Sample Question Paper - 1 CLASS: XII Session: 2021-22 Mathematics (Code-041) Term - 1

Time Allowed: 1 hour and 30 minutes

General Instructions:

- 1. This question paper contains three sections A, B and C. Each part is compulsory.
- 2. Section A has 20 MCQs, attempt any 16 out of 20.
- 3. Section B has 20 MCQs, attempt any 16 out of 20
- 4. Section C has 10 MCQs, attempt any 8 out of 10.
- 5. There is no negative marking.
- 6. All questions carry equal marks.

Section A

Attempt any 16 questions

- 1. The relation R defined on the set A ={1,2, 3, 4, 5} by R = {(a, b) : $|a^2 b^2| < 16$ }, is given by [1]
 - a) {(2, 2), (3, 2), (4, 2), (2, 4)}

b) R = {(1, 1), (2, 1), (3, 1), (4, 1), (2, 3), (2, 2), (3, 2), (4, 2), (2, 4), (3, 3), (5, 4), (3, 4)}

c) none of these

d) {(3, 3), (4, 3), (5, 4), (3, 4)}

2. The feasible region for a LPP is shown in Figure. Find the maximum value of Z = 11x + 7y. [1]

- 3. Derivative of cos(sin x) w.r.t. sin x is
 - a) sin(sin x)cosx

c) – sin(sin x)

d) None of these

Maximum Marks: 40

[1]

4. If
$$2\begin{bmatrix} 3 & 4 \\ 5 & x \end{bmatrix} + \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix}$$
 then
a) $(x = 2, y = 8)$
b) $(x = 3, y = -6)$
c) $(x = -3, y = 6)$
d) $(x = 2, y = -8)$
(1)

5. Feasible region (shaded) for a LPP is shown in the Figure. Minimum of Z = 4x + 3y occurs at [1] the point

Maximum value of Z occurs at

	(0, 8) (0, 8) (0, 0) (0, 0) (0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0		
	a) (6, 8)	b) (6, 5)	
	c) (4, 10)	d) (5, 0)	
10.	If A = $\begin{bmatrix} 2 & -1 & 3 \\ -4 & 5 & 1 \end{bmatrix}$ and B = $\begin{bmatrix} 2 & 3 \\ 4 & -2 \\ 1 & 5 \end{bmatrix}$ th	en	[1]
	a) only BA is defined	b) only AB is defined	
	c) AB and BA both are not defined	d) AB and BA both are defined	
11.	The function f(x) $= egin{cases} rac{\sin x}{x} + \cos x, ext{ if } x eq 0 \ k \ , ext{ if } x = 0 \end{cases}$	is continuous at $x = 0$, then the value of k is	[1]
	a) 1	b) 3	
	c) 1.5	d) 2	
12.	Which of the following statements is correct?		[1]
	a) A LPP admits unique optimal solution	b) Every LPP admits an optimal solution	
	c) If an LPP admits two optimal solutions it has an infinite number of optimal solutions	d) The set of all feasible solutions of a LPP is not a converse set	
13.	If the function $f(x) = kx^3 - 9x^2 + 9x + 3$ is more	otonically increasing in every interval, then	[1]
	a) k > 3	b) k < 3	
	c) $k\geq 3$	d) $k\leq 3$	
14.	If $f(x)=\left\{egin{array}{cc} rac{1}{1+e^{1x}} &,x eq 0\ 0 &,x=0 \end{array}$ then f(x) is		[1]
	a) none of these	b) differentiable but not continuous at x = 0	
	c) continuous but not differentiable at x = 0	d) continuous as well as differentiable at x = 0	

15.	The function $f(x)=e^{ x }$		[1]
	a) not continuous at x = 0	b) continuous everywhere but not differentiable at x = 0	
	c) continuous and differentiable everywhere	d) None of these	
16.	The function f(x) = $\log_{ ext{e}}\left(x^3 + \sqrt{x^6 + 1} ight)$ is	s of the following types:	[1]
	a) even and increasing	b) odd and decreasing	
	c) even and decreasing	d) odd and increasing	
17.	The point on the curve $y = x^2 - 3x + 2$ where	tangent is perpendicular to y = x is	[1]
	a) (1, 0)	b) (2, -2)	
	c) (0, 2)	d) (-1, 6)	
18.	$\cos^{-1}(\cos\frac{2\pi}{3}) + \sin^{-1}(\sin\frac{2\pi}{3}) = ?$		[1]
	a) <i>π</i>	b) $\frac{\pi}{3}$	
	c) $\frac{3\pi}{4}$	d) $\frac{4\pi}{3}$	
19.	If $f(x)=rac{1-\sin x}{\left(\pi-2x ight)^2},$ when $x eqrac{\pi}{2}$ and $f\left(rac{\pi}{2} ight)$	$\lambda = \lambda,$ then f(x) will be continuous function at	[1]
	$x=rac{\pi}{2},$ where λ =		
	a) 1/4	b) none of these	
	c) 1/2	d) 1/8	
20.	Tangents to the curve $y=x^3 + 3x$ at $x = -1$ and	d x = 1 are	[1]
	a) intersecting at right angles	b) intersecting at an angle of 45^o .	
	c) intersecting obliquely but not at an angle of 45^o	d) parallel	
	S	ection B	
	Attempt a	ny 16 questions	
21.	$f: N \rightarrow N: f(x) = x^2 + x + 1$ is		[1]
	a) many-one and onto	b) one-one and onto	
	c) one-one and into	d) many-one and into	
22.	f(x) = 1 + 2 sin x + 3 cos ² x, $0 \le x \le \frac{2\pi}{3}$ is		[1]
	a) Minimum at x = $\frac{\pi}{2}$	b) Maximum at $\sin^{-1}(\frac{1}{6})$	
	c) Minimum at x = $\frac{\pi}{6}$	d) Maximum at x = sin ⁻¹ ($\frac{1}{\sqrt{3}}$)	
23.	Feasible region (shaded) for a LPP is shown	in Figure. Maximize Z = 5x + 7y.	[1]

