by the plane located at a distance 7.0  < R 
from the centre of the ball. 

3.22. Each of the two long parallel threads carries a uniform 
charge per unit length. The threads are separated by a distance 1. 
Find the maximum magnitude of the electric field strength in the 
symmetry plane of this system located between the threads. 

3.23. An infinitely long cylindrical surface of circular cross-
section is uniformly charged lengthwise with the surface density 
a = ao  cos cp, where p  is the polar angle of the cylindrical coordinate 
system whose z axis coincides with the axis of the given surface. 
Find the magnitude and direction of the electric field strength vector 
on the z axis. 

3.24. The electric field strength depends only on the x and y coor-
dinates according to the law E = a (xi + yj)/(x2  + y2), where a 
is a constant, i and j are the unit vectors of the x and y axes. Find 
the flux of the vector E through a sphere of radius R with its centre 
at the origin of coordinates. 

3.25. A ball of` radius R carries a positive charge whose volume 
density depends only on a separation r from the ball's centre as 

Po (1 — rIR), where Po  is a constant. Assuming the permittivities 
of the ball and the environment to be equal to unity, find: 

(a) the magnitude of the electric field strength as a function of the 
distance r both inside and outside the ball; 

(b) the maximum intensity Ema, and the corresponding distance rm. 
3.26. A system consists of a ball of radius R carrying a spherically 

symmetric charge and the surrounding space filled with a charge of 
volume density p = air, where a is a constant, r is the distance 
from the centre of the ball. Find the ball's charge at which the mag-
nitude of the electric field strength vector is independent of r outside 
the ball. How high is this strength? The permittivities of the ball 
and the surrounding space are assumed to be equal to unity. 

3.27. A space is filled up with a charge with volume density 
p = Poe-a''3, where Po  and a are positive constants, r is the distance 
from the centre of this system. Find the magnitude of the electric 
field strength vector as a function of r. Investigate the obtained expres-
sion for the small and large values of r, i.e. at ar3  < 1 and ar3  >> 1. 

3.28. Inside a ball charged uniformly with volume density p 
there is a spherical cavity. The centre of the cavity is displaced with 
respect to the centre of the ball by a distance a. Find the field strength 
E inside the cavity, assuming the permittivity equal to unity. 

3.29. Inside an infinitely long circular cylinder charged uniformly 
with volume density p there is a circular cylindrical cavity. The 
distance between the axes of the cylinder and the cavity is equal 
to a. Find the electric field strength E inside the cavity. The permit-
tivity is assumed to be equal to unity. 

3.30. There are two thin wire rings, each of radius R, whose axes 
coincide. The charges of the rings are q and —q. Find the potential 
difference between the centres of the rings separated by a distance a. 
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3.31. There is an infinitely long straight thread carrying a charge 
with linear density X, = 0.40 RC/m. Calculate the potential difference 
between points 1 and 2 if point 2 is removed it = 2.0 times farther 
from the thread than point I. 

3.32. Find the electric field potential and strength at the centre 
of a hemisphere of radius R charged uniformly with the surface 
density a. 

3.33. A very thin round plate of radius R carrying a uniform sur-
face charge density a is located in vacuum. Find the electric field 
potential and strength along the plate's axis as a function of a dis-
tance 1 from its centre. Investigate the obtained expression at 1--4- 0 
and / » R. 

3.34. Find the potential p  at the edge of a thin disc of radius R 
carrying the uniformly distributed charge with surface densi-
ty a. 

3.35. Find the electric field strength vector if the potential of 
this field has the form p = ar, where a is a constant vector, and r 
is the radius vector of a point of the field. 

3.36. Determine the electric field strength vector if the potential 
of this field depends on x, y coordinates as 

a) cp = a (x2  — y2); (b) q = axy, 
where a is a constant. Draw the approximate shape of these fields 

.using lines of force (in the x, y plane). 
3.37. The potential of a certain electrostatic field has the form 

cp = a (x2  + y2) + bz2, where a and b are constants. Find the mag-
nitude and direction of the electric field strength vector. What shape 
have the equipotential surfaces in the following cases: 

(a) a > 0, b> 0; (b) a > 0, b < 0? 
3.38. A charge q is uniformly distributed over the volume of 

a sphere of radius R. Assuming the permittivity to be equal to unity 
throughout, find the potential 

(a) at the centre of the sphere; 
(b) inside the sphere as a function of the distance r from its centre. 
3.39. Demonstrate that the potential of the field generated by 

a dipole with the electric moment p (Fig. 3.4) may be represented as 
pr/4nsor3, where r is the radius vector. 

Using this expression, find the magnitude of the 
electric field strength vector as a function of r z  
and 0. 

9 3.40. A point dipole with an electric moment p 
oriented in the positive direction of the z axis is 
located at the origin of coordinates. Find the p 
projections E z  and E1  of the electric field strength 
vector (on the plane perpendicular to the z axis at Fig. 3.4. 
the point S (see Fig. 3.4)). At which points is E 
perpendicular to p? 

3.41. A point electric dipole with a moment p is placed in the 
external uniform electric field whose strength equals E0, with 



p t t E0. In this case one of the equipotential surfaces enclosing the 
dipole forms a sphere. Find the radius of this sphere. 

3.42. Two thin parallel threads carry a uniform charge with linear 
densities X and —X. The distance between the threads is equal to 1. 
Find the potential of the electric field and the magnitude of its strength 
vector at the distance r >> 1 at the angle 0 to the vector 1 (Fig. 3.5). 

3.43. Two coaxial rings, each of radius R, made of thin wire are 
separated by a small distance 1 (1 < R) and carry the charges q and 
—q. Find the electric field potential and strength at the axis of the 
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Fig. 3.5. 	 Fig. 3.6. 	 Fig. 3.7. 

system as a function of the x coordinate (Fig. 3.6). Show in the same 
drawing the approximate plots of the functions obtained. Investigate 
these functions at x I >> R. 

3.44. Two infinite planes separated by a distance 1 carry a uniform 
surface charge of densities a and —u (Fig. 3.7). The planes have 
round coaxial holes of radius //, with 1 < R. Taking the origin 
O and the x coordinate axis as shown in the figure, find the potential 
of the electric field and the projection of its strength vector E x  on the 
axes of the system as functions of the x coordinate. Draw the approx-
imate plot cp (x). 

3.45. An electric capacitor consists of thin round parallel plates, 
each of radius R, separated by a distance 1 (1 << R) and uniformly 
charged with surface densities a and —a. Find the potential of the 
electric field and the magnitude of its strength vector at the axes 
of the capacitor as functions of a distance x from the plates if x > 1. 
Investigate the obtained expressions at x » R. 

3.46. A dipole with an electric moment p is located at a distance 
r from a long thread charged uniformly with a linear density X. 
Find the force F acting on the dipole if the vector p is oriented 

(a) along the thread; 
(b) along the radius vector r; 
(c) at right angles to the thread and the radius vector r. 
3.47. Find the interaction force between two water molecules 

separated by a distance 1 = 10 nm if their electric moments are 
oriented along the same straight line. The moment of each molecule 
equals p = 0.62.10-29  C • m. 

3.48. Find the potential cp (x, y) of an electrostatic field E = 
= a (yi xj), where a is a constant, i and j are the unit vectors 
of the x and y axes. 



3.49. Find the potential cp (x, y) of an electrostatic field E 
2axyi 	a (x2  — y2) j, where a is a constant, i and j are the unit 

vectors of the x and y axes. 
3.50. Determine the potential cp (x, y, z) of an electrostatic field 

E = ayi (ax bz) j byk, where a and b are constants, i, j, k 
are the unit vectors of the axes x, y, z. 

3.51. The field potential in a certain region of space depends only 
on the x coordinate as cp = — ax3  b, where a and b are constants. 
Find the distribution of the space charge p (x). 

3.52. A uniformly distributed space charge fills up the space be-
tween two large parallel plates separated by a distance d. The poten-
tial difference between the plates is equal to Ay. At what value of 
charge density p is the field strength in the vicinity of one of the 
plates equal to zero? What will then be the field strength near 
the other plate? 

3.53. The field potential inside a charged ball depends only on 
the distance from its centre as cp = are b, where a and b are cons-
tants. Find the space charge distribution p (r) inside the ball. 

3.2. CONDUCTORS AND DIELECTRICS 
IN AN ELECTRIC FIELD 

• Electric field strength near the surface of a conductor in vacuum: 

En  = crieo. 	 (3.2a) 
• Flux of polarization P across a closed surface: 

dS = —q', 	 (3.2b) 

where q' is the algebraic sum of bound charges enclosed by this surface. 

• Vector D and Gauss's theorem for it: 

D = e,)E 	P, 	(11) dS = q, 	 (3.2c) 

where q is the algebraic sum of extraneous charges inside a closed surface. 
• Relations at the boundary between two dielectrics: 

Pan — Pin= — a', D271 	= a, E2T = Err, 	(3.2d) 
where a' and a are the surface densities of bound and extraneous charges, and 
the unit vector n of the normal is directed from medium 1 to medium 2. 

• In isotropic dielectrics: 
P = xe0 E, D = ce0 E, e = 1 	x. 	 (3.2e) 

• In the case of an isotropic uniform dielectric filling up all the space 
between the equipotential surfaces: 

E = Ede. 	 (3.2f) 

3.54. A small ball is suspended over an infinite horizontal con-
ducting plane by means of an insulating elastic thread of stiffness k. 
As soon as the ball was charged, it descended by x cm and its sepa-
ration Horn the plane became equal to 1. Find the charge of the 
ball. 
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3.55. A point charge q is located at a distance 1 from the infinite 
conducting plane. What amount of work has to be performed in 
order to slowly remove this charge very far from the plane. 

3.56. Two point charges, q and —q, are separated by a distance 1, 
both being located at a distance //2 from the infinite conducting 
plane. Find: 

(a) the modulus of the vector of the electric force acting on each 
charge; 

(b) the magnitude of the electric field strength vector at the mid-
point between these charges. 

3.57. A point charge q is located between two mutually perpendi-
cular conducting half-planes. Its distance from each half-plane 
is equal to 1. Find the modulus of the vector of the force acting 
on the charge. 

3.58. A point dipole with an electric moment p is located at 
a distance 1 from an infinite conducting plane. Find the modulus 
of the vector of the force acting on the dipole if the vector p is 
perpendicular to the plane. 

3.59. A point charge q is located at a distance 1 from an infinite 
conducting plane. Determine the surface density of charges induced 
on the plane as a function of separation r from the base of the perpen-
dicular drawn to the plane from the charge. 

3.60. A thin infinitely long thread carrying a charge X per unit 
length is oriented parallel to the infinite conducting plane. The 
distance between the thread and the plane is equal to 1. Find: 

(a) the modulus of the vector of the force acting on a unit length 
of the thread; 

(b) the distribution of surface charge density a (x) over the plane, 
where x is the distance from the plane perpendicular to the conducting 
surface and passing through the thread. 

3.61. A very long straight thread is oriented at right angles to 
an infinite conducting plane; its end is separated from the plane 
by a distance 1. The thread carries a uniform charge of linear den-
sity X. Suppose the point 0 is the trace of the thread on the plane. 
Find the surface density of the induced charge on the plane 

(a) at the point 0; 
(b) as a function of a distance r from the point 0. 
3.62. A thin wire ring of radius R carries a charge q. The ring 

is oriented parallel to an infinite conducting plane and is separated 
by a distance 1 from it. Find: 

(a) the surface charge density at the point of the plane symmetrical 
with respect to the ring; 

(b) the strength and the potential of the electric field at the centre 
of the ring. 

3.63. Find the potential cp of an uncharged conducting sphere out-
side of which a point charge q is located at a distance 1 from the 
sphere's centre. 
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3.64. A point charge q is located at a distance r from the centre 0 
of an uncharged conducting spherical layer whose inside and outside 
radii are equal to R1  and R2 respectively. Find the potential at 
the point 0 if r < R1. 

3.65. A system consists of two concentric conducting spheres, 
with the inside sphere of radius a carrying a positive charge q1. 
What charge q5  has to be deposited on the outside sphere of radius b 
to reduce the potential of the inside sphere to zero? How does the 
potential cp depend in this case on a distance r from the centre of 
the system? Draw the approximate plot of this dependence. 

3.66. Four large metal plates are located at a small distance d 
from one another as shown in Fig. 3.8. The extreme plates are inter- 
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Fig. 3.8. 
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connected by means of a conductor while a potential difference 
AT is applied to internal plates. Find: 

(a) the values of the electric field strength between neighbouring 
plates; 

(b) the total charge per unit area of each plate. 
3.67. Two infinite conducting plates I and 2 are separated by 

a distance 1. A point charge q is located between the plates at a dis-
tance x from plate I. Find the charges induced on each plate. 

3.68. Find the electric force experienced by a charge reduced 
to a unit area of an arbitrary conductor if the surface density of the 
charge equals a. 

3.69. A metal ball of radius R = 1.5 cm has a charge q = 10 RC. 
Find the modulus of the vector of the resultant force acting on a charge 
located on one half of the ball. 

3.70. When an uncharged conducting ball of radius R is placed 
in an external uniform electric field, a surface charge density a = 
= a°  cos 0 is induced on the ball's surface (here ao  is a constant, 

is a polar angle). Find the magnitude of the resultant electric force 
acting on an induced charge of the same sign. 

3.71. An electric field of strength E = 1.0 kV/cm produces polari-
zation in water equivalent to the correct orientation of only one out 
of N molecules. Find N. The electric moment of a water molecule 
equals p = 0.62-10-29  C•m. 

3.72. A non-polar molecule with polarizability 13 is located at 
a great distance 1 from a polar molecule with electric moment p. 
Find the magnitude of the interaction force between the molecules 
if the vector p is oriented along a straight line passing through both 
molecules. 
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3.73. A non-polar molecule is located at the axis of a thin uniformly 
charged ring of radius R. At what distance x from the ring's centre 
is the magnitude of the force F acting on the given molecule 

(a) equal to zero; (b) maximum? 
Draw the approximate plot Fx (x). 

3.74. A point charge q is located at the centre of a ball made of 
uniform isotropic dielectric with permittivity e. Find the polari-
zation P as a function of the radius vector r relative to the centre 
of the system, as well as the charge q' inside a sphere whose 
radius is less than the radius of the ball. 

3.75. Demonstrate that at a dielectric-conductor interface the 
surface density of the dielectric's bound charge a' = (e — 1)/e, 
where a is the permittivity, a is the surface density of the charge 
on the conductor. 

3.76. A conductor of arbitrary shape, carrying a charge q, is 
surrounded with uniform dielectric of permittivity 8 (Fig. 3.9). 

Fig. 3.9. Fig. 3A0. 

Find the total bound charges at the inner and outer surfaces of the 
dielectric. 

3.77. A uniform isotropic dielectric is shaped as a spherical layer 
with radii a and b. Draw the approximate plots of the electric field 
strength E and the potential IT vs the distance r from the centre of 
the layer if the dielectric has a certain positive extraneous charge 
distributed uniformly: 

(a) over the internal surface of the layer; (b) over the volume of 
the layer. 

