Sample Question Paper - 41 Mathematics-Standard (041) Class- X, Session: 2021-22 TERM II

Time Allowed : 2 hours

General Instructions :

- 1. The question paper consists of 14 questions divided into 3 sections A, B, C.
- 2. All questions are compulsory.
- 3. Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
- 4. Section B comprises of 4 questions of 3 marks each. Internal choice has been provided in one question.
- 5. Section C comprises of 4 questions of 4 marks each. An internal choice has been provided in one question. It contains two case study based questions.

SECTION - A

- 1. Solve for $x : x^2 (2b 1)x + (b^2 b 20) = 0$
- 2. The angles of a quadrilateral are in A.P. whose common difference is 10°. Find the angles.

OR

The sum of the 2nd and the 7th term of an A.P. is 30. If its 15th term is 1 less than twice its 8th term, then find the A.P.

- 3. If $ad \neq bc$, then prove that the equation $(a^2 + b^2)x^2 + 2(ac + bd)x + (c^2 + d^2) = 0$ has no real roots.
- 4. If angle between two tangents drawn from a point P to a circle of radius 'a' and centre O is 90°, then find the length of OP.

5. The length of a cold storage is double its breadth. Its height is 3 metres. The areas of its four walls (including doors) is 108 m². Find its volume.

OR

The radii of the internal and external surfaces of a metallic spherical shell are 3 cm and 5 cm respectively. It is melted and recut into a solid right circular cylinder of height $10\frac{2}{3}$ cm. Find the diameter of the base of the cylinder.

6. If the mode of the given data is 340, find the missing frequency *x* for the following data :

Maximum Marks : 40

Classes	0-100	100-200	200-300	300-400	400-500	500-600
Frequency	8	12	x	20	14	7

SECTION - B

7. The following table gives the literacy rate (in %) in 40 cities. Find the mean literacy rate.

Literacy rate (in %)	45-55	55-65	65-75	75-85	85-95
Number of cities	4	11	12	9	4

8. The angle of elevation of a cloud from a point 60 m above the surface of the water of a lake is 30° and the angle of depression of its shadow in water of lake is 60°. Find the height of the cloud from the surface of water.

OR

From a point *P* on the ground, the angle of elevation of the top of a 10 m tall building is 30°. A flagstaff is fixed at the top of the building and the angle of elevation of the top of the flagstaff from *P* is 45°. Find the length of the flagstaff and the distance of the building from the point *P*. (Take $\sqrt{3} = 1.73$)

9. In an apple orchard, the number of apples on 80 trees are as follows :

Number of apples	40-60	60-80	80-100	100-120	120-140	140-160	160-180
Number of trees	12	11	14	16	13	9	5

Find the median of the above data.

10. Construct a right triangle *ABC* with *AB* = 6 cm, *BC* = 8 cm and $\angle B$ = 90°. Draw *BD*, the perpendicular from *B* on *AC*. Draw the circle through *B*, *C* and *D* and construct the tangents from *A* to this circle.

SECTION - C

- 11. A conical vessel of radius 12 cm and height 16 cm is completely filled with water. A sphere is lowered into the water and its size is such that, when it touches the sides, it is just immersed. What fraction of the water overflows?
- **12.** *AB* and *CD* are two parallel chords of a circle such that AB = 10 cm and CD = 24 cm. The chords are on opposite sides of the centre and the distance between them is 17 cm. Find the radius of the circle.

OR

In the fig, *RTP* and *STQ* are common tangents to the two circles with centres *A* and *B*. The radii of the two circles are 3 cm and 5 cm respectively. If ST : TQ = 1 : 3 and RT = 4 cm. Find the length of *QT* and *AB*.

Case Study - 1

13. Amit is preparing for his upcoming semester exam. For this, he has to practice the chapter of Quadratic Equations. So he started with factorization method. Let two linear factors of $ax^2 + bx + c$ be (px + q) and (rx + s).

:.
$$ax^2 + bx + c = (px + q)(rx + s) = prx^2 + (ps + qr)x + qs$$
.

Now, factorize each of the following quadratic equations and find the roots.

(i)
$$6x^2 + x - 2 = 0$$

(ii) $x^2 - 28x + 160 = 0$

Case Study - 2

14. A boy is standing on the top of light house. He observed that boat P and boat Q are approaching to light house from opposite directions. He finds that angle of depression of boat P is 45° and angle of depression of boat Q is 30°. He also knows that height of the light house is 100 m.

Based on the above information, answer the following questions.

- (i) Find the length of *PD*.
- (ii) Find the length of DQ.