	(0, 2) 0 A(7, 0)		
	a) 45	b) 49	
	c) 47	d) 43	
24.	The minimum value of $\left(x^2+rac{250}{x} ight)$ is		[1]
	a) 25	b) 55	
	c) 50	d) 75	
25.	Let $f(x) = \sin x $ Then		[1]
	a) <i>f</i> is everywhere differentiable	b) f is everywhere continuous but not differentiable at x = (2x + 1) $rac{\pi}{2}$, x \in Z	
	c) None of these	d) f is everywhere continuous but not differentiable at $x=n\pi, n\in {f Z}$	
26.	The principal value of cosec ⁻¹ (2) is		[1]
	a) $\frac{2\pi}{3}$	b) $\frac{\pi}{3}$	
	c) $\frac{5\pi}{6}$	d) $\frac{\pi}{6}$	
27.	Let $f: R ightarrow R$ be defined as f (x) = 3x. Cl	hoose the correct answer.	[1]
	a) many – one onto	b) neither one – one nor onto	
	c) one – one but not onto	d) one – one onto	
28.	The value of $\cos^{-1}ig(\cosrac{5\pi}{3}ig)+\sin^{-1}ig(\sinrac{5\pi}{3}ig)$	-) is	[1]
	a) 0	b) $\frac{10\pi}{3}$	
	c) $\frac{\pi}{2}$	d) $\frac{5\pi}{3}$	
29.	The function $f(x) = x^x$ decreases on the inter	val	[1]
	a) (0, e)	b) (0, 1)	
	c) (1/e.e)	d) $(0, \frac{1}{2})$	
30.	Which of the following is correct	, , , e,	[1]
	a) Determinant is a square matrix	b) None of these	
	c) Determinant is a number associated to a square matrix.	d) Determinant is a number associated to a matrix.	
31.	If $y^{1/n} + y^{-1/n} = 2x$, then $(x^2 - 1) y_2 + xy_1 =$		[1]
	a) 0	b) none of these	
	c) _{n²y}	d) _{-n²y}	

32.	$ ext{If} f(x) = \left\{egin{array}{c} rac{\sin(\cos x) - \cos x}{(\pi - 2x)^2} &, x eq rac{\pi}{2} \ k &, x = rac{\pi}{2} \ k &, x = rac{\pi}{2} \end{array} ight.$	is continuous at $x=rac{\pi}{2}$, then k is equal to	[1]
	a) 1	b) -1	
	c) 0	d) $\frac{1}{2}$	
33.	In the interval (1, 2), function f (x) = 2	x - 1 + 3 x - 2 is	[1]
	a) not monotonic	b) constant	
	c) monotonically increasing	d) monotonically decreasing	
34.	$ an^{-1}rac{1}{7}+2 an^{-1}rac{1}{3}$ is equal to		[1]
	a) None of these	b) $\frac{\pi}{2}$	
	c) $\frac{\pi}{4}$	d) $\frac{3\pi}{4}$	
35.	If $A = \begin{bmatrix} 2x & 0 \\ x & x \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 0\\2 \end{bmatrix}$ then x = ?.	[1]
	a) 1	b) -2	
	c) $\frac{1}{2}$	d) 2	
36.	The value of objective function is max	imum under linear constraints	[1]
	a) at (0, 0)	b) at any vertex of feasible region	
	c) the vertex which is maximum distance from (0, 0)	d) at the centre of feasible region	641
37.	If $A = \frac{1}{3} \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & -2 \\ x & 2 & y \end{bmatrix}$ satisfies $A^{T}A$	x = I, then x + y =	[1]
	a) -3	b) none of these	
	c) 0	d) 3	
38.	If $f(x) = \frac{1}{4x^2 + 2x + 1}$, then its maximum v	value is	[1]
	a) 1	b) $\frac{4}{3}$	
	c) $\frac{3}{4}$	d) $\frac{2}{3}$	
39.	If $y = ae^{mx} + be^{-mx}$, then y_2 is equal to		[1]
	a) my ₁	b) _{-m²y}	
	c) _{m²y}	d) None of these	
40.	Let A = {1, 2, 3, 4, 5, 6}. Which of the for relation on A?	ollowing partitions of A correspond to an equivalence	[1]
	a) none of these	b) {1, 2, 3}, {3, 4, 5, 6}.	
	c) {1, 2, }, {3, 4}, {2, 3, 5, 6}	d) {1, 3}, {2, 4, 5}, {6}	