3.78. Near the point A (Fig. 3.10) lying on the boundary between 
glass and vacuum the electric field strength in vacuum is equal to 
E0  = 10.0 V/m, the angle between the vector E0  and the normal 
n of the boundary line being equal to ac, = 30°. Find the field strength 
E in glass near the point A , the angle a between the vector E and n, 
as well as the surface density of the bound charges at the point A. 

3.79. Near the plane surface of a uniform isotropic dielectric 
with permittivity a the electric field strength in vacuum is equal 
to Bo, the vector E0  forming an angle 0 with the normal of the dielec-
tric's surface (Fig. 3.11). Assuming the field to be uniform both inside 
and outside the dielectric, find: 

(a) the flux of the vector E through a sphere of radius R with 
centre located at the surface of the dielectric; 
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Fig. 3.11. 

(b) the circulation of the vector D around the closed path 
of length I (see Fig. 3.11) whose plane is perpendicular to the surface 
of the dielectric and parallel to the vector Eo. 

3.80. An infinite plane of uniform dielectric with permittivity a 
is uniformly charged with extraneous charge of space density p. 
The thickness of the plate is equal to 2d. Find: 

(a) the magnitude of the electric field strength and the potential 
as functions of distance 1 from the middle point of the plane (where 
the potential is assumed to be equal to zero); having chosen the 
x coordinate axis perpendicular to the plate, draw the approximate 
plots of the projection E. (x) of the vector E and the potential w  (x); 

(b) the surface and space densities of the bound charge. 
3.81. Extraneous charges are uniformly distributed with space 

density p > 0 over a ball of radius R made of uniform isotropic 
dielectric with permittivity a. Find: 

(a) the magnitude of the electric field strength as a function of 
distance r from the centre of the ball; draw the approximate plots 
E (r) and cp (r); 

(b) the space and surface densities of the bound charges. 
3.82. A round dielectric disc of radius R and thickness d is stat-

ically polarized so that it gains the uniform polarization P, with 
the vector P lying in the plane of the disc. Find the strength E of 
the electric field at the centre of the disc if d << R. 

3.83. Under certain conditions the polarization of an infinite 
uncharged dielectric plate takes the form P = P, (1 — x2/d2), where 
Po  is a vector perpendicular to the plate, x is the distance from the 
middle of the plate, d is its half-thickness. Find the strength E 
of the electric field inside the plate and 
the potential difference between its sur-
faces. 

3.84. Initially the space between the 
plates of the capacitor is filled with air, 
and the field strength in the gap is equal 
to Ea. Then half the gap is filled with 
uniform isotropic dielectric with permittivity a as shown in Fig. 3.12. 
Find the moduli of the vectors E and D in both parts of the gap 
(1 and 2) if the introduction of the dielectric 

Are, zaert,,z 
Fig. 3.12. 
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(a) does not change the voltage across the plates; 
(b) leaves the charges at the plates constant. 
3.85. Solve the foregoing problem for the case when half the gap 

is filled with the dielectric in the way shown in Fig. 3.13. 
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Fig. 3.13. 	 Fig. 3.14. 

3.86. Half the space between two concentric electrodes of a spher-
ical capacitor is filled, as shown in Fig. 3.14, with uniform isotropic 
dielectric with permittivity e. The charge of the capacitor is q. 
Find the magnitude of the electric field strength between the elec-
trodes as a function of distance r from the curvature centre of the 
electrodes. 

3.87. Two small identical balls carrying the charges of the same 
sign are suspended from the same point by insulating threads of 
equal length. When the surrounding space was filled with kerosene 
the divergence angle between the threads remained constant. What 
is the density of the material of which the balls are made? 

3.88. A uniform electric field of strength E = 100 V/m is gener-
ated inside a ball made of uniform isotropic dielectric with permit-
tivity a = 5.00. The radius of the ball is R = 3.0 cm. Find the 
maximum surface density of the bound charges and the total bound 
charge of one sign. 

3.89. A point charge q is located in vacuum at a distance 1 from 
the plane surface of a uniform isotropic dielectric filling up all the 
half-space. The permittivity of the dielectric equals a. Find: 

(a) the surface density of the bound charges as a function of distance 
r from the point charge q; analyse the obtained result at 1 	0; 

(b) the total bound charge on the surface of the dielectric. 
3.90. Making use of the formulation and the solution of the fore-

going problem, find the magnitude of the force exerted by the charges 
bound on the surface of the dielectric on the point charge q. 

3.91. A point charge q is located on the plane dividing vacuum 
and infinite uniform isotropic dielectric with permittivity a. Find 
the moduli of the vectors D and E as well as the potential q  as func-
tions of distance r from the charge q. 

3.92. A small conducting ball carrying a charge q is located in 
a uniform isotropic dielectric with permittivity a at a distance 1 
from an infinite boundary plane between the dielectric and vacuum. 
Find the surface density of the bound charges on the boundary plane 
as a function of distance r from the ball. Analyse the obtained result 
for 1 O. 
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3.93. A half-space filled with uniform isotropic dielectric with 
permittivity a has the conducting boundary plane. Inside the dielec-
tric, at a distance 1 from this plane, there is a small metal ball pos-
sessing a charge q. Find the surface density of the bound charges at 
the boundary plane as a function of distance r from the ball. 

3.94. A plate of thickness h made of uniform statically polarized 
dielectric is placed inside a capacitor whose parallel plates are inter-
connected by a conductor. The polarization of the dielectric is equal 

C 	/7 

Fig. 3.15. 

to P (Fig. 3.15). The separation between the capacitor plates is d. 
Find the strength and induction vectors for the electric field both 
inside and outside the plates. 

3.95. A long round dielectric cylinder is polarized so that the 
vector P = ar, where a is a positive constant and r is the distance 
from the axis. Find the space density p' of bound charges as a function 
of distance r from the axis. 

3.96. A dielectric ball is polarized uniformly and statically. Its 
polarization equals P. Taking into account that a ball polarized in 
this way may be represented as a result of a small shift of all positive 
charges of the dielectric relative to all negative charges, 

(a) find the electric field strength E inside the ball; 
(b) demonstrate that the field outside the ball is that of a dipole 

located at the centre of the ball, the potential of that field being 
equal to q = por/4a co, where Po  is the electric moment of the ball, 
and r is the distance from its centre. 

3.97. Utilizing the solution of the foregoing problem, find the elec-
tric field strength E0  in a spherical cavity in an infinite statically polariz-
ed uniform dielectric if the dielectric's polarization is P, and far from 
the cavity the field strength is E. 

3.98. A uniform dielectric ball is placed in a uniform electric 
field of strength E0. Under these conditions the dielectric becomes 
polarized uniformly. Find the electric field strength E inside the ball 
and the polarization P of the dielectric whose permittivity equals e. 
Make use of the result obtained in Problem 3.96. 

3.99. An infinitely long round dielectric cylinder is polarized 
uniformly and statically, the polarization P being perpendicular 
to the axis of the cylinder. Find the electric field strength E inside the 
dielectric. 

3.100. A long round cylinder made of uniform dielectric is placed 
in a uniform electric field of strength E0. The axis of the 
cylinder is perpendicular to vector E0. Under these conditions 
the dielectric becomes polarized uniformly. Making use of the result 
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obtained in the foregoing problem, find the electric field strength 
E in the cylinder and the polarization P of the dielectric whose per-
mittivity is equal to 8. 

3.3. ELECTRIC CAPACITANCE. 
ENERGY OF AN ELECTRIC FIELD 

• Capacitance of a parallel-plate capacitor: 

C = 880S/d. 	 (3.3a) 

• Interaction energy of a system of point charges: 
1 

2 qicpi• 	 (3.3b) 

• Total electric energy of a system with continuous charge distribution: 
1 

= 	cpp dV 	 (3.3c) 

• Total electric energy of two charged bodies 1. and 2: 

	

W = WI+ W2+ Wi2, 	 (3.3d) 

where WI  and W2  are the self-energies of the bodies, and W12 is the interaction 
energy, 

• Energy of a charged capacitor: 
qV 	q2 	CV2  

W 
" = 2 = 2C — 2 	

(3.3e) 

• Volume density of electric field energy: 
ED 880E2  

(3.3f) 
2 

3.101. Find the capacitance of an isolated ball-shaped conductor 
of radius Ri  surrounded by an adjacent concentric layer of dielectric 
with permittivity s and outside radius R2. 

3.102. Two parallel-plate air capacitors, each of capacitance C, 
were connected in series to a battery with emf 6. Then one of the 
capacitors was filled up with uniform dielectric with permittivity a. 
How many times did the electric field strength in that capacitor 
decrease? What amount of charge flows through the battery? 

3.103. The space between the plates of a parallel-plate capacitor 
is filled consecutively with two dielectric layers 1 and 2 having 
the thicknesses d1  and d2  and the permittivities 81  and 82  respectively. 
The area of each plate is equal to S. Find: 

(a) the capacitance of the capacitor; 
(b) the density a' of the bound charges on the boundary plane if 

the voltage across the capacitor equals V and the electric field is 
directed from layer 1 to layer 2. 

3.104. The gap between the plates of a parallel-plate capacitor 
is filled with isotropic dielectric whose permittivity 8 varies linearly 
from el  to 62  (82  > 81) in the direction perpendicular to the plates. 
The area of each plate equals S, the separation between the plates 
is equal to d. Find: 

(a) the capacitance of the capacitor; 
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Fig. 3.16. 

(b) the space density of the bound charges as a function of a 
if the charge of the capacitor is q and the field E in it is directed toward 
the growing a values. 

3.105. Find the capacitance of a spherical capacitor whose elec-
trodes have radii R1  and R2  > Ri  and which is filled with isotropic 
dielectric whose permittivity varies as a = air, where a is a constant, 
and r is the distance from the centre of the capacitor. 

3.106. A cylindrical capacitor is filled with two cylindrical layers 
of dielectric with permittivities el  and 82. The inside radii of the 
layers are equal to RI  and R 2  > RI. The maximum permissible 
values of electric field strength are equal to Elm  and Elm  for these 
dielectrics. At what relationship between a, R, and En, will the 
voltage increase result in the field strength reaching the breakdown 
value for both dielectrics simultaneously? 

3.107. There is a double-layer cylindrical capacitor whose para-
meters are shown in Fig. 3.16. The breakdown field strength values 
for these dielectrics are equal to Ei  and E2 re-
spectively. What is the breakdown voltage of 
this capacitor if eiRlEi< E 2R 2E2? 

3.108. Two long straight wires with equal 
cross-sectional radii a are located parallel to each 
other in air. The distance between their axes 
equals b. Find the mutual capacitance of the 
wires per unit length under the condition b>> a. 

3.109. A long straight wire is located parallel to 
an infinite conducting plate. The wire cross-sec-
tional radius is equal to a, the distance between 
the axis of the wire and the plane equals b. Find the mutual ca-
pacitance of this system per unit length of the wire under the condi-
tion a « b. 

3.110. Find the capacitance of a system of two identical metal 
balls of radius a if the distance between their centres is equal to b, 
with b >> a. The system is located in a uniform dielectric with 
permittivity a. 

3.111. Determine the capacitance of a system consisting of a metal 
ball of radius a and an infinite conducting plane separated from the 
centre of the ball by the distance 1 if 1 >> a. 

3.112. Find the capacitance of a system of identical capacitors 
between points A and B shown in 

(a) Fig. 3.17a; (b) Fig. 3.17b. 

C 

Aid 	 A I  	II 	I e 	 i II I II 1  II 1 -r-11 1  1°3  

	

ci 1 t'2 	
IT 	c 1  c

CII 	1 8  

	

(a) 	 (b) 
Fig. 3.17. 
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3.113. Four identical metal plates are located in air at equal 
distances d from one another. The area of each plate is equal to S. 
Find the capacitance of the system between points A and B if the 
plates are interconnected as shown 

(a) in Fig. 3.18a; (b) in Fig. 3.18b. 

A 8 A 8 

(a) 	 (b) 

Fig. 3.18. 

3.114. A capacitor of capacitance C1  =-- 1.0 p.F withstands the 
maximum voltage V1  = 6.0 kV while a capacitor of capacitance 
C2 = 2.0 RF, the maximum voltage V2 = 4.0 kV. What voltage 
will the system of these two capacitors withstand if they are con-
nected in series? 

3.115. Find the potential difference between points A and B 
of the system shown in Fig. 3.19 if the emf is equal to g = 110 V 
and the capacitance ratio C2/C1  = = 2.0. 

Fig. 3.19. 

3.116. Find the capacitance of an infinite circuit formed by the 
repetition of the same link consisting of two identical capacitors, 
each with capacitance C (Fig. 3.20). 

c o--Ili  c If 	11-1 	A 	& 	8 

TC.  T C -Fe  
Fig. 3.20. 	 Fig. 3.21. 

3.117. A circuit has a section AB shown in Fig. 3.21. The emf 
of the source equals g = 10 V, the capacitor capacitances are equal 
to C1  = 1.0 RF and C2 = 2.0 laF, and the potential difference WA -
- cp a = 5.0 V. Find the voltage across each capacitor. 

3.118. In a circuit shown in Fig. 3.22 find the potential difference 
between the left and right plates of each capacitor. 
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3.119. Find the charge of each capacitor in the circuit shown in 
Fig. 	3.22. 

[ Cf  

	 62 

11 C,  

0  

II C2  

II 
6:5 

11 4  

C2  
6 

	

Fig. 3.22. 	 Fig. 3.23. 

3.120. Determine the potential difference TA  - IT B between points 
A and B of the circuit shown in Fig. 3.23. Under what condition is 
it equal to zero? 

3.121. A capacitor of capacitance Cl  = 1.0 ttF charged up to 
a voltage V = 110 V is connected in parallel to the terminals 
of a circuit consisting of two uncharged capacitors connected in 
series and possessing the capacitances C2 = 2.0 RF and C3 = 3.0 IR. 
What charge will flow through the connecting wires? 

3.122. What charges will flow after the shorting of the switch 
Sw in the circuit illustrated in Fig. 3.24 through sections 1 and 2 
in the directions indicated by the arrows? 

T .., 	Tcz  

i, 	'2 
6

T 
 

2
1  P Te2  

Fig. 3.24. 	 Fig. 3.25. 

3.123. In the circuit shown in Fig. 3.25 the emf of each battery 
is equal to g = 60 V, and the capacitor capacitances are equal 
to Cl  = 2.0 fi.F and C2 = 3.0 p,F. Find the charges which will 
flow after the shorting of the switch Sw through sections' 1, 2 and 3 
in the directions indicated by the arrows. 

3.124. Find the potential difference TA  — cpB  between points 
A and B of the circuit shown in Fig. 3.26. 

   

  

 

0 

 

  

  

  

Fig. 3.26. 	 Fig. 3.27. 

3.125. Determine the potential at point 1 of the circuit shown in 
Fig. 3.27, assuming the potential at the point 0 to be equal to zero. 



Using the symmetry of the formula obtained, write the expressions 
for the potentials. at points 2 and 3. 

3.126. Find the capacitance of the circuit shown in Fig. 3.28 
between points A and B. 

	il ez  
A 

-- Cj 

Cz 

Fig, 3.28. 

3.127. Determine the interaction energy of the point charges lo-
cated at the corners of a square with the side a in the circuits shown 
in Fig. 3.29. 