Solution

MATHEMATICS STANDARD 041

Class 10 - Mathematics

1. We have, $x^2 - (2b - 1)x + (b^2 - b - 20) = 0$ Discriminant, $D = (2b - 1)^2 - 4(1)(b^2 - b - 20)$ $= 4b^2 + 1 - 4b - 4b^2 + 4b + 80 = 81$ Using quadratic formula,

$$x = \frac{(2b-1) \pm \sqrt{81}}{2(1)} = \frac{2b-1 \pm 9}{2}$$

$$\Rightarrow x = \frac{(2b-1)+9}{2} \text{ or } x = \frac{(2b-1)-9}{2}$$

$$\Rightarrow x = \frac{2b+8}{2} = b+4 \text{ or } x = \frac{2b-10}{2} = b-5$$

2. Let the four angles of a quadrilateral are n, $(n + 10^\circ)$, $(n + 20^\circ)$ and $(n + 30^\circ)$.

- \therefore Sum of all the angles of a quadrilateral = 360°
- $\Rightarrow n + (n + 10^{\circ}) + (n + 20^{\circ}) + (n + 30^{\circ}) = 360^{\circ}$
- $\Rightarrow 4n + 60^\circ = 360^\circ \Rightarrow n = 300^\circ/4 = 75^\circ$
- : Angles are 75°, 85°, 95° and 105°.

OR

Let *a* be the first term and *d* be the common difference of the A.P. Now, according to the question, $a_2 + a_7 = 30$ $\Rightarrow a + d + a + 6d = 30 \Rightarrow 2a + 7d = 30$...(i) Given, $a_{15} = 2a_8 - 1$ $\Rightarrow a + 14d = 2(a + 7d) - 1 \Rightarrow a + 14d = 2a + 14d - 1$ $\Rightarrow a = 1$...(ii) Substituting (ii) in (i), we get $2 + 7d = 30 \Rightarrow 7d = 28 \Rightarrow d = 4$ Hence, the A.P. is formed as 1, 5, 9, **3.** We have, $(a^2 + b^2)x^2 + 2(ac + bd)x + (c^2 + d^2) = 0$ Discriminant, $D = 4(ac + bd)^2 - 4(a^2 + b^2)(c^2 + d^2)$ $= 4(a^2c^2 + b^2d^2 + 2acbd) - 4(a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2)$

 $= 4(a^{2}c^{2} + b^{2}d^{2} + 2abcd - a^{2}c^{2} - a^{2}d^{2} - b^{2}c^{2} - b^{2}d^{2})$ = 4(2abcd - a^{2}d^{2} - b^{2}c^{2}) = -4(ad - bc)^{2} < 0 [:: ad \neq bc] Thus, given equation has no real roots.

4. In given figure, *PQ* and *PR* be the tangents. Since $\angle P = 90^{\circ}$

... Using angle sum property in quad OQPR, $\angle QOR = 90^{\circ}$ Also, OR = OQ = a $\therefore PQOR$ is a square

 $\Rightarrow OP = \sqrt{a^2 + a^2} = \sqrt{2a^2} = a\sqrt{2}$

5. Let the length, breadth and height of the cold storage be l, b and h metres respectively. Then l = 2b (given) and h = 3 m.

Now, area of the four walls = 108 m^2

 $\Rightarrow 2(l+b)h = 108$

$$\Rightarrow 2(2b+b) \times 3 = 108$$

 $\Rightarrow 18b = 108 \Rightarrow b = 6$ $\Rightarrow l = 2 \times 6 = 12 \text{ m}$ Hence, volume of the cold storage $= l \times b \times h = 12 \times 6 \times 3 = 216 \text{ m}^3.$

OR

Let the radius of the base of the cylinder be r cm. Then, Volume of the metallic solid cylinder of height

$$10\frac{2}{3}$$
 cm = Volume of the metal in the spherical shell

$$\Rightarrow \quad \pi \times r^2 \times \frac{32}{3} = \frac{4}{3}\pi(5^3 - 3^3)$$
$$\Rightarrow \quad \frac{32}{3}r^2 = \frac{4}{3}(125 - 27) \quad \Rightarrow \quad r^2 = \frac{3}{32} \times \frac{4}{3} \times 98$$
$$\Rightarrow \quad r^2 = \frac{49}{4} \Rightarrow r = \frac{7}{2} \text{ cm}$$

Hence, diameter of the base of the cylinder = 7 cm

6. Here, mode = 340 which lies in the interval 300-400.

$$\therefore \text{ Modal class} = 300-400$$

$$\text{Now, Mode} = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

$$\Rightarrow 340 = 300 + \left(\frac{20 - x}{2 \times 20 - x - 14}\right) \times 100$$

$$\Rightarrow 340 - 300 = \left(\frac{20 - x}{26 - x}\right) \times 100$$

$$\Rightarrow 6x = 96 \Rightarrow x = 16$$

7. The frequency distribution table from the given data can be drawn as :

Literacy rate	Class- marks (x _i)	Frequency (f _i)	$u_i = \frac{x_i - A}{h}$	$f_i u_i$
45-55	50	4	-2	-8
55-65	60	11	-1	-11
65-75	70	12	0	0
75-85	80	9	1	9
85-95	90	4	2	8
Total		$\Sigma f_i = 40$		$\Sigma f_i u_i = -2$

Let assumed mean (A) = 70

$$\therefore \quad \text{Mean} \ (\overline{X}) = A + \frac{\sum f_i u_i}{\sum f_i} \times h$$

$$(-2) \qquad \qquad 20$$

$$= 70 + \left(\frac{-2}{40}\right) \times 10 = 70 - \frac{20}{40} = 69.5$$

8. Let AB be the surface of the lake and C be the position of cloud and C' be its reflection or shadow in the lake. Also, let height of cloud is h m.