Section C

Attempt any 8 questions

41.	The value of $\sin\left(rac{1}{4} { m sin}^{-1} rac{\sqrt{63}}{8} ight)$ is:		[1]
	a) $\frac{1}{\sqrt{2}}$	b) $\frac{1}{3\sqrt{3}}$	
	c) $\frac{1}{2\sqrt{2}}$	d) $\frac{1}{\sqrt{3}}$	
42.	Minimize Z = 50x+60y , subject to constraints	s x +2 y \leq 50 , x + y \geq 30, x, y \geq 0.	[1]
	a) 1800	b) 1550	
	c) 1700	d) 1200	
43.	Let f (x + y) = f(x) + f(y) \forall x, y \in R . Suppose	that f (6) = 5 and f ' (0) = 1, then f ' (6) is equal to	[1]
	a) 1	b) 30	
	c) None of these	d) 25	
44.	If A is a non singular matrix and A' denotes t	the transpose of A, then	[1]
	a) $ AA' \neq A^2 $	b) None of these	
	c) $ A + A' \neq 0$	d) $ A \neq A' $	
45.	The void relation (a subset of A $ imes$ A) on a ne	onempty set A is:	[1]
	a) Reflexive	b) Transitive and symmetric	
	c) Only symmetric	d) Only transitive	

Question No. 46 to 50 are based on the given text. Read the text carefully and answer the questions:

Manufacture produces three stationery products Pencil, Eraser and Sharpener which he sells in two markets. Annual sales are indicated below:

Market	Products (in numbers)		
	Pencil	Eraser	Sharpener
А	10,000	2,000	18,000
В	6,000	20,000	8,000

If the unit Sale price of Pencil, Eraser and Sharpener are ₹2.50, ₹1.50 and ₹1.00 respectively, and unit cost of the above three commodities are ₹2.00, ₹1.00 and ₹0.50 respectively, then,

46. Gross profit in both market:

a) ₹23,000	b) ₹30,200
c) ₹32,000	d) ₹20,300

47.	Total revenue of market A:		[1]
	a) ₹40,600	b) ₹60,400	
	c) ₹64,000	d) ₹46,000	
48.	Total revenue of market B:		[1]
	a) ₹35,000	b) ₹30,500	
	c) ₹50,300	d) ₹53,000	
49.	Cost incurred in market A:		[1]
	a) ₹10,300	b) ₹30,100	
	c) ₹13,000	d) ₹31,000	
50.	Profit in market A and B respectively are:		[1]
	a) (₹10,000, ₹20,000)	b) (₹51,000, ₹71,000)	
	c) (₹15,000, ₹17,000)	d) (₹17,000, ₹15,000)	

Solution

Section A

1. (c) none of these

Explanation: Given set A = {1, 2, 3, 4, 5} and relation R ={(a, b): | a²-b²| < 16}

According to the condition $|a^2-b^2| < 16$:

 \Rightarrow R = {(1, 1),(1,2), (2, 1), (1,3), (3, 1), (1,4), (4, 1), (2, 3),(2, 2), (3, 2), (4, 2), (2, 4),(3, 3), (4, 3), (5, 4), (3, 4), (4,4), (5,5)}. Which is the required solution.

2. **(d)** 47

Explanation:		
Corner points	Z = 11x + 7y	
(0, 5)	35	
(0,3)	21	
(3,2)	47	

The maximum value is 47

3. **(c)** – sin(sin x)

Explanation: Let y = cos(sinx), z = sinx , then , $\frac{dy}{dz} = \frac{\frac{dy}{dx}}{\frac{dz}{dx}} = \frac{-\sin(\sin x)\cos x}{\cos x} = -\sin(\sin x)$

4. **(d)** (x = 2, y = -8)

Explanation: $2\begin{pmatrix} 3 & 4 \\ 5 & x \end{pmatrix} + \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ 10 & 5 \end{pmatrix}$

To solve this problem we will use the comparison that is we will use that all the elements of L.H.S. are equal to R.H.S.

$$= \begin{pmatrix} 6 & 8 \\ 10 & 2x \end{pmatrix} + \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 7 & 8+y \\ 10 & 2x+1 \end{pmatrix}$$
Comparing with R.H.S.
8+y=0
y=-8
2x+1=5
2x = 4
x = 2
(d) (2, 5)

Explanation: Z=4x+3y 1. (0,8)=24 2.(2,5)=8+15=23 3.(4,3)=16+9=25 4. (9,0)=36+0=36 The correct engine is (2)

The correct answer is (2, 5) as it gives the minimum value.

6. **(b)** $\frac{1}{2}$

5.