(c) 	 (b) 	 (c) 

Fig. 3.29. 

3.128. There is an infinite straight chain of alternating charges 
q and ---q. The distance between the neighbouring charges is equal 
to a. Find the interaction energy of each charge with all the 
others. 

Instruction. Make use of the expansion of In (1 + a) in a power 
series in a. 

3.129. A point charge q is located at a distance 1 from an infinite 
tonducting plane. Find the interaction energy of that charge with 
chose induced on the plane. 

3.130. Calculate the interaction energy of two balls whose charges 
qi  and q, are spherically symmetrical. The distance between the 
centres of the balls is equal to 1. 

Instruction. Start with finding the interaction energy of a ball and 
a thin spherical layer. 

3.131. A capacitor of capacitance C1  = 1.0 pF carrying initially 
a voltage V = 300 V is connected in parallel with an uncharged 
capacitor of capacitance C 2  = 2.0 p,F. Find the increment of the 
electric energy of this system by the moment equilibrium is reached. 
Explain the result obtained. 



Fig. 3.32. 

3.132. What amount of heat will be generated in the circuit shown 
in Fig. 3.30 after the switch Sw is shifted from position 1 to position 2? 

Sw 

1 2 

6 

Fig. 3.30. 	 Fig. 3.31. 

3.133. What amount of heat will be generated in the circuit shown.  
in Fig. 3.31 after the switch Sw is shifted from position 1 to posi-
tion 2? 

3.134. A system consists of two thin concentric metal shells of 
radii RI  and R2 with corresponding charges q1  and q 2. Find the self-
energy values W1  and W2 of each shell, the interaction energy of 
the shells W12, and the total electric energy of the system. 

3.135. A charge q is distributed uniformly over the volume of 
a ball of radius R. Assuming the permittivity to be equal to unity, 
find: 

(a) the electrostatic self-energy of the ball; 
(b) the ratio of the energy W1  stored in the ball to the energy 

W2 pervading the surrounding space. 
3.136. A point charge q = 3.0 RC is located at the centre of a spher-

ical layer of uniform isotropic dielectric with permittivity e = 3.0. 
The inside radius of the layer is equal to a = 250 mm, the outside 
radius is b = 500 mm. Find the electrostatic energy inside the 
dielectric layer. 

3.137. A spherical shell of radius R1  with uniform charge q is 
expanded to a radius R2. Find the work performed by the electric 
forces in this process. 

3.138. A spherical shell of radius Ri  with a uniform charge q has 
a point charge qo  at its centre. Find the work performed by the elec-
tric forces during the shell expansion from 
radius R1  to radius R2. 

3.139. A spherical shell is uniformly 
charged with the surface derisity a. Using the — 
energy conservation law, find the magnitude 
of the electric force acting on a unit area of 
the shell. 

3.140. A point charge q is located at the 
centre 0 of a spherical uncharged conducting 
layer provided with a small orifice (Fig. 3.32). The inside and outside 
radii of the layer are equal to a and b respectively. What amount of 
work has to be performed to slowly transfer the charge q from the 
point 0 through the orifice and into infinity? 

C Sw 

1  



3.141. Each plate of a parallel-plate air capacitor has an area S. 
What amount of work has to be performed to slowly increase the 
distance between the plates from x1  to x2  if 

(a) the capacitance of the capacitor, which is equal to q, or (b) the 
voltage across the capacitor, which is equal to V, is kept constant 
in the process? 

3.142. Inside a parallel-plate capacitor there is a plate parallel 
to the outer plates, whose thickness is equal to = 0.60 of the gap 
width. When the plate is absent the capacitor capacitance equals 
c = 20 nF. First, the capacitor was connected in parallel to a cons-
tant voltage source producing V = 200 V, then it was disconnected 
from it, after which the plate was slowly removed from the gap. 
Find the work performed during the removal, if the plate is 

(a) made of metal; (b) made of glass. 
3.143. A parallel-plate capacitor was lowered into water in a hor-

izontal position, with water filling up the gap between the plates 
d = 1.0 mm wide. Then a constant voltage V = 500 V was applied 
to the capacitor. Find the water pressure increment in the 
gap. 

3.144. A parallel-plate capacitor is located horizontally so that 
one of its plates is submerged into liquid while the other is over its 
surface (Fig. 3.33). The permittivity of the liquid is equal to a, 
its density is equal to p. To what height will the level of the liquid 
in the capacitor rise after its plates get a charge of surface density o-? 

Fig. 3.33 Fig. 3.34. 

3.145. A cylindrical layer of dielectric with permittivity a is 
inserted into a cylindrical capacitor to fill up all the space between 
the electrodes. The mean radius of the electrodes equals R, the gap 
between them is equal to d, with d << R. The constant voltage V 
is applied across the electrodes of the capacitor. Find the magnitude 
of the electric force pulling the dielectric into the capacitor. 

3.146. A capacitor consists of two stationary plates shaped as 
a semi-circle of radius R and a movable plate made of dielectric 
with permittivity a and capable of rotating about an axis 0 between 
the stationary plates (Fig. 3.34). The thickness of the movable plate 
is equal to d which is practically the separation between the station-
ary plates. A potential difference V is applied to the capacitor. 
Find the magnitude of the moment of forces relative to the axis 0 
acting on the movable plate in the position shown in the 
figure. 



7 5 

4' 
Fig. 3.35. 

3.4. ELECTRIC CURRENT 

• Ohm's law for an inhomogeneous segment of a circuit: 

V12 (P1—  P2+412 
	

(3.4a) 

where Via is the voltage drop across the segment. 
• Differential form of Ohm's law: 

j = a (E 	E*), 	 (3.4b) 

where E* is the strength of a field produced by extraneous forces. 
• Kirchhoff's laws (for an electric circuit): 

= 0, E/hRh 	 (3.4c) 

• Power P of current and thermal power Q: 

1)=.-VI=(m 	q2+12) I, Q=--RI2 . 	 (3.4d) 

• Specific power Psp of current and specific thermal power Qsp: 

(E E*), 	Qsp=- Pj2 
	

(3.4e) 

• Current density in a metal: 
j = enu, 	 (3.4f) 

where u is the average velocity of carriers. 
• Number of ions recombining per unit volume of gas per unit time: 

nr = rn2, 	 (3.4g) 
where r is the recombination coefficient. 

3.147. A long cylinder with uniformly charged surface and cross-
sectional radius a = 1.0 cm moves with a constant velocity v = 
= 10 m/s along its axis. An electric field strength at the surface 
of the cylinder is equal to E = 0.9 kV/cm. Find the resulting convec-
tion current, that is, the current caused by mechanical transfer of 
a charge. 

3.148. An air cylindrical capacitor with a dc voltage V = 200 V 
applied across it is being submerged vertically into a vessel filled 
with water at a velocity v = 5.0 mm/s. The electrodes of the capacitor 
are separated by a distance d = 2.0 mm, the mean curvature radius 
of the electrodes is equal to r = 50 mm. Find the current flowing 
in this case along lead wires, if d <r. 

3.149. At the temperature 0 °C the electric 
resistance of conductor 2 is yi times that of 
conductor 1. Their temperature coefficients of 
resistance are equal to a2  and al  respectively. 
Find the temperature coefficient of resistance 
of a circuit segment consisting of these two 
conductors when they are connected 

(a) in series; (b) in parallel. 
3.150. Find the resistance of a wire frame 

shaped as a cube (Fig. 3.35) when measured between points 
(a) 1-7; (b) 1-2; (c) 1-3. 
The resistance of each edge of the frame is R 



3.151. At what value of the resistance Rx  in the circuit shown 
in Fig. 3.36 will the total resistance between points A and B be 
independent of the number of cells? 

2R 	28 
	

2/7 
	

2/f 

Fig. 3.36. 

3.152. Fig. 3.37 shows an infinite circuit formed by the repetition 
of the same link, consisting of resistance R1 =-- 4.052 and R2 = 3.0 O. 
Find the resistance of this circuit between points A and B. 

A 

R2 	RZ 	R2 

B 	  

Fig. 3.37. 

3.153. There is an infinite wire grid with square cells (Fig. 3.38). 
The resistance of each wire between neighbouring joint connections 
is equal to R0. Find the resistance R of the = 2 -et R R®  AC 7 
whole grid between points A and B. 

Instruction. Make use of principles of 
symmetry and superposition. 

3.154. A homogeneous poorly conducting 
medium of resistivity p fills up the space 
between two thin coaxial ideally conduct-
ing cylinders. The radii of the cylinders 
are equal to a and b, with a <b, the length 
of each cylinder is 1. Neglecting the edge 
effects, find the resistance of the medium 
between the cylinders. 

3.155. A metal ball of radius a is surrounded by a thin concentric 
metal shell of radius b. The space between these electrodes is filled 
up with a poorly conducting homogeneous medium of resistivity p. 
Find the resistance of the interelectrode gap. Analyse the obtained 
solution at b 

3.156. The space between two conducting concentric spheres of 
radii a and b (a < b) is filled up with homogeneous poorly conducting 
medium. The capacitance of such a system equals C. Find the resistiv-
ity of the medium if the potential difference between the spheres, 
when they are disconnected from an external voltage, decreases 
it-fold during the time interval At. 

A • 

• 

Fig. 3.38. 
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3.157. Two metal balls of the same radius a are located in a homo-
geneous poorly conducting medium with resistivity p. Find the 
resistance of the medium between the balls provided that the separa-
tion between them is much greater than the radius of the ball. 

3.158. A metal ball of radius a is located at a distance 1 from an 
infinite ideally conducting plane. The space around the ball is filled 
with a homogeneous poorly conducting medium with resistivity p. 
In the case of a <1 find: 

(a) the current density at the conducting plane as a function of 
distance r from the ball if the potential difference between the ball 
and the plane is equal to V; 

(b) the electric resistance of the medium between the ball and 
the plane. 

3.159. Two long parallel wires are located in a poorly conducting 
medium with resistivity p. The distance between the axes of the 
wires is equal to 1, the cross-section radius of each wire equals a. 
In the case a <1 find: 

(a) the current density at the point equally removed from the axes 
of the wires by a distance r if the potential difference between the 
wires is equal to V; 

(b) the electric resistance of the medium per unit length of the 
wires. 

3.160. The gap between the plates of a parallel-plate capacitor 
is filled with glass of resistivity p = 100 GQ•m. The capacitance 
of the capacitor equals C = 4.0 nF. Find the leakage current of the 
capacitor when a voltage V = 2.0 kV is applied to it. 

3.161. Two conductors of arbitrary shape are embedded into an 
infinite homogeneous poorly conducting medium with resistivity 
p and permittivity e. Find the value of a product RG for this system, 
where R is the resistance of the medium between the conductors, 
and C is the mutual capacitance of the wires in the presence of the 
medium. 

3.162. A conductor with resistivity p bounds on a dielectric with 
permittivity a. At a certain point A at the conductor's surface the 
electric displacement equals D, the vector D being directed away 
from the conductor and forming an angle a with the normal of the 
surface. Find the surface density of charges on the conductor at the 
point A and the current density in the conductor in the vicinity of 
the same point. 

3.163. The gap between the plates of a parallel-plate capacitor 
is filled up with an inhomogeneous poorly conducting medium whose 
conductivity varies linearly in the direction perpendicular to the 
plates from o = 1.0 pS/m to o-, = 2.0 pS/m. Each plate has an 
area S = 230 cm2, and the separation between the plates is d = 
= 2.0 mm. Find the current flowing through the capacitor due to 
a voltage V = 300 V. 

3.164. Demonstrate that the law of refraction of direct current 
lines at the boundary between two conducting media has the form 



tan a2/tan al  = a,/cri, where al  and a2  are the conductivities of 
the media, a2  and al  are the angles between the current lines and the 
normal of the boundary surface. 

3.165. Two cylindrical conductors with equal cross-sections and 
different resistivities pi  and (32  are put end to end. Find the charge 
at the boundary of the conductors if a current I flows from conductor 
1 to conductor 2. 

3.166. The gap between the plates of a parallel-plate capacitor is 
filled up with two dielectric layers 1 and 2 with thicknesses d1  and 
d2, permittivities 8, and 82, and resistivities Pi  and p2. A de voltage 
V is applied to the capacitor, with electric field directed from layer 1 
to layer 2. Find a, the surface density of extraneous charges at the 
boundary between the dielectric layers, and the condition under 
which a = 0. 

3.167. An inhomogeneous poorly conducting medium fills up 
the space between plates 1 and 2 of a parallel-plate capacitor. Its 
permittivity and resistivity vary from values 8 1  , pi  at plate 1 to 
values 82, P2  at plate 2. A de voltage is applied to the capacitor 
through which a steady current I flows from plate 1 to plate 2. Find 
the total extraneous charge in the given medium. 

3.168. The space between the plates of a parallel-plate capacitor 
is filled up with inhomogeneous poorly conducting medium whose 
resistivity varies linearly in the direction perpendicular to the plates. 
The ratio of the maximum value of resistivity to the minimum 
one is equal to 11  The gap width equals d. Find the volume density 
of the charge in the gap if a voltage V is applied to the capacitor. 
E is assumed to be 1everywhere. 

3.169. A long round conductor of cross-sectional area S is made 
of material whose resistivity depends only on a distance r from the 
axis of the conductor as p = air', where a is a constant. Find: 

(a) the resistance per unit length of such a conductor; 
(b) the electric field strength in the conductor due to which a cur-

rent I flows through it. 
3.170. A capacitor with capacitance C = 400 pF is connected 

via a resistance R = 650 Q to a source of constant voltage Vo. 
How soon will the voltage developed across the capacitor reach a 
value V = 0.90 Vo? 

3.171. A capacitor filled with dielectric of permittivity e = 2.1 
loses half the charge acquired during a time interval i = 3.0 min. 
Assuming the charge to leak only through the dielectric filler, cal-
culate its resistivity. 

3.172. A circuit consists of a source of a constant emf e and a resist 
ante R and a capacitor with capacitance C connected in series. The 
internal resistance of the source is negligible. At a moment t = 0 
the capacitance of the capacitor is abruptly decreased 1-fold. Find 
the current flowing through the circuit as a function of time t. 

3.173. An ammeter and a voltmeter are connected in series to a bat-
tery with an emf F = 6.0 V. When a certain resistance is connected 



in parallel with the voltmeter, the readings of the latter decrease 
= 2.0 times, whereas the readings of the ammeter increase the 

same number of times. Find the voltmeter readings after the con-
nection of the resistance. 

3.174. Find a potential difference cp, — cp2  between points 1 and 2 
of the circuit shown in Fig. 3.39 if R 1= 10 52, R2 = 20 Q, = 
= 5.0 V, and F, = 2.0 V. The internal resist- 
ances of the current sources are negligible. 	R, 	S/ 

3.175. Two sources of current of equal emf 
are connected in series and have different 1 	 2 
internal resistances R1  and R2. (R2  > 111). 
Find the external resistance R at which the 	62 
potential difference across the terminals of one 
of the sources (which one in particular?) be- 	Fig. 3.39. 

comes equal to zero. 
3.176. N sources of current with different emf's are connected 

as shown in Fig. 3.40. The emf's of the sources are proportional to 
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Fig. 3.41. Fig. 3.40. 

their internal resistances, i.e. g = aR, where a is an assigned con-
stant. The lead wire resistance is negligible. Find: 

(a) the current in the circuit; 
(b) the potential difference between points A and B dividing 

the circuit in n and N — rt links. 
3.177. In the circuit shown in Fig. 3.41 the sources have emf's 

F1  = 1.0 V and F2  = 2.5 V and the resistances have the values 
Ri  = 10 5.2 and R 2  = 20 52. The internal resistances of the sources 
are negligible. Find a potential difference WA  — (p B  between the 
plates A and B of the capacitor C. 

3.178. In the circuit shown in Fig. 3.42 the emf of the source is 
equal to e = 5.0 V and the resistances are equal to RI  = 4.0 El 
and 11 2  = 6.0 52. The internal resistance of the source equals R = 
= 0.10 52. Find the currents flowing through the resistances R1  
and R2. 

3.179. Fig. 3.43 illustrates a potentiometric circuit by means of 
which we can vary a voltage V applied to a certain device possessing 
a resistance R. The potentiometer has a length 1 and a resistance 
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R 0 , and voltage Vo  is applied to its terminals. Find the voltage V 
fed to the device as a function of distance x. Analyse separately the 
case R >> R0. 
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Fig. 3.42. 	 Fig. 3.43. 

3.180. Find the emf and the internal resistance of a source which 
is equivalent to two batteries connected in parallel whose emf's 
are equal to ei  and 62  and internal resistances to R1  and R2. 

3.181. Find the magnitude and direction of the current flowing 
through the resistance R in the circuit shown in Fig. 3.44 if the 
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Fig.3.45. 

 

 

 

Fig. 3.44. 

 

emf's of the sources are equal to gi  = 1.5 V and t, = 3.7 V and 
the resistances are equal to R1  = 10 S2, R2 = 20 S2, R = 5.0 Q. 
The internal resistances of the sources are negligible. 

3.182. In the circuit shown in Fig. 3.45 the sources have emf's 
ti  = 1.5 V, g, = 2.0 V, g3  = 2.5 V, and the resistances are 
equal to R1  = 10 S2, R 2  = 20 S2, R, = 30 Q. The internal resistances 
of the sources are negligible. Find: 

(a) the current flowing through the 	 82  
resistance R1; 	i 	1 	 

(b) a potential difference TA  — cps  I  I  
between the points A and B. 

3.183. Find the current flowing through 6°1 	T  8  	T6  
the resistance R in the circuit shown in 
Fig. 3.46. The internal resistances of the 	Fig. 3.46.  
batteries are negligible. 

3.184. Find a potential difference CpA — cp B  between the plates 
of a capacitor C in the circuit shown in Fig. 3.47 if the sources have 
emf's F, = 4.0 V and E, = 1.0 V and the resistances are equal 
to R, = 10 Q, R2 = 20 Q, and R3 = 30 Q. The internal resistances 
of the sources are negligible. 
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Fig. 3.49. 
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Fig. 3.50. 

3.185. Find the current flowing through the resistance R1  of the 
circuit shown in Fig. 3.48 if the resistances are equal to R1  = 10 52, 
R2 = 20 52, and 113 = 30 Q, and the potentials of points 1, 2, and 3 
are equal to cp1  = 10 V, •:P2  = 6 V, and cp, = 5 V 

R3  
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Fig, 3.47. 
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Fig. 3.48. 

 

3.186. A constant voltage V = 25 V is maintained between 
points A and B of the circuit (Fig. 3.49). Find the magnitude and 

direction of the current flowing through the segment CD if the resist-
ances are equal to R1  = 1.0 52, R2 = 2.0 0, R3 = 3.0 52, and R4 = 
= 4.0 Q. 

3.187. Find the resistance between points A and B of the circuit 
shown in Fig. 3.50. 

3.188. Find how the voltage across the capacitor C varies with 
time t (Fig. 3.51) after the shorting of the switch Sw at the moment 
t = 0. 

Fig. 3.51. 	 Fig. 3.52. 

3.189. What amount of heat will be generated in a coil of resist-
ance R due to a charge q passing through it if the current in the coil 

(a) decreases down to zero uniformly during a time interval At; 
(b) decreases down to zero halving its value every At seconds? 
3.190. A de source with internal resistance R0  is loaded with 

three identical resistances R interconnected as shown in Fig. 3.52. 
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Fig. 3.53. 

At what value of R will the thermal power generated in this circuit 
be the highest? 

3.191. Make sure that the current distribution over two resistances 
R1  and R2  connected in parallel corresponds to the minimum thermal 
power generated in this circuit. 

3.192. A storage battery with emf 6 = 2.6 V loaded with an 
external resistance produces a current I = 1.0 A. In this case the 
potential difference between the terminals of the storage battery 
equals V = 2.0 V. Find the thermal power generated in the battery 
and the power developed in it by electric forces. 

3.193. A voltage V is applied to a de electric motor. The armature 
winding resistance is equal to R. At what value of current flowing 
through the winding will the useful power of the motor be the highest? 
What is it equal to? What is the motor efficiency in this case? 

3.194. How much (in per cent) has a filament diameter decreased 
due to evaporation if the maintenance of the previous temperature 
required an increase of the voltage by ri = 1.0%? The amount of 
heat transferred from the filament into surrounding space is assumed 
to be proportional to the filament surface area. 

3.195. A conductor has a temperature-independent resistance R 
and a total heat capacity C. At the moment t = 0 it is connected 
to a de voltage V. Find the time dependence of a conductor's tempe-
rature T assuming the thermal power dissipated into surrounding 
space to vary as q = k (T — To), where k is a constant, To  is the 
environmental temperature (equal to the conductor's temperature 
at the initial moment). 

3.196. A circuit shown in Fig. 3.53 has resistances R1  = 2052 
and R2 = 30 Q. At what value of the resistance Rx  will the thermal 

1.62 

Fig. 3.54. 

power generated in it be practically independent of small variations 
of that resistance? The voltage between the points A and B is sup-
posed to be constant in this case. 

3.197. In a circuit shown in Fig. 3.54 resistances R1  and R2 
are known, as well as emf's ei  and g2. The internal resistances 
of the sources are negligible. At what value of the resistance R 
will the thermal power generated in it be the highest? What is it 
equal to? 

3.198. A series-parallel combination battery consisting of a large 
number N = 300 of identical cells, each with an internal resistance 
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Fig. 3.55. 

r = 0.3 52, is loaded with an external resistance R = 10 Q. Find 
the number n of parallel groups consisting of an equal number of 
cells connected in series, at which the external resistance generates 
the highest thermal power. 

3.199. A capacitor of capacitance C = 5.00 µF is connected to 
a source of constant emf 6 = 200 V (Fig. 3.55). Then the switch 
Sw was thrown over from contact 1 to contact 2. Find the amount 
of heat generated in a resistance R, = 500 52 if R, = 330 Q. 

3.200. Between the plates of a parallel-plate capacitor there is 
a metallic plate whose thickness takes up = 0.60 of the capacitor 

Fig. 3.56. 

gap. When that plate is absent the capacitor has a capacity C 
20 nF. The capacitor is connected to a de voltage source V =-- 

= 100 V. The metallic plate is slowly extracted from the gap. Find: 
(a) the energy increment of the capacitor; 
(b) the mechanical work performed in the process of plate extrac-

tion. 
3.201. A glass plate totally fills up the gap between the electrodes 

of a parallel-plate capacitor whose capacitance in the absence of 
that glass plate is equal to C = 20 nF. The capacitor is connected 
to a do voltage source V = 100 V. The plate is slowly, and without 
friction, extracted from the gap. Find the capacitor energy increment 
and the mechanical work performed in the process of plate extrac-
tion. 

3.202. A cylindrical capacitor connected to a de voltage source V 
touches the surface of water with its end (Fig. 3.56). The separation 
d between the capacitor electrodes is substantially less than their 
mean radius. Find a height h to which the water level in the gap 
will rise. The capillary effects are to be neglected. 

3.203. The radii of spherical capacitor electrodes are equal to 
a and b, with a < b. The interelectrode space is filled with homoge-
neous substance of permittivity s and resistivity p. Initially the 
capacitor is not charged. At the moment t = 0 the internal electrode 
gets a charge go. Find: 

(a) the time variation of the charge on the internal electrode; 
(b) the amount of heat generated during the spreading of the 

charge. 
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3.204. The electrodes of a capacitor of capacitance C = 2.00 tiF 
carry opposite charges q, = 1.00 mC. Then the electrodes are inter-
connected through a resistance R = 5.0 MQ. Find: 

(a) the charge flowing through that resistance during a time inter-
val i = 2.00 s; 

(b) the amount of heat generated in the resistance during the 
same interval. 

3.205. In a circuit shown in Fig. 3.57 the capacitance of each 
capacitor is equal to C and the resistance, to R. One of the capacitors 
was connected to a voltage Vo  and then at the 
moment t = 0 was shorted by means of the switch 
Sw. Find: 	

_F-4 (a) a current I in the circuit as a function of -r- 

Sw 

C 	C -r  
time t; 	 I  	I 

(b) the amount of generated heat provided a 
dependence I (t) is known. 

Fig. 3.57. 3.206. A coil of radius r = 25 cm wound of a thin 
copper wire of length 1 = 500 m rotates with an 
angular velocity co = 300 rad/s about its axis. The coil is connect-
ed to a ballistic galvanometer by means of sliding contacts. The 
total resistance of the circuit is equal to R = 21 Q. Find the specific 
charge of current carriers in copper if a sudden stoppage of the 
coil makes a charge q = 10 nC flow through the galvano-
meter. 

3.207. Find the total momentum of electrons in a straight wire 
of length 1 = 1000 m carrying a current I = 70 A. 

3.208. A copper wire carries a current of density j = 1.0 A/mm2. 
Assuming that one free electron corresponds to each copper atom, 
evaluate the distance which will be covered by an electron during 
its displacement 1 = 10 mm along the wire. 

3.209. A straight copper wire of length 1 = 1000 m and cross-
sectional area S = 1.0 mm2  carries a current I = 4.5 A. Assuming 
that one free electron corresponds to each copper atom, find: 

(a) the time it takes an electron to displace from one end of the 
wire to the other; 

(b) the sum of electric forces acting on all free electrons in the 
given wire. 

3.210. A homogeneous proton beam accelerated by a potential 
difference V = 600 kV has a round cross-section of radius r = 
= 5.0 mm. Find the electric field strength on the surface of the beam 
and the potential difference between the surface and the axis of 
the beam if the beam current is equal to I = 50 mA. 

3.211. Two large parallel plates are located in vacuum. One of 
them serves as a cathode, a source of electrons whose initial velocity 
is negligible. An electron flow directed toward the opposite plate prod-
uces a space charge causing the potential in the gap between the 
plates to vary as cp = ax4/3, where a is a positive constant, and x is 
the distance from the cathode. Find: 
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(a) the volume density of the space charge as a function 
of x; 

(b) the current density. 
3.212. The air between two parallel plates separated by a distance 

d = 20 mm is ionized by X-ray radiation. Each plate has an area 
S = 500 cm2. Find the concentration of positive ions if at a voltage 
V = 100 V a current I = 3.0 p,A flows between the plates, which 
is well below the saturation current. The air ion mobilities are u-ei-  = 

1.37 cm2/(V•s) and uo = 1.91 cm2/(V•s). 
3.213. A gas is ionized in the immediate vicinity of the surface 

of plane electrode 1 (Fig. 3.58) separated from electrode 2 by a dis-
tance 1. An alternating voltage varying with time t as V = Vo  sin cot 
is applied to the electrodes. On decreasing the 
frequency co it was observed that the galvano- 
meter G indicates a current only at to < con, 
where co, is a certain cut-off frequency. Find 
the mobility of ions reaching electrode 2 under 
these conditions. 

	

3.214. The air between two closely located 	V 
plates is uniformly ionized by ultraviolet radia- 

	

tion. The air volume between the plates is equal 	Fig. 3.58. 
to V = 500 cm3, the observed saturation current 
is equal to /sat  = 0.48 RA. Find: 

(a) the number of ion pairs produced in a unit volume per unit 
time; 

(b) the equilibrium concentration of ion pairs if the recombination 
coefficient for air ions is equal to r = 1.67.10-6  cm3/s. 

3.215. Having been operated long enough, the ionizer producing 

nt  = 3.5.109  cm-3•s-1  of ion pairs per unit volume of air per unit 
time was switched off. Assuming that the only process tending to 
reduce the number of ions in air is their recombination with coeffic-
ient r = 1.67-10-6  cm3/s, find how soon after the ionizer's switching 
off the ion concentration decreases ri = 2.0 times. 

3.216. A parallel-plate air capacitor whose plates are separated 
by a distance d = 5.0 mm is first -charged to a potential difference 
V = 90 V and then disconnected from a de voltage source. Find 
the time interval during which the voltage across the capacitor de-
creases by II = 1.0%, taking into account that the average number 
of ion pairs formed in air under standard conditions per unit volume 

per unit time is equal to ni  = 5.0 cm-3•s-1  and that the given volt-
age corresponds to the saturation current. 

3.217. The gap between two plane plates of a capacitor equal to 
d is filled with a gas. One of the plates emits vo  electrons per second 
which, moving in an electric field, ionize gas molecules; this way 
each electron produces a new electrons (and ions) along a unit length 
of its path. Find the electronic current at the opposite plate, neglect-
ing the ionization of gas molecules by formed ions. 
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3.218. The gas between the capacitor plates separated by a dist- 
ance d is uniformly ionized by ultraviolet radiation so that n i  elect-
rons per unit volume per second are formed. These electrons moving 
in the electric field of the capacitor ionize gas molecules, each electron 
producing cc new electrons (and ions) per unit length of its path. 
Neglecting the ionization by ions, find the electronic current den-
sity at the plate possessing a higher potential. 

3.5. CONSTANT MAGNETIC FIELD. 
MAGNETICS 

• Magnetic field of a point charge 	q 	moving with non-relativistic 
locity v: 

B 	
q [yr] 

ve-

(3.5a) 

(3.5b) 

(3.5c) 

(3.5d) 

(3.5e) 

— 	
r3  

• Biot-Savart law: 

I [dl , r] 
dB= 111° 	Uri  dV, 	dB=  

• 4:t 	r 3 	 431 	r3 

• Circulation of a vector B and Gauss's theorem for it: 

dr = µo/, 	§B dS = 0. 

• Lorentz force: 
F = qE 	q [vB]. 

• Ampere force: 
dF = [jB] dV, 	dF = I [dl, B]. 

• Force and moment of forces acting on a magnetic dipole pm  = I S n: 

	

F=pm  
OB

, N-- [pmB], 	 (3.5f) 

where OBIOn is the derivative of a vector B with respect to the dipole direction. 
• Circulation of magnetization J: 

(),J dr = I', 	 (3.5g) 

where I' is the total molecular current. 
• Vector H and its circulation: 

H=

• 

— J, 	H dr = /, 	 (3.5h) 

where I is the algebraic sum of macroscopic currents. 
• Relations at the boundary between two magnetics: 

	

B2n, H = H2i• 	 (3.5i) 

• For the case of magnetics in which J = xH: 

B = µp,011, µ = 1 	x. 	 (3.5j) 

3.219. A current I = 1.00 A circulates in a round thin-wire loop 
of radius R = 100 mm. Find the magnetic induction 

(a) at the centre of the loop; 



(b) at the point lying on the axis of the loop at a distance x = 
= 100 mm from its centre. 