Explanation: Given that $y = \tan^{-1} (\sec x + \tan x)$ Hence, $y = \tan^{-1} \left(\frac{1 + \sin x}{\cos x} \right)$ Using $\cos x = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}$, $\sin x = 2 \sin \frac{x}{2} \cos \frac{x}{2}$ and $\cos^2 \theta + \sin^2 \theta = 1$

Hence,
$$y = \tan^{-1} \left(\frac{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} + 2\sin \frac{x}{2}\cos \frac{x}{2}}{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}} \right) = \tan^{-1} \left(\frac{\left(\cos^{\frac{x}{2}} + \sin \frac{x}{2} \right)^2}{\left(\cos \frac{x}{2} - \sin \frac{x}{2} \right) \left(\cos \frac{x}{2} + \sin \frac{x}{2} \right)} \right)$$

$$\Rightarrow y = \tan^{-1} \left(\frac{\cos^{\frac{x}{2}} + \sin \frac{x}{2}}{\cos \frac{x}{2} - \sin \frac{x}{2}} \right)$$

 $\int \cos \frac{x}{2} - \sin \frac{x}{2}$ Dividing by $\cos \frac{x}{2}$ in numerator and denominator, we obtain

$$y = \tan^{-1} \frac{\frac{1+\tan \frac{x}{2}}{1-\tan \frac{x}{2}}}{1-\tan \frac{x}{2}}$$

Using $\tan(\frac{\pi}{4} + x) = \frac{1+\tan x}{1-\tan x}$, we obtain
 $y = \tan^{-1} \tan(\frac{\pi}{4} + \frac{x}{2}) = \frac{\pi}{4} + \frac{x}{2}$
Differentiating with respect to x, we
 $\frac{dy}{dx} = \frac{1}{2}$

7. **(d)** 1

Explanation: $A^2 = I \Rightarrow A^2A^{-1} = IA^{-1} \Rightarrow A = A^{-1}$ and it is possible only if A is an identity matrix and determinant of the identity matrix is equal to 1

8. **(a)** tan θ

Explanation: Given $x = a(\cos\theta + \theta \sin\theta)$, $y = a(\sin\theta - \theta \cos\theta)$ $\frac{dx}{d\theta} = a \left[-\sin\theta + \theta \cdot \cos\theta + \sin\theta\right] = a\theta\cos\theta$, $\frac{dy}{d\theta} = a \left[\cos\theta - (\theta - \sin\theta + \cos\theta)\right] = a\theta\sin\theta$ Slope of the tangent $= \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{a\theta\sin\theta}{a\theta\cos\theta} = tan\theta$

9. **(d)** (5, 0)

Explanation:

Corner points	Z = 3x - 4y
(0, 0)	0
(5,0)	15
(6,8)	-14
(6,5)	-2
(4,10)	-28
(0,8)	-32

The maximum value occurs at (5,0)

10. (d) AB and BA both are defined

Explanation: In given matrix order of A = 2×3 order of B = 3×2 AB will be defined if the number of column in A is equal to the number of rows in B so, $(A_{2\times3})(B_{3\times2}) = AB_{2\times2}$ Similarly $(B_{3\times2})(A_{2\times3}) = BA_{3\times3}$ Thus, Both AB and BA are defined.

11. **(d)** 2

Explanation: Since the given function is continuous, $\therefore k = \lim_{x \to 0} \frac{Sinx}{x} + Cosx$

$$\Rightarrow$$
 k = 1 + 1 = 2

12. (c) If an LPP admits two optimal solutions it has an infinite number of optimal solutions Explanation: It is known that the optimal solution of an LPP either exists uniquely, does not exist or exists infinitely. So, If a LPP admits two optimal solution it has an infinite number of optimal solutions 13. (a) k > 3Explanation: $f(x) = kx^3 - 9x^2 + 9x + 3$ $f'(x) = 3kx^2 - 18x + 9$ $= 3(kx^2 - 6x + 3)$ Given: f(x) is monotonically increasing in every interval. $\Rightarrow f'(x) > 0$ $\Rightarrow 3(kx^2 - 6x + 3) > 0$ $\Rightarrow (kx^2 - 6x = 3) > 0$ $\Rightarrow K > 0$ and $(-6)^2 - 4(k)(3) < 0$ [\cdot · $ax^2 + bx + c > 0$ and D is c < 0] $\Rightarrow k > 0$ and $(-6)^2 - 4(k)(3) < 0$ $\Rightarrow k > 0$ and 36 - 12k < 0 $\Rightarrow k > 0$ and 12k > 36

14. (a) none of these

 \Rightarrow k > 3

 \Rightarrow k > 0 and k > 3

Explanation: Given that
$$f(x)=\left\{ egin{array}{c} rac{1}{1+e^{rac{1}{x}}},x
eq 0\ 0,x=0 \end{array}
ight\}$$

Checking continuity at x = 0, LHL: $\lim_{x\to 0^-} \frac{1}{1+e^{\frac{1}{x}}} = 1$ But f(x = 0) = 0

- Hence, function is neither continuous nor differentiable at x = 0
- 15. **(b)** continuous everywhere but not differentiable at x = 0

Explanation: Let u(x) = |x| and $v(x) = e^x$ \therefore f(x) = vof(x) = v[u(x)] $= v|x| = e^{|x|}$ Since, u(x) and v(x) are both continuous functions.