3.220. A current I flows along a thin wire shaped as a regular 
polygon with n sides which can be inscribed into a circle of radius R. 
Find the magnetic induction at the centre of the polygon. Analyse 
the obtained expression at n oo. 

3.221. Find the magnetic induction at the centre of a rectangular 
wire frame whose diagonal is equal to d = 16 cm and the angle 
between the diagonals is equal to q) = 30°; the current flowing in 
the frame equals I = 5.0 A. 

3.222. A current /=5.0 A flows along a thin wire shaped as shown 
in Fig. 3.59. The radius of a curved part of the wire is equal to R = 
=- 120 mm, the angle 21:p = 90°. Find the magnetic induction of 
the field at the point 0. 

I 

3.223. Find the magnetic induction of the field at the point 0 
of a loop with current I, whose shape is illustrated 

(a) in Fig. 3.60a, the radii a and b, as well as the angle q) are 
known; 

(b) in Fig. 3.60b, the radius a and the side b are known. 
3.224. A current I flows along a lengthy thin-walled tube of radius 

R with longitudinal slit of width h. Find the induction of the mag-
netic field inside the tube under the condition h << R. 

3.225. A current I flows in a long straight wire with cross-section 
having the form of a thin half-ring of radius R (Fig. 3.61). Find 
the induction of the magnetic field at the point 0. 

	

(b) 	 (c) 
Fig. 3.61. 	 Fig. 3.62. 

3.226. Find the magnetic induction of the field at the point 0 
if a current-carrying wire has the shape shown in Fig. 3.62 a, b, c. 
The radius of the curved part of the wire is R, the linear parts are 
assumed to be very long. 

(a) 



3.227. A very long wire carrying a current I = 5.0 A is bent 
at right angles. Find the magnetic induction at a point lying on a per-
pendicular to the wire, drawn through the point of bending, at 
a distance 1 = 35 cm from it. 

3.228. Find the magnetic induction at the point 0 if the wire car-
rying a current I = 8.0 A has the shape shown in Fig. 3.63 a, b, c. 

Fig. 3.63. 

The radius of the curved part of the wire is R = 100 mm, the linear 
parts of the wire are very long. 

3.229. Find the magnitude and direction of the magnetic induction 
vector B 

(a) of an infinite plane carrying a current of linear density i; 
the vector i is the same at all points of the plane; 

(b) of two parallel infinite planes carrying currents of linear den-
sities i and —i; the vectors i and —i are constant at all points of 
the corresponding planes. 

3.230. A uniform current of density j flows inside an infinite 
plate of thickness 2d parallel to its surface. Find the magnetic induc-
tion induced by this current as a function of 
the distance x from the median plane of the 
plate. The magnetic permeability is assumed 
to be equal to unity both inside and outside 
the plate. 

3.231. A direct current I flows along a 
lengthy straight wire. From the point 0 
(Fig. 3.64) the current spreads radially all 	 0 
over an infinite conducting plane perpendicu- 
lar to the wire. Find the magnetic induction 	Fig. 3.64. 

 
at all points of space. 

3.232. A current I flows along a round loop. Find the integral 

B dr along the axis of the loop within the range from —00 to +00. 

Explain the result obtained. 
3.233. A direct current of density j flows along a round uniform 

straight wire with cross-section radius R. Find the magnetic induction 
vector of this current at the point whose position relative to the axis 
of the wire is defined by a radius vector r. The magnetic permeability 
is assumed to be equal to unity throughout all the space. 
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Fig. 3.65. 

3.234. Inside a long straight uniform wire of round cross-section 
there is a long round cylindrical cavity whose axis is parallel to 
the axis of the wire and displaced from the latter by a distance 1. 
A direct current of density j flows along the wire. Find the magnetic 
induction inside the cavity. Consider, in particular, the case I = 0. 

3.235. Find the current density as a function of distance r from 
the axis of a radially symmetrical parallel stream of electrons if the 
magnetic induction inside the stream varies as B = bra, where 
b and a are positive constants. 

3.236. A single-layer coil (solenoid) has length 1 and cross-section 
radius R, A number of turns per unit length is equal to n. Find the 
magnetic induction at the centre of the coil when a current I flows 
through it. 

3.237. A very long straight solenoid has a cross-section radius 
R and n turns per unit length. A direct current I flows through the 
solenoid. Suppose that x is the distance from the end of the solenoid, 
measured along its axis. Find: 

(a) the magnetic induction B on the axis as a function of x; draw 
an approximate plot of B vs the ratio x/R; 

(b) the distance xo  to the point on the axis at which the value of 
B differs by 11 = 1% from that in the middle section of the sole-
noid. 

3.238. A thin conducting strip of width h = 2.0 cm is tightly 
wound in the shape of a very long coil with cross-section radius R = 
= 2.5 cm to make a single-layer straight solenoid. A direct current 
I = 5.0 A flows through the strip. Find the magnetic induction 
inside and outside the solenoid as a function of the distance r from 
its axis. 

3.239. N = 2.5.103  wire turns are uniformly wound on a wooden 
toroidal core of very small cross-section. A current I flows through 
the wire. Find the ratio 1 of the magnetic induction inside the core 
to that at the centre of the toroid. 

3.240. A direct current I = 10 A flows in a long straight round 
conductor. Find the magnetic flux through a half of wire's cross-
section per one metre of its length. 

3.241. A very long straight solenoid carries a current I. The 
cross-sectional area of the solenoid is equal to S, the number of 
turns per unit length is equal to n. 
Find the flux of the vector B through 
the end plane of the solenoid. 

3.242. Fig. 3.65 shows a toroidal sol-
enoid whose cross-section is rectangular. 
Find the magnetic flux through this 
cross-section if the current through the 
winding equals I = 1.7 A, the total 
number of turns is N = 1000, the ratio 
of the outside diameter to the inside one is 71 = 1.6, and the 
height is equal to h = 5.0 cm. 
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3.243. Find the magnetic moment of a thin round loop with cur-
rent if the radius of the loop is equal to R = 100 mm and the mag-
netic induction at its centre is equal to B = 6.0 RT. 

3.244. Calculate the magnetic moment of a thin wire with a cur-
rent I = 0.8 A, wound tightly on half a tore (Fig. 3.66). The diameter 
of the cross-section of the tore is equal to d = 5.0 cm, the number 
of turns is N = 500. 

Fig. 3.66. Fig. 3.67. 

3.245. A thin insulated wire forms a plane spiral of N = 100 
tight turns carrying a current I = 8 mA. The radii of inside and 
outside turns (Fig. 3.67) are equal to a = 50 mm and b = 100 mm. 
Find: 

(a) the magnetic induction at the centre of the spiral; 
(b) the magnetic moment of the spiral with a given current. 
3.246. A non-conducting thin disc of radius R charged uniformly 

over one side with surface density a rotates about its axis with 
an angular velocity e). Find: 

(a) the magnetic induction at the centre of the disc; 
(b) the magnetic moment of the disc. 
3.247. A non-conducting sphere of radius R = 50 mm charged 

uniformly with surface density a = 10.0 µC/m2  rotates with an 
angular velocity co = 70 rad/s about the axis passing through its 
centre. Find the magnetic induction at the centre of the sphere. 

3.248. A charge q is uniformly distributed over the volume of 
a uniform ball of mass m and radius R which rotates with an angular 
velocity e.) about the axis passing through its centre. Find the respec-
tive magnetic moment and its ratio to the mechanical moment. 

3.249. A long dielectric cylinder of radius R is statically polarized 
so that at all its points the polarization is equal to P = ar, where 
a is a positive constant, and r is the distance from the axis. The 
cylinder is set into rotation about its axis with an angular velocity w. 
Find the magnetic induction B at the centre of the cylinder. 

3.250. Two protons move parallel to each other with an equal 
velocity v = 300 km/s. Find the ratio of forces of magnetic and 
electrical interaction of the protons. 



Fig. 3.69. 

(a) 
	

(b) 

Fig. 3.68. 

3.251. Find the magnitude and direction of a force vector acting 
on a unit length of a thin wire, carrying a current I = 8.0 A, at 
a point 0, if the wire is bent as shown in 

(a) Fig. 3.68a, with curvature radius R = 10 cm; 
(b) Fig. 3.68b, the distance between the long parallel segments 

of the wire being equal to 1 = 20 cm. 
3.252. A coil carrying a current I = 10 mA is placed in a uniform 

magnetic field so that its axis coincides with the field direction. 
The single-layer winding of the coil is made of copper wire with 

diameter d = 0.10 mm, radius of turns is equal to R = 30 mm. 
At what value of the induction of the external magnetic field can 
the coil winding be ruptured? 

3.253. A copper wire with cross-sectional area S = 2.5 mm2  
bent to make three sides of a square can turn about a horizontal 
axis 00' (Fig. 3.69). The wire is located in uniform vertical magnetic 
field. Find the magnetic induction if on passing a current I = 16 A 
through the wire the latter deflects by an angle 0 = 20°. 

3.254. A small coil C with N = 200 turns is mounted on one 
end of a balance beam and introduced between the poles of an electro-
magnet as shown in Fig. 3.70. The cross-sectional area of the coil 

Fig. 3.70, 

is S = 1.0 cm2, the length of the arm OA of the balance beam is 
1 = 30 cm. When there is no current in the coil the balance is hi 
equilibrium. On passing a current I = 22 mA through the coil the 
equilibrium is restored by putting the additional counterweight of 
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mass Am = 60 mg on the balance pan. Find the magnetic induction 
at the spot where the coil is located. 

3.255. A square frame carrying a current I = 0.90 A is located 
in the same plane as a long straight wire carrying a current / 0  
= 5.0 A. The frame side has a length a = 8.0 cm. The axis of the 
frame passing through the midpoints of opposite sides is parallel to 
the wire and is separated from it by the distance which is 1 = 1.5 
times greater than the side of the frame. Find: 

(a) Ampere force acting on the frame; 
(b) the mechanical work to be performed in order to turn the 

frame through 180° about its axis, with the currents maintained 
constant. 

3.256. Two long parallel wires of negligible resistance are con-
nected at one end to a resistance R and at the other end to a de volt-
age source. The distance between the axes of the wires is 1 = 20 times 
greater than the cross-sectional radius of each wire. At what value 
of resistance R does the resultant force of interaction between the 
wires turn into zero? 

3.257. A direct current I flows in a long straight conductor whose 
cross-section has the form of a thin half-ring of radius R. The same 
current flows in the opposite direction along a thin conductor located 
on the "axis" of the first conductor (point 0 in Fig. 3.61). Find the 
magnetic interaction force between the given con- 
ductors reduced to a unit of their length. 

3.258. Two long thin parallel conductors of the -(2--).—c-
shape shown in Fig. 3.71 carry direct currents Ii  
and /2. The separation between the conductors is a, 
the width of the right-hand conductor is equal to b. II I' 
With both conductors lying in one plane, find the 
magnetic interaction force between them reduced 
to a unit of their length. 

3.259. A system consists of two parallel planes 
carrying currents producing a uniform magnetic 	Fig. 3.71. 
field of induction B between the planes. Outside 
this space there is no magnetic field. Find the magnetic force acting 
per unit area of each plane. 

3.260. A conducting current-carrying plane is placed in an external 
uniform magnetic field. As a result, the magnetic induction becomes 

51 	82 	81 	82 	fif 

0 

(a) (c) 

Fig. 3.72. 
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equal to B1  on one side of the plane and to 132, on the other. Find 
the magnetic force acting per unit area of the plane in the cases 
illustrated in Fig. 3.72. Determine the direction of the current in 
the plane in each case. 

3.261. In an electromagnetic pump designed for transferring mol-
ten metals a pipe section with metal is located in a uniform magnetic 
field of induction B (Fig. 3.73). A current 
I is made to flow across this pipe section 	 11 
in the direction perpendicular both to the 
vector B and to the axis of the pipe. Find 
the gauge pressure produced by the pump 
if B = 0.10 T, I=100 A, and a= 2.0 cm. 

3.262. A current I flows in a long thin-
walled cylinder of radius R. What pressure 
do the walls of the cylinder experience? 

3.263. What pressure does the lateral 
surface of a long straight solenoid with n 
turns per unit length experience when a current I flows through it? 

3.264. A current I flows in a long single-layer solenoid with cross-
sectional radius R. The number of turns per unit length of the sole-
noid equals n. Find the limiting current at which the winding may 
rupture if the tensile strength of the wire is equal to Fiim. 

3.265. A parallel-plate capacitor with area of each plate equal to 
S and the separation between them to d is put into a stream of con-
ducting liquid with resistivity p. The liquid moves parallel to the 
plates with a constant velocity v. The whole system is located in 
a uniform magnetic field of induction B, vector B being parallel to 
the plates and perpendicular to the stream direction. The capacitor 
plates are interconnected by means of an external resistance R. 
What amount of power is generated in that resistance? At what 
value of R is the generated power the highest? What is this highest 
power equal to? 

3.266. A straight round copper conductor of radius R = 5.0 mm 
carries a current I = 50 A. Find the potential difference between 
the axis of the conductor and its surface. The concentration of the 
conduction electrons in copper is equal to n = 0.9.1023  cm-3. 

3.267. In Hall effect measurements in a sodium conductor the 
strength of a transverse field was found to be equal to E = 5.0 µV/cm 
with a current density j = 200 A/cm2  and magnetic induction B = 
= 1.00 T. Find the concentration of the conduction electrons and 
its ratio to the total number of atoms in the given conductor. 

3.268. Find the mobility of the conduction electrons in a copper 
conductor if in Hall effect measurements performed in the magnetic 
field of induction B = 100 mT the transverse electric field strength 
of the given conductor turned out to be 3.1.103  times less than 
that of the longitudinal electric field. 

3.269. A small current-carrying loop is located at a distance r 
from a long straight conductor with current I. The magnetic moment 

Fig. 3.73. 
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Fig. 3.74. 

of the loop is equal to pm. Find the magnitude and direction of the 
force vector applied to the loop if the vector pm  

(a) is parallel to the straight conductor; 
(b) is oriented along the radius vector r; 
(c) coincides in direction with the magnetic field produced by the 

current I at the point where the loop is located. 
3.270. A small current-carrying coil having a magnetic moment 

pm  is located at the axis of a round loop of radius R with current I 
flowing through it. Find the magnitude of the vector force applied 
to the coil if its distance from the centre of the loop is equal to x 
and the vector pm, coincides in direction with the axis of the loop. 

3.271. Find the interaction force of two coils with magnetic mo-
ments Thin  = 4.0 mA• m2  and p2,, = 6.0 mA• m2  and collinear axes if 
the separation between the coils is equal to 1 = 20 cm which exceeds 
considerably their linear dimensions. 

3.272. A permanent magnet has the shape of a sufficiently thin 
disc magnetized along its axis. The radius of the disc is R = 1.0 cm. 
Evaluate the magnitude of a molecular current I' flowing along the 
rim of the disc if the magnetic induction at the point on the axis of 
the disc, lying at a distance x = 10 cm from its centre, is equal to 
B = 30 RT. 

3.273. The magnetic induction in vacuum at a plane surface of 
a uniform isotropic magnetic is equal to B, the vector B forming an 
angle a with the normal of the surface. The permeability of the magnet-
ic is equal to Find the magnitude of the magnetic induction B' in 
the magnetic in the vicinity of its surface. 

3.274. The magnetic induction in vacuum at a plane surface of 
a magnetic is equal to B and the vector B forms an angle 0 with the 

normal n of the surface (Fig. 3.74). The permeability of the magnetic 
is equal to R. Find: 

(a) the flux of the vector H through the spherical surface S of 
radius R, whose centre lies on the surface of the magnetic; 

(b) the circulation of the vector B around the square path 1' with 
side 1 located as shown in the figure. 

3.275. A direct current I flows in a long round uniform cylindrical 
wire made of paramagnetic with susceptibility x. Find: 

(a) the surface molecular current is; 
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(b) the volume molecular current I t," . 
How are these currents directed toward each other? 

3.276. Half of an infinitely long straight current-carrying solenoid 
is filled with magnetic substance as shown in Fig. 3.75. Draw the 

Fig. 3.75. 

approximate plots of magnetic induction B, strength H, and magne-
tization I on the axis as functions of x. 

3.277. An infinitely long wire with a current I flowing in it is 
located in the boundary plane between two non-conducting media 
with permeabilities µl  and N. Find the modulus of the magnetic 
induction vector throughout the space as a function of the distance 
r from the wire. It should be borne in mind that the lines of the vec-
tor B are circles whose centres lie on the axis of the wire. 

3.278. A round current-carrying loop lies in the plane boundary 
between magnetic and vacuum. The permeability of the magnetic 
is equal to R. Find the magnetic induction B at an arbitrary point on 
the axis of the loop if in the absence of the magnetic the magnetic 
induction at the same point becomes equal to Bo. Generalize the 
obtained result to all points of the field. 

3.279. When a ball made of uniform magnetic is introduced into 
an external uniform magnetic field with induction Bo, it gets uniform-
ly magnetized. Find the magnetic induction B inside the ball with 
permeability R; recall that the magnetic field inside a uniformly mag 
netized ball is uniform and its strength is equal to H' = — J/3, 
where J is the magnetization. 

3.280. N = 300 turns of thin wire are uniformly wound on a per-
manent magnet shaped as a cylinder whose length is equal to 1 = 
= 15 cm. When a current I = 3.0 A was passed through the wiring 
the field outside the magnet disappeared. Find the coercive force 
He  of the material from which the magnet was manufactured. 

3.281. A permanent magnet is shaped as a ring with a narrow gap 
between the poles. The mean diameter of the ring equals d = 20 cm. 
The width of the gap is equal to b = 2.0 mm and the magnetic induc-
tion in the gap is equal to B. = 40 mT. Assuming that the scattering 
of the magnetic flux at the gap edges is negligible, find the modulus 
of the magnetic field strength vector inside the magnet. 

3.282. An iron core shaped as a tore with mean radius R = 250 mm 
supports a winding with the total number of turns N = 1000. The 
core has a cross-cut of width b = 1.00 mm. With a current I 
= 0.85 A flowing through the winding, the magnetic induction in 
the gap is equal to B = 0.75 T. Assuming the scattering of the magnet-
ic flux at the gap edges to be negligible, find the permeability of iron 
under these conditions. 
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Fig. 3.77. 

3.283. Fig. 3.76 illustrates a basic magnetization curve of iron 
(commercial purity grade). Using this plot, draw the permeability 
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Fig. 3.76. 

p. as a function of the magnetic field strength H. At what value of 
H is the permeability the greatest? What is tt ioaa, equal to? 

3.284. A thin iron ring with mean diameter d = 50 cm supports 
a winding consisting of N = 800 turns carrying current I = 3.0 A. 
The ring has a cross-cut of width b = 2.0 mm. Neglecting the scatter-
ing of the magnetic flux at the gap edges, and using the plot shown 
in Fig. 3.76, find the permeability of iron under these conditions. 

3.285. A long thin cylindrical rod made of paramagnetic with 
magnetic susceptibility x and having a cross-sectional area S is 
located along the axis of a current-carrying coil. 
One end of the rod is located at the coil centre where 
the magnetic induction is equal to B whereas the 
other end is located in the region where the mag-
netic field is practically absent. What is the force 
that the coil exerts on the rod? 

3.286. In the arrangement shown in Fig. 3.77 it 
is possible to measure (by means of a balance) the 
force with which a paramagnetic ball of volume 
V = 41 mm3  is attrabted to a pole of the electromag-
net M. The magnetic induction at the axis of the 
poleshoe depends on the height x as B = Bo  exp (—ax2), where 
Bo  = 1.50 T, a = 100 m-2 . Find: 

(a) at what height xn., the ball experiences the maximum attrac-
tion; 

4T 

146 



(b) the magnetic susceptibility of the paramagnetic if the maxim-
um attraction force equals F niox  = 160 [tN. 

3.287. A small ball of volume V made of paramagnetic with sus-
ceptibility x was slowly displaced along the axis of a current-carrying 
coil from the point where the magnetic induction equals B out to the 
region where the magnetic field is practically absent. What amount 
of work was performed during this process? 

3.6. ELECTROMAGNETIC INDUCTION. 
MAXWELL'S EQUATIONS 

• Faraday's law of electromagnetic induction: 
del3 

(3.6a) 

• In the case of a solenoid and doughnut coil: 
(1) = NO1, 	 (3.6b) 

where N is the number of turns, cl3.1  is the magnetic flux through each turn. 
• Inductance of a solenoid: 

L =-- iutto  71217. 	 (3.6c) 

• Intrinsic energy of a current and interaction energy of two currents: 
L/2  

W=—r. 7 W12==  L121112. 

• Volume density of magnetic field energy: 
B2  

= 2ulto 	2 
• Displacement current density: 

013 
jclis=  at 

• Maxwell's equations in differential form: 

as 
' 

v x 	 V • B=0, at  
aD 

V x H=1-4 - - ' 	
V•D=p, 

where V X 	rot (the rotor) and V. ---- div (the divergence). 

• Field transformation formulas for transition from a reference frame K 
to a reference frame K' moving with the velocity vo  relative to it. 

In the case 170  << c 
E' = E 	B' = B — [vo Elic2 	 (3.6h) 

In the general case 
E'11 =E  ll ' 	 B  

E14-[voll] B' = 	° B —Iv El/c2  

0. —(v0/02 ' 	 yi-0,0/02 

where the symbols II and I denote the field components, respectively parallel 
and perpendicular to the vector vo. 

(3.6d) 

(3.6e) 

(3.6f) 

(3.6g) 

(3.6i) 
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3.288. A wire bent as a parabola y = ax2  is located in a uniform 
magnetic field of induction B, the vector B being perpendicular to 
the plane x, y. At the moment t = 0 a connector starts sliding trans-
lationwise from the parabola apex with a constant acceleration iv 
(Fig. 3.78). Find the emf of electromagnetic induction in the loop 
thus formed as a function of y. 

y 

Fig. 3.78. 	 Fig. 3.79. 

3.289. A rectangular loop with a sliding connector of length 1 
is located in a uniform magnetic field perpendicular to the loop plane 
(Fig. 3.79). The magnetic induction is equal to B. The connector has 
an electric resistance R, the sides AB and CD have resistances R1  
and R2 respectively. Neglecting the self-inductance of the loop, 
find the current flowing in the connector during its motion with a 
constant velocity v. 

3.290. A metal disc of radius a = 25 cm rotates with a constant 
angular velocity co = 130 rad/s about its axis. Find the potential 
difference between the centre and the rim of the disc if 

(a) the external magnetic field is absent; 
(b) the external uniform magnetic field of induction B = 5.0 mT 

is directed perpendicular to the disc. 
3.291. A thin wire AC shaped as a semi-circle of diameter d 

= 20 cm rotates with a constant angular velocity co = 100 rad/s 
in a uniform magnetic field of induction B = 5.0 mT, with 
w HT B. The rotation axis passes through the end A of the wire and 
is perpendicular to the diameter AC. Find the value of a line integral 

E dr along the wire from point A to point C. Generalize the ob- 

tained result. 
3.292. A wire loop enclosing a semi-circle of radius a is located 

on the boundary of a uniform magnetic field of induction B 
(Fig. 3.80). At the moment t = 0 the loop is set into rotation with 
a constant angular acceleration p about an axis 0 coinciding with a 
line of vector B on the boundary. Find the emf induced in the loop 
as a function of time t. Draw the approximate plot of this function. 
The arrow in the figure shows the emf direction taken to be positive. 

3.293. A long straight wire carrying a current I and a H-shaped 
conductor with sliding connector are located in the same plane as 



Fig. 3.80. Fig. 3.81. 

shown in Fig. 3.81. The connector of length 1 and resistance R slides 
to the right with a constant velocity v. Find the current induced in 

the loop as a function of separation r between the connector and the 
straight wire. The resistance of the H-shaped conductor and the self-
inductance of the loop are assumed to be negligible. 

3.294. A square frame with side a and a long straight wire carrying 
a current I are located in the same plane as shown in Fig. 3.82. The 
frame translates to the right with a constant velocity v. Find the emf 
induced in the frame as a function of distance x. 

 

a 

  

  

  

  

  

Fig. 3.82. Fig. 3.83. 

3.295. A metal rod of mass m can rotate about a horizontal axis 
0, sliding along a circular conductor of radius a (Fig. 3.83). The 
arrangement is located in a uniform magnetic field of induction B 
directed perpendicular to the ring plane. The axis and the ring are 
connected to an emf source to form a circuit of resistance R. Neglect-
ing the friction, circuit inductance, and ring resistance, find the law 
according to which the source emf must vary to make the rod rotate 
with a constant angular velocity co. 

3.296. A copper connector of mass m slides down two smooth cop-
per bars, set at an angle a to the horizontal, due to gravity (Fig. 3.84). 
At the top the bars are interconnected through a resistance R. The 
separation between the bars is equal to 1. The system is located in 
a uniform magnetic field of induction B, perpendicular to the plane 
in which the connector slides. The resistances of the bars, the connect-
or and the sliding contacts, as well as the self-inductance of the loop, 
are assumed to be negligible. Find the steady-state velocity of the 
connector. 
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Fig. 3.86. 

3.297. The system differs from the one examined in the foregoing 
problem (Fig. 3.84) by a capacitor of capacitance C replacing the 
resistance R. Find the acceleration of the connector. 

Fig. 3.84. Fig. 3.85. 

3.298. A wire shaped as a semi-circle of radius a rotates about an 
axis 00' with an angular velocity co in a uniform magnetic field of 
induction B (Fig. 3.85). The rotation axis is perpendicular to the 
field direction. The total resistance of the circuit is equal to R. Neg-
lecting the magnetic field of the induced current, find the mean 
amount of thermal power being generated in the loop during a 
rotation period. 

3.299. A small coil is introduced between the poles of an electro-
magnet so that its axis coincides with the magnetic field direction. 
The cross-sectional area of the coil is equal to S = 3.0 mm2, the 
number of turns is N = 60. When the coil turns through 180° about 
its diameter, a ballistic galvanometer connected to the coil indicates 
a charge q = 4.5 [iC flowing through it. Find the magnetic induction 
magnitude between the poles provided the total resistance of the 
electric circuit equals R = 40 Q. 

3.300. A square wire frame with side a and a straight conductor 
carrying a constant current I are located in the same plane (Fig. 3.86). 

The inductance and the resistance of the frame are equal to L and R 
respectively. The frame was turned through 180° about the axis 00' 
separated from the current-carrying conductor by a distance b. 
Find the electric charge having flown through the frame. 

3.301. A long straight wire carries a current J. At distances a 
and b from it there are two other wires, parallel to the former one, 
which are interconnected by a resistance R (Fig. 3.87). A connector 



slides without friction along the wires with a constant velocity v. 
Assuming the resistances of the wires, the connector, the sliding 
contacts, and the self-inductance of the freme to be negligible, find: 

(a) the magnitude and the direction of the current induced in 
the connector; 

(b) the force required to maintain the connector's velocity con-
stant. 

3.302. A conducting rod AB of mass m slides without friction 
over two long conducting rails separated by a distance 1 (Fig. 3.88). 
At the left end the rails are interconnected by a resistance R. The 
system is located in a uniform magnetic field perpendicular to the 
plane of the loop. At the moment t = 0 the rod AB starts moving to 
the right with an initial velocity vo. Neglecting the resistances of the 
rails and the rod AB, as well as the self-inductance, find: 

(a) the distance covered by the rod until it comes to a standstill; 
(b) the amount of heat generated in the resistance R during this 

process. 
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Fig. 3.89. 

3.303. A connector AB can slide without friction along a H-
shaped conductor located in a horizontal plane (Fig. 3.89). The con-
nector has a length 1, mass m, and resistance R. The whole system is 
located in a uniform magnetic field of induction B directed vertically. 
At the moment t = 0 a constant horizontal force F starts acting on 
the connector shifting it translationwise to the right. Find how the 
velocity of the connector varies with time t. The inductance of the 
loop and the resistance of the H-shaped conductor are assumed to 
be negligible. 

3.304. Fig. 3.90 illustrates plane figures made of thin conductors 
which are located in a uniform magnetic field directed away from a 

© 00 
(a) 	(b) 	(c) 	(d) 

Fig. 3.90. 

reader beyond the plane of the drawing. The magnetic induction 
starts diminishing. Find how the currents induced in these loops are 
directed. 



3.305. A plane loop shown in Fig. 3.91 is shaped as two squares 
with sides a = 20 cm and b = 10 cm and is introduced into a uni-
form magnetic field at right angles to the loop's plane. The magnetic 
induction varies with time as B = Bo  sin cot, where Bo  = 10 mT 
and co = 100 s-1  . Find the amplitude of 
the current induced in the loop if its resis- 
tance per unit length is equal to p = 
50 mQ/m. The inductance of the loop is to 
be neglected. 

3.306. A plane spiral with a great num- 
ber N of turns wound tightly to one another 
is located in a uniform magnetic field per- 
pendicular to the spiral's plane. The outside 	Fig. 3.91. 

radius of the spiral's turns is equal to a. 
The magnetic induction varies with time as B = Bo  sin cot, where 
Bo  and co are constants. Find the amplitude of emf induced in 
the spiral. 

3.307. A H-shaped conductor is located in a uniform magnetic 
field perpendicular to the plane of the conductor and varying with 

time at the rate B = 0.10 T/s. A conducting connector starts mov-
ing with an acceleration w = 10 cm/s2  along the parallel bars of the 
conductor. The length of the connector is equal to 1 = 20 cm. Find 
the emf induced in the loop t = 2.0 s after the beginning of the 
motion, if at the moment t = 0 the loop area and the magnetic 
induction are equal to zero. The inductance of the loop is to be 
neglected. 

3.308. In a long straight solenoid with cross-sectional radius a 
and number of turns per unit length n a current varies with a con-

stant velocity / A/s. Find the magnitude of the eddy current field 
strength as a function of the distance r from the solenoid axis. Draw 
the approximate plot of this function. 