So f(x) is also continuous function but u(x) = |x| is not differentiable at x = 0, whereas $v(x) = e^x$ is differentiable at everywhere.

Hence, f(x) is continous everywhere but not differentiable at x = 0.

- 16. (d) odd and increasingExplanation: odd and increasing
- 17. **(a)** (1, 0)

Explanation: We have

```
y = x<sup>2</sup> - 3x + 2

Slope of tangent,

\frac{dy}{dx} = 2x - 3

Tangent perpendicular to this line,

Slope of tangent

2x - 3 = -1

\Rightarrow x = 1

Now, y = 1 - 3 + 2

\Rightarrow y = 0

Point is (1, 0)
```

18. **(a)** π

Explanation: The given equation is $\cos^{-1}(\cos\frac{2\pi}{3}) + \sin^{-1}(\sin\frac{2\pi}{3})$

Let us consider $\cos^{-1}(\cos(\frac{2\pi}{3}))$ (: the principle value of \cos lies in the range $[0, \pi]$ and since $\frac{2\pi}{3} \in [0, \pi]$] $\Rightarrow \cos^{-1}(\cos(\frac{2\pi}{3})) = \frac{2\pi}{3}$ Also, consider $\sin^{-1}(\sin(\frac{2\pi}{3}))$ Since here the principle value of sine lies in range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and since $\frac{2\pi}{3} \notin \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ $\Rightarrow \sin^{-1}(\sin(\frac{2\pi}{3})) = \sin^{-1}(\sin(\pi - \frac{\pi}{3}))$ $= \sin^{-1}(\sin(\frac{\pi}{3}))$ $= \frac{\pi}{3}$ Therefore, $\cos^{-1}(\cos(\frac{2\pi}{3})) + \sin^{-1}(\sin(\frac{2\pi}{3})) = \frac{2\pi}{3} + \frac{\pi}{3}$ $= \frac{3\pi}{3}$ $= \pi$. Which is the required solution.

19. **(d)** 1/8

Explanation: If f(x) is continuous at $x = \frac{\pi}{2}$ then $\lim_{x \to \frac{\pi}{2}} f(x) = f\left(\frac{\pi}{2}\right)$ $\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{(\pi - 2x)^2} = f\left(\frac{\pi}{2}\right) \dots (i)$ Now lets suppose $\left(\frac{\pi}{2} - x\right) = t$, then limit becomes $\lim_{t \to 0} \left[\frac{1 - \sin\left(\frac{\pi}{2} - t\right)}{(2t)^2}\right] = f\left(\frac{\pi}{2}\right) \quad \text{[from equation (i)]}$ $\Rightarrow \lim_{t \to 0} \left[\frac{1 - \cos t}{4t^2}\right] = f\left(\frac{\pi}{2}\right)$ $\Rightarrow \frac{1}{4} \lim_{t \to 0} \left[\frac{2 \sin^2\left(\frac{t}{2}\right)}{t^2}\right] = f\left(\frac{\pi}{2}\right)$ $\Rightarrow \frac{1}{4} \lim_{t \to 0} \left[\frac{\frac{2}{4} \sin^2\left(\frac{t}{2}\right)}{\frac{t^2}{4}}\right] = f\left(\frac{\pi}{2}\right)$ $\Rightarrow \frac{1}{8} \lim_{t \to 0} \left[\frac{\sin^2\left(\frac{t}{2}\right)}{\frac{t^2}{4}}\right] = f\left(\frac{\pi}{2}\right)$ $\Rightarrow \frac{1}{8} \lim_{t \to 0} \left[\frac{\sin\left(\frac{t}{2}\right)}{\frac{t^2}{4}}\right] = f\left(\frac{\pi}{2}\right)$ $\Rightarrow f\left(\frac{\pi}{2}\right) = \lambda = \frac{1}{8}$

20. (d) parallel

Explanation: Given $y = x^3 + 3x$ $\Rightarrow \frac{dy}{dx} = 3x^2 + 3$ Slope of tangent at x = 1 = 6 and Slope of tangent at x = -1 = 6Hence, the two tangents are parallel.

Section **B**

21. (c) one-one and into

Explanation: $f(x) = x^2 + x + 1$ One-one function Let p, q be two arbitrary elements in N Then, f(p) = f(q) $\Rightarrow p^2 + p + 1 = q^2 + q + 1$ $\Rightarrow p^2 - q^2 + p - q = 0$ $\Rightarrow (p - q) (p + q + 1) = 0$ $\Rightarrow p = q, p + q + 1 \neq 0 (:: p, q \in N)$ When f(p) = f(q), p = q thus, f(x) is one-one function. Onto function For x = 1, f(x) assumes value 3. As, f(x) cannot assume value less than 3, for x \in N Thus, f(x) is not onto function. It is into function.

22. (a) Minimum at $x = \frac{\pi}{2}$

Explanation: $f(x) = 1 + 2 \sin x + 3\cos^2 x$ $\Rightarrow f'(x) = 2 \cos x - 6 \cos x \sin x$ $\Rightarrow f'(x) = 2 \cos x - 3 \sin 2x$ to find minima or maxima of the function $2 \cos x - 6 \cos x \sin x = 0$ $2 \cos x (1 - 3\sin x) = 0$ $\Rightarrow \cos x = 0 \text{ or } \sin x = \frac{1}{3}$ $x = \frac{\pi}{2} \text{ or } x = \sin x^{-1}(\frac{1}{3})$ $f''(x) = -2 \sin x - 6 \cos 2x$ $f''(\frac{\pi}{2}) = 4 > 0$ $\Rightarrow x = \frac{\pi}{2} \text{ is a local minima.}$ $f''(\sin^{-1}(\frac{1}{3})) = -(\frac{2}{3} + 4\sqrt{2}) < 0$

function has maxima at x = $\sin^{-1}\left(\frac{1}{3}\right)$

23. **(d)** 43

Explanation:

Corner points	$\mathbf{Z} = 5\mathbf{x} + 7\mathbf{y}$
O(0,0)	0
B (3,4)	43
A(7,0)	35
C(0,2)	14

Hence the maximum value is 43

24. **(d)** 75

Explanation: $f(x) = x^2 + \frac{250}{x}$ $\Rightarrow f'(x) = 2x - \frac{250}{x^2}$ For the local minima or maxima we must have f'(x) = 0 $2x - \frac{250}{x^2} = 0$ $\Rightarrow x = 5$ $f''(x) = 2 + \frac{500}{x^3}$ $f''(5) = 2 + \frac{500}{125} > 0$ function has minima at x = 5 f(5) = 75

25. **(d)** *f* is everywhere continuous but not differentiable at $x = n\pi, n \in \mathbb{Z}$ **Explanation:** We have, $f(x) = |\sin x|$ Let $f(x) = \operatorname{vou}(x) = v[u(x)]$ [where, $u(x) = \sin x$ and v(x) = |x|] $= v(\sin x) = |\sin x|$ Where, u(x) and v(x) are both continuous. Hence, $f(x) = \operatorname{vou}(x)$ is also a continuous function but v(x) is not differentiable at x = 0 So, f(x) is not differentiable where $\sin x = 0 \Rightarrow x = n\pi$, $n \in Z$ Hence, f(x) is continuous everywhere but not differentiable at $x = n\pi, n \in Z$

26. (d) $\frac{\pi}{6}$

Explanation: Let the principle value be given by x

Now, let x = cosec⁻¹(2) \Rightarrow cosec x = 2 \Rightarrow cosec x = cosec $\left(\frac{\pi}{6}\right)$ $\left(\because \cos\left(\frac{\pi}{6}\right) = 2\right)$ $\Rightarrow x = \frac{\pi}{6}$

27. **(d)** one – one onto

Explanation: Injectivity: Let $x_1, x_2 \in R$ such that $f(x_1) = f(x_2)$. Then, $f(x_1) = f(x_2) \Rightarrow 3x_1 = 3x_2$ $\Rightarrow x_1 = x_2$. So, f: $\mathbb{R} \to \mathbb{R}$ is one –one. Surjectivity: Let $y \in \mathbb{R}$, Then $f(x) = y \Rightarrow 3x = y \Rightarrow x = \frac{y}{3}$, Clearly, $\frac{y}{3} \in R$ for any $y \in R$ such that

 $f\left(rac{y}{3}
ight)=3\left(rac{y}{3}
ight)=y$. So, Let f : R
ightarrow R is onto.

28. **(a)** 0

Explanation:
$$\cos^{-1} \left(\cos \frac{5\pi}{3} \right) + \sin^{-1} \left(\sin \frac{5\pi}{3} \right)$$

= $\cos^{-1} \left(\cos \left(2\pi - \frac{\pi}{3} \right) \right) + \sin^{-1} \left(\sin \left(2\pi - \frac{\pi}{3} \right) \right)$
= $\cos^{-1} \left(\cos \left(\frac{\pi}{3} \right) \right) + \sin^{-1} \left(-\sin \left(\frac{\pi}{3} \right) \right)$
= $\cos^{-1} \left(\cos \left(\frac{\pi}{3} \right) \right) - \sin^{-1} \left(\sin \left(\frac{\pi}{3} \right) \right)$
= $\frac{\pi}{3} - \frac{\pi}{3}$
= 0

29. **(d)** $(0, \frac{1}{e})$

Explanation: $(0, \frac{1}{e})$

```
Let y = x^{X}

\Rightarrow \log(y) = x\log X

\Rightarrow \frac{1}{y} \times \frac{dy}{dx} = 1 + \log X

\Rightarrow \frac{dy}{dx} = x^{x}(1 + \log x)

Since the function is decreasing,

\Rightarrow x^{x}x(1 + |\log x|) < 0

\Rightarrow 1 + \log x < 0

\Rightarrow \log x < -1

\Rightarrow x < \frac{1}{e}

Therefore, function is decreasing on (0, \frac{1}{e})
```

30. (c) Determinant is a number associated to a square matrix.

Explanation: The determinant is an operation that we perform on arranged numbers. A square matrix is a set of arranged numbers. We perform some operations on a matrix and we get a value that value is called as a determinant of that matrix hence a determinant is a number associated to a square matrix.