3.309. A long straight solenoid of cross-sectional diameter d = 
= 5 cm and with n = 20 turns per one cm of its length has a round 
turn of copper wire of cross-sectional area S = 1.0 mm2  tightly put 
on its winding. Find the current flowing in the turn if the current 

• in the solenoid winding is increased with a constant velocity I = 
= 100 A/s. The inductance of the turn is to be neglected. 

3.310. A long solenoid of cross-sectional radius a has a thin insu-
lated wire ring tightly put on its winding; one half of the ring has 
the resistance 11  times that of the other half. The magnetic induction 
produced by the solenoid varies with time as B = bt, where b is 
a constant. Find the magnitude of the electric field strength in the 
ring. 

3.311. A thin non-conducting ring of mass m carrying a charge q 
can freely rotate about its axis. At the initial moment the ring was 
at rest and no magnetic field was present. Then a practically uniform 
magnetic field was switched on, which was perpendicular to the plane 
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of the ring and increased with time according to a certain law B (t). 
Find the angular velocity co of the ring as a function of the induction 
B (t). 

3.312. A thin wire ring of radius a and resistance r is located in-
side a long solenoid so that their axes coincide. The length of the 
solenoid is equal to 1, its cross-sectional radius, to b. At a certain 
moment the solenoid was connected to a source of a constant voltage 
V. The total resistance of the circuit is equal to R. Assuming the 
inductance of the ring to be negligible, find the maximum value of 
the radial force acting per unit length of the ring. 

3.313. A magnetic flux through a stationary loop with a resistance 
R varies during the time interval i as (120 = at (r — t). Find the 
amount of heat generated in the loop during that time. The inductance 
of the loop is to be neglected. 

3.314. In the middle of a long solenoid there is a coaxial ring of 
square cross-section, made of conducting material with resistivity 
p. The thickness of the ring is equal to h, its inside and outside radii 
are equal to a and b respectively. Find the current induced in the 
ring if the magnetic induction produced by the solenoid varies with 
time as B = pt, where 3 is a constant. The inductance of the ring 
is to be neglected. 

3.315. How many metres of a thin wire are required to manufac-
ture a solenoid of length /0  = 100 cm and inductance L = 1.0 mH 
if the solenoid's cross-sectional diameter is considerably less than its 
length? 

3.316. Find the inductance of a solenoid of length 1 whose 
winding is made of copper wire of mass m. The winding resistance 
is equal to R. The solenoid diameter is considerably less than its 
length. 

3.317. A coil of inductance L = 300 mH and resistance R = 
= 140 m52 is connected to a constant voltage source. How soon will 
the coil current reach ri = 50% of the steady-state value? 

3.318. Calculate the time constant ti of a straight solenoid of length 
/ = 1.0 m having a single-layer winding of copper wire whose total 
mass is equal to m = 1.0 kg. The cross-sectional diameter of the 
solenoid is assumed to be considerably less than its length. 

Note. The time constant ti is the ratio LIR, where L is inductance 
and R is active resistance. 

3.319. Find the inductance of a unit length of a cable consisting 
of two thin-walled coaxial metallic cylinders if the radius of the out-
side cylinder is = 3.6 times that of the inside one. The perme-
ability of a medium between the cylinders is assumed to be equal to 
unity. 

3.320. Calculate the inductance of a doughnut solenoid whose 
inside radius is equal to b and cross-section has the form of a square 
with side a. The solenoid winding consists of N turns. The space in-
side the solenoid is filled up with uniform paramagnetic having per-
meability p. 
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Fig. 3.92. 

3.321. Calculate the inductance of a unit length of a double tape 
line (Fig. 3.92) if the tapes are separated by a distance h which is 
considerably less than their width b, 
namely, b/h = 50. 

3.322. Find the inductance of a 
unit length of a double line if the 
radius of each wire is II times less 
than the distance between the axes 
of the wires. The field inside the 
wires is to be neglected, the per-
meability is assumed to be equal 
to unity throughout, and fl >> 1. 

3.323. A superconducting round 
ring of radius a and inductance L 
was located in a uniform magnetic field of induction B. The ring plane 
was parallel to the vector B, and the current in the ring was equal to 
zero. Then the ring was turned through 90° so that its plane became 
perpendicular to the field. Find: 

(a) the current induced in the ring after the turn; 
(b) the work performed during the turn. 
3.324. A current /0  = 1.9 A flows in a long closed solenoid. 

The wire it is wound of is in a superconducting state. Find the 
current flowing in the solenoid when the length of the solenoid is 
increased by /I -=-- 5%. 

3.325. A ring of radius a = 50 mm made of thin wire of radius 
b = 1.0 mm was located in a uniform magnetic field with induction 
B = 0.50 mT so that the ring plane was perpendicular to the vector B. 
Then the ring was cooled down to a superconducting state, and the 
magnetic field was switched off. Find the ring current after that. Note 
that the inductance of a thin ring along which the surface current 

flows is equal to L = u0a In 7-,8a  - 2) . 

3.326. A closed circuit consists of a source of constant em1 g and 
a choke coil of inductance L connected in series. The active resistance 
of the whole circuit is equal to R. At the moment t = 0 the choke 
coil inductance was decreased abruptly times. Find the current in 
the circuit as a function of time t. 

Instruction. During a stepwise change of inductance the total 
magnetic flux (flux linkage) remains constant. 

3.327. Find the time dependence of the current flowing through 
the inductance L of the circuit shown in Fig. 3.93 after the switch 
Sw is shorted at the moment t = 0. 

3.328. In the circuit shown in Fig. 3.94 an emf V, a resistance R, 
and coil inductances L1  and L2  are known. The internal resistance of 
the source and the coil resistances are negligible. Find the steady-
state currents in the coils after the switch Sw was shorted. 

3.329. Calculate the mutual inductance of a long straight wire and 
a rectangular frame with sides a and b. The frame and the wire lie 



L2 

in the same plane, with the side b being closest to the wire, separated 
by a distance 1 from it and oriented parallel to it. 

L7 

Fig. 3.93. 	 Fig. 3.94. 

3.330. Determine the mutual inductance of a doughnut coil and 
an infinite straight wire passing along its axis. The coil has a rectan-
gular cross-section, its inside radius is equal to a and the outside one, 
to b. The length of the doughnut's cross-sectional side parallel to the 
wire is equal to h. The coil has N turns. The system is located in a 
uniform magnetic with permeability IA. 

3.331. Two thin concentric wires shaped as circles with radii a 
and b lie in the same plane. Allowing for a < b, find: 

(a) their mutual inductance; 
(b) the magnetic flux through the surface enclosed by the outside 

wire, when the inside wire carries a current I. 
3.332. A small cylindrical magnet M (Fig. 3.95) is placed in the 

centre of a thin coil of radius a consisting of N turns. The coil is con-
nected to a ballistic galvanometer. The active resistance of the whole 
circuit is equal to R. Find the magnetic moment of the magnet if 
its removal from the coil results in a charge q flowing through the 
galvanometer. 

3.333. Find the approximate formula expressing the mutual in-
ductance of two thin coaxial loops of the same radius a if their cen-
tres are separated by a distance 1, with 1> a. 

L,R 

Fig. 3.95. 

3.334. There are two stationary loops with mutual inductance 
La. The current in one of the loops starts to be varied as /1  = at, 
where a is a constant, t is time. Find the time dependence /2  (t) of 
the current in the other loop whose inductance is L2 and resistance R. 

3.335. A coil of inductance L = 2.0 µH and resistance R = 1.0 S2 
is connected to a source of constant emf g = 3.0 V (Fig. 3.96). A 



resistance Ro  = 2.0 Q is connected in parallel with the coil. Find the 
amount of heat generated in the coil after the switch Sw is disconnect-
ed. The internal resistance of the source is negligible. 

3.336. An iron tore supports N = 500 turns. Find the magnetic 
field energy if a current I = 2.0 A produces a magnetic flux across 
the tore's cross-section equal to 1:1) = 1.0 mWb. 

3.337. An iron core shaped as a doughnut with round cross-sec-
tion of radius a = 3.0 cm carries a winding of N = 1000 turns through 
which a current I = 1.0 A flows. The mean radius of the doughnut 
is b = 32 cm. Using the plot in Fig. 3.76, find the magnetic energy 
stored up in the core. A field strength H is supposed to be the same 
throughout the cross-section and equal to its magnitude in the cen-
tre of the cross-section. 

3.338. A thin ring made of a magnetic has a mean diameter 
d = 30 cm and supports a winding of N = 800 turns. The cross-
sectional area of the ring is equal to S = 5.0 cm2. The ring has a 
cross-cut of width b = 2.0 mm. When the winding carries a certain 
current, the permeability of the magnetic equals [I = 1400. Neglect-
ing the dissipation of magnetic flux at the gap edges, find: 

(a) the ratio of magnetic energies in the gap and in the magnetic; 
(b) the inductance of the system; do it in two ways: using the flux 

and using the energy of the field. 
3.339. A long cylinder of radius a carrying a uniform surface charge 

rotates about its axis with an angular velocity co. Find the mag-
netic field energy per unit length of the cylinder if the linear charge 
density equals X, and p, = 1. 

3.340. At what magnitude of the electric field strength in vacuum 
the volume energy density of this field is the same as that of the mag-
netic field with induction B = 1.0 T (also in vacuum). 

3.341. A thin uniformly charged ring of radius a = 10 cm rotates 
about its axis with an angular velocity co = 100 rad/s. Find the ra-
tio of volume energy densities of magnetic and electric fields on the 
axis of the ring at a point removed from its centre by a distance 
/ = a. 

3.342. Using the expression for volume density of magnetic ener-
gy, demonstrate that the amount of work contributed to magneti-
zation of a unit volume of para- or diamagnetic, is equal to A = 

— JB/2. 
3.343. Two identical coils, each of inductance L, are interconnected 

(a) in series, (b) in parallel. Assuming the mutual inductance of the 
coils to be negligible, find the inductance of the system in both cases. 

3.344. Two solenoids of equal length and almost equal cross-
sectional area are fully inserted into one another. Find their mutual 
inductance if their inductances are equal to L1  and L2. 

3.345. Demonstrate that the magnetic energy of interaction of 
two current-carrying loops located in vacuum can be represented as 

Wia  = (141,0) B1B2  dV , where B1  and B2 are the magnetic inductions 



within a volume element dV, produced individually by the currents 
of the first and the second loop respectively. 

3.346. Find the interaction energy of two loops carrying currents 
/1  and /2  if both loops are shaped as circles of radii a and b, with 
a << b. The loops' centres are located at the same point and their 
planes form an angle 0 between them. 

3.347. The space between two concentric metallic spheres is filled 
up with a uniform poorly conducting medium of resistivity p and 
permittivity s. At the moment t = 0 the inside sphere obtains a 
certain charge. Find: 

(a) the relation between the vectors of displacement current den-
sity and conduction current density at an arbitrary point of the me-
dium at the same moment of time; 

(b) the displacement current across an arbitrary closed surface 
wholly located in the medium and enclosing the internal sphere, if 
at the given moment of time the charge of that sphere is equal to q. 

3.348. A parallel-plate capacitor is formed by two discs with a 
uniform poorly conducting medium between them. The capacitor 
was initially charged and then disconnected from a voltage source. 
Neglecting the edge effects, show that there is no magnetic field 
between capacitor plates. 

3.349. A parallel-plate air condenser whose each plate has an 
area S = 100 cm2  is connected in series to an ac circuit. Find the 
electric field strength amplitude in the capacitor if the sinusoidal 
current amplitude in lead wires is equal to /m. = 1.0 mA and the 
current frequency equals co = 1.6-107  s-1. 

3.350. The space between the electrodes of a parallel-plate capa-
citor is filled with a uniform poorly conducting medium of conducti-
vity a and permittivity a. The capacitor plates shaped as round discs 
are separated by a distance d. Neglecting the edge effects, find the 
magnetic field strength between the plates .at a distance r from their 
axis if an ac voltage V = Vw, cos cot is applied to the capacitor. 

3.351. A long straight solenoid has n turns per unit length. An 
alternating current I = In, sin cot flows through it. Find the displace-
ment current density as a function of the distance r from the solenoid 
axis. The cross-sectional radius of the solenoid equals R. 

3.352. A point charge q moves with a non-relativistic velocity 
v = const. Find the displacement current density j d at a point locat-
ed at a distance r from the charge on a straight line 

(a) coinciding with the charge path; 
(b) perpendicular to the path and passing through the charge. 
3.353. A thin wire ring of radius a carrying a charge q approaches 

the observation point P so that its centre moves rectilinearly with 
a constant velocity v. The plane of the ring remains perpendicular 
to the motion direction. At what distance xm, from the point P will 
the ring be located at the moment when the displacement current 
density at the point P becomes maximum? What is the magnitude of 
this maximum density? 



3.354. A point charge q moves with a non-relativistic velocity 
v = const. Applying the theorem for the circulation of the vector H 
around the dotted circle shown in Fig. 3.97, find H at the point A 
as a function of a radius vector r and velocity v of the charge. 

3.355. Using Maxwell's equations, show that 
(a) a time-dependent magnetic field cannot exist without an elec-

tric field; 
(b) a uniform electric field cannot exist in the presence of a time-

dependent magnetic field; 
(c) inside an empty cavity a uniform electric (or magnetic) field 

can be time-dependent. 
3.356. Demonstrate that the law of electric charge conservation, 

i.e. V = ap/Ot, follows from Maxwell's equations. 
3.357. Demonstrate that Maxwell's equations V X E = — oBlat 

and V •B = 0 are compatible, i.e. the first one does not contradict 
the second one. 

3.358. In a certain region of the inertial reference frame there is 
magnetic field with induction B rotating with angular velocity w. 
Find V x E in this region as a function of vectors to and B. 

3.359. In the inertial reference frame K there is a uniform magnetic 
field with induction B. Find the electric field strength in the frame 
K' which moves relative to the frame K with a non-relativistic ve-
locity v, with v±B. To solve this problem, consider the forces acting 
on an imaginary charge in both reference frames at the moment when 
the velocity of the charge in the frame K' is equal to zero. 
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Fig. 3.97. Fig. 3.98. 

3.360. A large plate of non-ferromagnetic material moves with a 
constant velocity v = 90 cm/s in a uniform magnetic field with in-
duction B = 50 mT as shown in Fig. 3.98. Find the surface density 
of electric charges appearing on the plate as a result of its motion. 

3.361. A long solid aluminum cylinder of radius a = 5.0 cm 
rotates about its axis in a uniform magnetic field with induction 
B = 10 mT. The angular velocity of rotation equals a) = 45 rad/s, 
with w ft  B. Neglecting the magnetic field of appearing charges, 
find their space and surface densities. 

3.362. A non-relativistic point charge q moves with a constant 
velocity v. Using the field transformation formulas, find the magnet-
ic induction B produced by this charge at the point whose position 
relative to the charge is determined by the radius vector r. 
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3.363. Using Eqs. (3.6h), demonstrate that if in the inertial ref-
erence frame K there is only electric or only magnetic field, in any 
other inertial frame K' both electric and magnetic fields will coexist 
simultaneously, with E' L B'. 