31. **(c)** n²y

Explanation: $y^{1/n} + y^{-1/n} = 2x$ Differentiating both sides we get $\frac{y_1}{n} \left(y^{\frac{1}{n}-1} - y^{\frac{-1}{n}-1} \right) = 2$ $\Rightarrow y_1 \left(y^{\frac{1}{n}} - y^{\frac{-1}{n}} \right) = 2ny$ Again differentiating both sides we get

$$egin{aligned} & \mathrm{y}_2\left(\mathrm{y}^{rac{1}{n}}-\mathrm{y}^{rac{-1}{n}}
ight)+rac{\mathrm{y}_1}{\mathrm{n}}\left(\mathrm{y}^{rac{1}{n}^{-1}}+\mathrm{y}^{rac{-1}{n}-1}
ight)=2\mathrm{n}\mathrm{y}_1\ & \Rightarrow ny_2\left(y^{rac{1}{n}}-y^{rac{-1}{n}}
ight)+rac{\mathrm{y}_1^2}{y}\left(y^{rac{1}{n}}+y^{rac{-1}{n}}
ight)=2n^2y_1\ & \Rightarrow nyy_2\left(y^{rac{1}{n}}-y^{rac{-1}{n}}
ight)+2xy_1^2=2n^2yy_1 \end{aligned}$$

$$\Rightarrow nyy_2 \frac{2ny}{y_1} + 2xy_1^2 = 2n^2yy_1 \Rightarrow \frac{n^2y^2y_2}{y_1^2} + xy_1 = n^2y \Rightarrow y_2 \frac{\left(y^{\frac{1}{n}} - y^{-\frac{1}{n}}\right)^2}{4} + xy_1 = n^2y \Rightarrow y_2 \frac{\left(y^{\frac{1}{n}} + y^{-\frac{1}{n}}\right)^2 - 4}{4} + xy_1 = n^2y \Rightarrow y_2 \frac{4x^2 - 4}{4} + xy_1 = n^2y \Rightarrow (x^2 - 1)y_2 + xy_1 = n^2y$$

32. **(c)** 0

Explanation: Since, f is continuous at $x = \frac{\pi}{2}$ $\therefore f(\frac{\pi}{2}) = \lim_{x \to \frac{\pi}{2}} \frac{\sin(\cos x - \cos x)}{(\pi - 2x)^2}$ i.e. $k = \lim_{x \to \frac{\pi}{2}} \frac{\sin(\cos x - \cos x)}{(\pi - 2x)^2}$ Let $x = \frac{\pi}{2} - h$, $\Rightarrow k = \lim_{h \to 0} \frac{\sin(\cos(\frac{\pi}{2} - h) - \cos(\frac{\pi}{2} - h))}{(\pi - 2(\frac{\pi}{2} - h))^2}$ $= \lim_{h \to 0} \frac{\sin(\sin h) - \sin h}{4h^2}$ Using $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$ $\Rightarrow k = \lim_{h \to 0} \frac{(\sin h - \frac{\sin^3 h}{3!} + \frac{\sin^5 h}{5!} - \dots) - \sin h}{4h^2}$ $= \lim_{h \to 0} \left(\frac{-\sin^3 h}{3! \times 4h^2} + \frac{\sin^5 h}{5! \times 4h^2} \dots \right)$ = 0 $\therefore \lim_{x \to \frac{\pi}{2}} f(x) = 0 = k$ $\Rightarrow k = 0$

33. **(d)** monotonically decreasing **Explanation:** monotonically decreasing

34. (c)
$$\frac{\pi}{4}$$

Explanation:
$$\tan^{-1}\frac{1}{7} + 2\tan^{-1}\frac{3}{4} \Rightarrow \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{2\cdot\frac{1}{3}}{1-\left(\frac{1}{3}\right)^2}$$

= $\tan^{-1}\frac{1}{7} + 2\tan^{-1}\frac{3}{4} \Rightarrow \tan^{-1}\frac{\frac{1}{7}+\frac{3}{4}}{1-\frac{1}{7}\cdot\frac{3}{4}} \Rightarrow \tan^{-1}(1) = \frac{\pi}{4}$

35. (c)
$$\frac{1}{2}$$

Explanation: We know that
$$A \times A^{-1} = I$$

 $\begin{pmatrix} 2x & 0 \\ x & x \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 $\begin{pmatrix} 2x \times 1 + 0 \times (-1) & 2x \times 0 + 0 \times 2 \\ x \times 1 + x \times (-1) & x \times 0 + x \times 2x \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 $\begin{pmatrix} 2x & 0 \\ 0 & 2x \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
To satisfy the above condition $2x = 1$
 $x = \frac{1}{2}$

36. (b) at any vertex of feasible regionExplanation: In linear programming problem we substitute the coordinates of vertices of feasible region

in the objective function and then we obtain the maximum or minimum value. Therefore, the value of objective function is maximum under linear constraints at any vertex of feasible region.