3.364. In an inertial reference frame K there is only magnetic 
field with induction B = b (yi — xj)/ (x2  y2), where b is a con-
stant, i and j are the unit vectors of the x and y axes. Find the elec-
tric field strength E' in the frame K' moving relative to the frame 
K with a constant non-relativistic velocity v = vk; k is the unit 
vector of the z axis. The z' axis is assumed to coincide with the z 
axis. What is the shape of the field E'? 

3.365. In an inertial reference frame K there is only electric field 
of strength E = a (xi + yj)/(x2  + y2), where a is a constant, i and 
j are the unit vectors of the x and y axes. Find the magnetic induction 
B' in the frame K' moving relative to the frame K with a constant 
non-relativistic velocity v = vk; k is the unit vector of the z axis. 
The z' axis is assumed to coincide with the z axis. What is the shape 
of the magnetic induction B'? 

3.366. Demonstrate that the transformation formulas (3.6h) 
follow from the formulas (3.6i) at vc, << c. 

3.367. In an inertial reference frame K there is only a uniform 
electric field E = 8 kV/m in strength. Find the modulus and direc-
tion 

(a) of the vector E', (b) of the vector B' in the inertial reference 
frame K' moving with a constant velocity v relative to the frame 
K at an angle a = 45° to the vector E. The velocity of the frame K' 
is equal to a 13 = 0.60 fraction of the velocity of light. 

3.368. Solve a problem differing from the foregoing one by a mag-
netic field with induction B = 0.8 T replacing the electric field. 

3.369. Electromagnetic field has two invariant quantities. Using 
the transformation formulas (3.6i), demonstrate that these quantities 
are 

(a) EB; (b) E2  — c2B2. 
3.370. In an inertial reference frame K there are two uniform mu-

tually perpendicular fields: an electric field of strength E = 40 kV/m 
and a magnetic field induction B = 0.20 mT. Find the electric 
strength E' (or the magnetic induction B') in the reference frame 
K' where only one field, electric or magnetic, is observed. 

Instruction. Make use of the field invariants cited in the foregoing 
problem. 

3.371. A point charge q moves uniformly and rectilinearly with 
a relativistic velocity equal to a R  fraction of the velocity of light 

= v/c). Find the electric field strength E produced by the charge 
at the point whose radius vector relative to the charge is equal to 
r and forms an angle 0 with its velocity vector. 
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3.7. MOTION OF CHARGED PARTICLES IN ELECTRIC 
AND MAGNETIC FIELDS 

• Lorentz force: 
F = qE 	q [vBJ. 	 (3.7a) 

• Motion equation of a relativistic particle: 
d 	may 
	—F. 	 (3.7b) 

dt 	I— (vIc)' 

• Period of revolution of a charged particle in a uniform magnetic field: 

	

2rcm
B 	

(3.7c) T = 

	

q 	' 

where m is the relativistic mass of the particle, m = mo/jil — (v/c)a. 
• Betatron condition, that is the condition for an electron to move along 

a circular orbit in a betatron: 

B, = 	(B), 	 (3.7d) 

where Bo  is the magnetic induction at an orbit's point, (B) is the mean value 
of the induction inside the orbit. 

3.372. At the moment t = 0 an electron leaves one plate of a par-
allel-plate capacitor with a negligible velocity. An accelerating 
voltage, varying as V = at, where a = 100 V/s, is applied between 
the plates. The separation between the plates is 1 = 5.0 cm. What 
is the velocity of the electron at the moment it reaches the opposite 
plate? 

3.373. A proton accelerated by a potential difference V gets into 
the uniform electric field of a parallel-plate capacitor whose plates 
extend over a length 1 in the motion direction. The field strength 
varies with time as E = at, where a is a constant. Assuming the pro-
ton to be non-relativistic, find the angle between the motion direc-
tions of the proton before and after its flight through the capacitor; 
the proton gets in the field at the moment t = 0. The edge effects are 
to be neglected. 

3.374. A particle with specific charge qlm moves rectilinearly due 
to an electric field E = E0  — ax, where a is a positive constant, x 
is the distance from the point where the particle was initially at 
rest. Find: 

(a) the distance covered by the particle till the moment it came 
to a standstill; 

(b) the acceleration of the particle at that moment. 
3.375. An electron starts moving in a uniform electric field of 

strength E = 10 kV/cm. How soon after the start will the kinetic 
energy of the electron become equal to its rest energy? 

3.376. Determine the acceleration of a relativistic electron moving 
along a uniform electric field of strength E at the moment when its 
kinetic energy becomes equal to T. 

3.377. At the moment t = 0 a relativistic proton flies with a ve-
locity v, into the region where there is a uniform transverse electric 
field of strength E, with v, ± E. Find the time dependence of 
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Fig. 3.99 

(a) the angle 0 between the proton's velocity vector v and the ini-
tial direction of its motion; 

(b) the projection vx  of the vector v on the initial direction of 
motion. 

3.378. A proton accelerated by a potential difference V = 500 kV 
flies through a uniform transverse magnetic field with induction 
B = 0.51 T. The field occupies a region 
of space d =10 cm in thickness (Fig. 3.99). 
Find the angle a through which the pro-
ton deviates from the initial direction of 
its motion. 

3.379. A charged particle moves along 
a circle of radius r = 100 mm in a 
uniform magnetic field with induction 
B = 10.0 mT. Find its velocity and pe-
riod of revolution if that particle is 

(a) a non-relativistic proton; 
(b) a relativistic electron. 
3.380. A relativistic particle with charge q and rest mass ma  

moves along a circle of radius r in a uniform magnetic field of induc-
tion B. Find: 

(a) the modulus of the particle's momentum vector; 
(b) the kinetic energy of the particle; 
(c) the acceleration of the particle. 
3.381. Up to what values of kinetic energy does the period of 

revolution of an electron and a proton in a uniform magnetic field 
exceed that at non-relativistic velocities by it = 1.0 % ? 

3.382. An electron accelerated by a potential difference V = 
= 1.0 kV moves in a uniform magnetic field at an angle a = 30° to 
the vector B whose modulus is B = 29 mT. Find the pitch of the 
helical trajectory of the electron. 

3.383. A slightly divergent beam of non-relativistic charged par-
ticles accelerated by a potential difference V propagates from a point 
A along the axis of a straight solenoid. The beam is brought into 
focus at a distance 1 from the point A at two successive values of 
magnetic induction B1  and B2. Find the specific charge qlm of the 
particles. 

3.384. A non-relativistic electron originates at a point A lying 
on the axis of a straight solenoid and moves with velocity v at an 
angle a to the axis. The magnetic induction of the field is equal to 
B. Find the distance r from the axis to the point on the screen into 
which the electron strikes. The screen is oriented at right angles to 
the axis and is located at a distance 1 from the point A. 

3.385. From the surface of a round wire of radius a carrying a 
direct current I an electron escapes with a velocity vo  perpendicular 
to the surface. Find what will be the maximum distance of the elec-
tron from the axis of the wire before it turns back due to the action 
of the magnetic field generated by the current. 
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3.386. A non-relativistic charged particle flies through the elec-
tric field of a cylindrical capacitor and gets into a uniform transverse 
magnetic field with induction B (Fig. 3.100). In the capacitor the 
particle moves along the arc of a circle, in the magnetic field, along 
a semi-circle of radius r. The potential difference applied to the capa-
citor is equal to V, the radii of the electrodes are equal to a and b, 
with a < b. Find the velocity of the particle and its specific charge 
qlm. 

   

  

0 

   

Fig. 3.100. Fig. 3.101. 

 

3.387. Uniform electric and magnetic fields with strength E and 
induction B respectively are directed along the y axis (Fig. 3.101). 
A particle with specific charge On leaves the origin 0 in the direction 
of the x axis with an initial non-relativistic velocity v0. Find: 

(a) the coordinate yr, of the particle when it crosses the y axis 
for the nth time; 

(b) the angle a between the particle's velocity vector and the y 
axis at that moment. 

3.388. A narrow beam of identical ions with specific charge qlm, 
possessing different velocities, enters the region of space, where there 
are uniform parallel electric and magnetic fields with strength E 
and induction B, at the point 0 (see Fig. 3.101). The beam direction 
coincides with the x axis at the point 0. A plane screen oriented at 
right angles to the x axis is located at a distance 1 from the point 0. 
Find the equation of the trace that the ions leave on the screen. 
Demonstrate that at z << 1 it is the equation of a parabola. 

3.389. A non-relativistic proton beam passes without deviation 
through the region of space where there are uniform transverse mu-
tually perpendicular electric and magnetic fields with E = 120 kV/m 
and B = 50 mT. Then the beam strikes a grounded target. Find 
the force with which the beam acts on the target if the beam current 
is equal to I = 0.80 mA. 

3.390. Non-relativistic protons move rectilinearly in the region of 
space where there are uniform mutually perpendicular electric and 
magnetic fields with E = 4.0 kV/m and B = 50 mT. The trajectory of 
the protons lies in the plane xz (Fig. 3.102) and forms an angle 

30° with the x axis. Find the pitch of the helical trajectory along 
which the protons will move after the electric field is switched off. 
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3.391. A beam of non-relativistic charged particles moves without 
deviation through the region of space A (Fig. 3.103) where there are 
transverse mutually perpendicular electric and magnetic fields with 

   

S 

   

 

 

 

Fig. 3.103. 

strength E and induction B. When the magnetic field is switched off, 
the trace of the beam on the screen S shifts by 6.x. Knowing the 
distances a and b, find the specific charge qlm of the particles. 

3.392. A particle with specific charge qim moves in the region of 
space where there are uniform mutually perpendicular electric and 
magnetic fields with strength E and induc- 
tion B (Fig. 3.104). At the moment t = 0 
the particle was located at the point 0 and 
had zero velocity. For the non-relativistic 
case find: 

(a) the law of motion x (t) and y (t) of the 
particle; the shape of the trajectory; 

(b) the length of the segment of the trajecto-
ry between two nearest points at which the 
velocity of the particle turns into zero; 

(c) the mean value of the particle's veloc-
ity vector projection on the x axis (the drift velocity). 

3.393. A system consists of a long cylindrical anode of radius a 
and a coaxial cylindrical cathode of radius b (b < a). A filament 
located along the axis of the system carries a heating current I pro-
ducing a magnetic field in the surrounding space. Find the least po-
tential difference between the cathode and anode at which the thermal 
electrons leaving the cathode without initial velocity start reach-
ing the anode. 

3.394. Magnetron is a device consisting of a filament of radius a 
and a coaxial cylindrical anode of radius b which are located in a 
uniform magnetic field parallel to the filament. An accelerating po-
tential difference V is applied between the filament and the anode. 
Find the value of magnetic induction at which the electrons leaving 
the filament with zero velocity reach the anode. 

3.395. A charged particle with specific charge qim starts moving 
in the region of space where there are uniform mutually perpendicu-
lar electric and magnetic fields. The magnetic field is constant and 

Fig. 3.104. 
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Fig. 3.105. 

has an induction B while the strength of the electric field varies with 
time as E = Em  cos cot, where co = qB1m. For the non-relativistic 
case find the law of motion x (t) and y (t) of the particle if at the mo-
ment t = 0 it was located at the point 0 (see Fig. 3.104). What is 
the approximate shape of the trajectory of the particle? 

3.396. The cyclotron's oscillator frequency is equal to v = 10 MHz. 
Find the effective accelerating voltage applied across the dees of that 
cyclotron if the distance between the neighbouring trajectories of 
protons is not less than Ar = 1.0 cm, with the trajectory radius 
being equal to r = 0.5 m. 

3.397. Protons are accelerated in a cyclotron so that the maximum 
curvature radius of their trajectory is equal to r = 50 cm. Find: 

(a) the kinetic energy of the protons when the acceleration is 
completed if the magnetic induction in the cyclotron is B = 1.0 T; 

(b) the minimum frequency of the cyclotron's oscillator at which 
the kinetic energy of the protons amounts to T = 20 MeV by the 
end of acceleration. 

3.398. Singly charged ions He are accelerated in a cyclotron so 
that their maximum orbital radius is r = 60 cm. The frequency of 
a cyclotron's oscillator is equal to v = 10.0 MHz, the effective ac-
celerating voltage across the dees is V = 50 kV. Neglecting the gap 
between the dees, find: 

(a) the total time of acceleration of the ion; 
(b) the approximate distance covered by the ion in the process of 

its acceleration. 
3.399. Since the period of revolution of electrons in a uniform mag-

netic field rapidly increases with the growth of energy, a cyclotron 
is unsuitable for their acceleration. This 
drawback is rectified in a microtron 
(Fig. 3.105) in which a change AT in the 
period of revolution of an electron is 
made multiple with the period of accele-
rating field To. How many times has an 
electron to cross the accelerating gap of 
a microtron to acquire an energy W 
= 4.6 MeV if AT = To, the magnetic 
induction is equal to B = 107 mT, and 
the frequency of accelerating field to 
v = 3000 MHz? 

3.400. The ill effects associated with the variation of the period 
of revolution of the particle in a cyclotron due to the increase of its 
energy are eliminated by slow monitoring (modulating) the frequency 
of accelerating field. According to what law w (t) should this frequen-
cy be monitored if the magnetic induction is equal to B and the 
particle acquires an energy A W per revolution? The charge of the 
particle is q and its mass is m. 

3.401. A particle with specific charge On is located inside a round 
solenoid at a distance r from its axis. With the current switched into 



the winding, the magnetic induction of the field generated by the 
solenoid amounts to B. Find the velocity of the particle and the cur-
vature radius of its trajectory, assuming that during the increase of 
current flowing in the solenoid the particle shifts by a negligible 
distance. 

3.402. In a betatron the magnetic flux across an equilibrium orbit 
of radius r = 25 cm grows during the acceleration time at practically 

constant rate 	= 5.0 Wb/s. In the process, the electrons acquire an 
energy W = 25 MeV. Find the number of revolutions made by the 
electron during the acceleration time and the corresponding distance 
covered by it. 

3.403. Demonstrate that electrons move in a betatron along a 
round orbit of constant radius provided the magnetic induction on 
the orbit is equal to half the mean value of that inside the orbit 
(the betatron condition). 

3.404. Using the betatron condition, find the radius of a round 
orbit of an electron if the magnetic induction is known as a function 
of distance r from the axis of the field. Examine this problem for the 
specific case B = Bo  — ar2, where Bo  and a are positive constants. 

3.405. Using the betatron condition, demonstrate that the strength 
of the eddy-current field has the extremum magnitude on an equilib-
rium orbit. 

3.406. In a betatron the magnetic induction on an equilibrium 
orbit with radius r = 20 cm varies during a time interval At = 
= 1.0 ms at practically constant rate from zero to B = 0.40 T. Find 
the energy acquired by the electron per revolution. 

3.407. The magnetic induction in a betatron on an equilibrium 
orbit of radius r varies during the acceleration time at practically 
constant rate from zero to B. Assuming the initial velocity of the 
electron to be equal to zero, find: 

(a) the energy acquired by the electron during the acceleration 
time; 

(b) the corresponding distance covered by the electron if the acce-
leration time is equal to At. 
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