37. **(b)** none of these

Explanation: We have,
$$A = \frac{1}{3} \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & -2 \\ x & 2 & y \end{bmatrix}$$

 $\Rightarrow A^{T} = \frac{1}{3} \begin{bmatrix} 1 & 2 & x \\ 1 & 1 & 2 \\ 2 & -2 & y \end{bmatrix}$
Now, $A^{T}A = I$
 $\Rightarrow \begin{bmatrix} x^{2} + 5 & 2x + 3 & xy - 2 \\ 3 + 2x & 6 & 2y \\ xy - 6 & 2y & y^{2} + 8 \end{bmatrix} = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix}$

The corresponding elements of two equal matrices are not equal. Thus, the matrix A is not orthogonal.

38. **(b)**
$$\frac{4}{3}$$

Explanation: $f(x) = \frac{1}{4x^2+2x+1}$ $\Rightarrow f'(x) = 8x + 2$ For local minima or maxima we have f'(x) = 8x + 2 = 0 $\Rightarrow x = \frac{-1}{4}$ f''(x) = 8 > 0 \Rightarrow function has maxima at $x = \frac{-1}{4}$ $f\left(\frac{-1}{4}\right) = \frac{4}{3}$

39. **(c)** m²y

Explanation: $y = ae^{mx} + be^{-mx} \Rightarrow y_1 = ame^{mx} + (-m)be^{-mx} \Rightarrow y_2 = am^2e^{mx} + (m^2)be^{-mx} \Rightarrow y_2 = m^2(ae^{mx} + be^{-mx}) \Rightarrow y_2 = m^2y$

40. **(d)** {1, 3}, {2, 4, 5}, {6}

Explanation: Conditions for the partition sub-sets to be an equivalence relation: The partition sub-sets must be disjoint i.e.there is no common elements between them Their union must be equal to the main set (super-set)

Here, the set A= $\{1,2,3,4,5,6\}$, the partition sub-sets $\{1,3\}$, $\{2,4,5\}$, $\{6\}$ are pairwise disjoint and their union i.e. $\{1,3\}$ U $\{2,4,5\}$ U $\{6\}$ = $\{1,2,3,4,5,6\}$ = A, which is the condition for the partition sub-sets to be an equivalence relation of the set A.

Section C

41. (c)
$$\frac{1}{2\sqrt{2}}$$

Explanation:
$$\sin\left(\frac{1}{4}\sin^{-1}\frac{\sqrt{63}}{8}\right)$$

Let, $\sin^{-1}\frac{\sqrt{63}}{8} = x$
 $\sin x = \frac{\sqrt{63}}{8}$
 $\cos x = \sqrt{1 - \sin^2 x}$
 $\cos x = \sqrt{1 - \frac{63}{64}}$
 $\cos x = \frac{1}{8}$
Consider,
 $\sin\left(\frac{1}{4}\sin^{-1}\frac{\sqrt{63}}{8}\right)$
 $= \sin\left(\frac{1}{4}x\right)$

$$= \sqrt{\frac{1 - \cos \frac{x}{2}}{2}} \quad \left(\because \sin x = \frac{1 - \cos 2x}{2} \right)$$
$$= \sqrt{\frac{1 - \sqrt{\frac{1 + \cos x}{2}}}{2}} \quad \left(\because \cos x = \frac{1 + \cos 2x}{2} \right)$$
$$= \sqrt{\frac{1 - \sqrt{\frac{1 + \frac{1}{8}}{2}}}{2}}$$
$$= \sqrt{\frac{1 - \sqrt{\frac{1 - \frac{3}{4}}{2}}}{2}}$$
$$= \sqrt{\frac{1 - \frac{3}{4}}{2}}$$
$$= \sqrt{\frac{1}{8}}$$
$$= \frac{1}{2\sqrt{2}}$$

42. **(c)** 1700

Explanation: Here , Maximize Z = 50x+60y , subject to constraints $x + 2 y \le 50$, $x + y \ge 30$, $x, y \ge 0$.

Corner points	Z = 50x +60 y
P(50 ,0)	2500
Q(0 , 30)	1800
R(10, 20)	1700

Hence the minimum value is 1700

43. **(a)** 1

Explanation:
$$f'(6) = \lim_{h \to 0} \frac{f(6+h) - f(6)}{h} = \lim_{h \to 0} \frac{f(6+h) - f(6+0)}{h}$$

 $= \lim_{h \to 0} \frac{f(6) + f(h) - \{f(6) + f(0)\}}{h}$
 $= \lim_{h \to 0} \frac{f(h) - f(0)}{h} = f'(0) = 1$

44. (c) $|A| + |A'| \neq 0$

Explanation: Because, the determinant of a matrix and its transpose are always equal that is |A| = |A'|

45. (b) Transitive and symmetric
 Explanation: The relation { }⊂ A × A on A is surely not reflexive. However, neither symmetry nor transitivity is contradicted. So { } is a transitive and symmetric relation on A.

- 46. (c) ₹32,000 Explanation: ₹32,000
- 47. (d) ₹46,000 Explanation: ₹46,000
- 48. (d) ₹53,000 Explanation: ₹53,000
- 49. (d) ₹31,000 Explanation: ₹31,000
- 50. (c) (₹15,000, ₹17,000)
 Explanation: (₹15,000, ₹17,000)