In
$$\Delta PMC'$$
, $\tan 60^\circ = \frac{C'M}{PM} = \frac{BC' + BM}{AB}$
 $\Rightarrow \sqrt{3} = \frac{h+60}{AB} \Rightarrow AB = \frac{h+60}{\sqrt{3}}$...(ii)

From (i) and (ii), we have

$$(h-60)\sqrt{3} = \frac{h+60}{\sqrt{3}} \implies 3h-180 = h+60$$
$$\implies 2h = 240 \implies h = 120$$

Thus, height of the cloud from the surface of water is 120 m.

OR

Let *AB* be the building and *BC* be the flagstaff of height *h* m. *AP* is the distance of the building from the point *P*. In right ΔPAB ,

So, the distance of the building from the point P is 17.3 m.

In right
$$\triangle PAC$$
, $\tan 45^\circ = \frac{AC}{AP}$
 $\Rightarrow 1 = \frac{10+h}{17.3}$ (Using (i))

 $\Rightarrow 10 + h = 17.3$ $\Rightarrow h = 17.3 - 10 \Rightarrow h = 7.3$

Thus, the length of the flagstaff is 7.3 m.

9. The frequency distribution table from the given data can be drawn as :

Class	Frequency (f_i)	Cumulative frequency (<i>c.f.</i>)
40-60	12	12
60-80	11	23
80-100	14	37
100-120	16	53
120-140	13	66
140-160	9	75
160-180	5	80
Total	80	

Clearly, $\frac{N}{2} = \frac{80}{2} = 40$ lies in the class interval 100-120. So, 100-120 is the median class.

:.
$$l = 100$$
, c.f. = 37, $f = 16$, $h = 20$

Median =
$$l + \left(\frac{\frac{N}{2} - c.f.}{f}\right) \times h$$

= $100 + \left(\frac{40 - 37}{16}\right) \times 20$
= $100 + \frac{60}{16} = 100 + 3.75 = 103.75$

:. Median = 103.75

10. Steps of construction :

Step-I : Draw $\triangle ABC$ and perpendicular *BD* from *B* on *AC*.

Step-II : Draw a circle with *BC* as diameter. This circle will pass through *D*.

Step-III : Let *O* be the mid-point of *BC*. Join *AO*.

Step-IV : Draw a circle with *AO* as diameter. This circle cuts the circle drawn in step 2 at *B* and *E*.

Step-V : Join *AE*. *AE* and *AB* are desired tangents drawn from *A* to the circle passing through *B*, *C* and *D*.

11. Radius of conical vessel = R = 12 cm

$$\Rightarrow \frac{AO}{CD} = \frac{AB}{BC}$$

$$\Rightarrow \frac{12}{r} = \frac{20}{16 - r} \left[\ln \Delta AOB, AB = \sqrt{16^2 + 12^2} = 20 \right]$$

$$\Rightarrow 12 \times (16 - r) = 20r \Rightarrow 32r = 16 \times 12$$

$$\Rightarrow r = \frac{16 \times 12}{32} \text{ cm} = 6 \text{ cm}$$

Volume of water that overflows = Volume of the sphere

$$=\frac{4}{3}\pi r^{3}=\frac{4}{3}\times\frac{22}{7}(6)^{3}=\frac{6336}{7}\,\mathrm{cm}^{3}$$

Volume of water in conical vessel = $\frac{1}{3}\pi R^2 h$

 $= \frac{1}{3} \times \frac{22}{7} \times (12)^2 \times 16 = \frac{16896}{7}$ Fraction of water that over flows Volume of water overflows

Volume of water in conical vessel

$$=\frac{6336}{7} \times \frac{7}{16896} = \frac{3}{8}$$

12. Given, AB = 10 cm, CD = 24 cm EF (distance between two chords) = 17 cm Let OE = x, then OF = EF - OE = 17 - xand OC = OA = r[Radii of the circle] In $\triangle OCE$, right angled at *E* $OC^2 = CE^2 + OE^2$ $12 \text{ cm}E_{12} \text{ cm}D$ х $\Rightarrow r^2 = 12^2 + x^2$ $\implies r^2 = 144 + x^2$...(i) 0 In $\triangle OAF$, right angled at F $OA^2 = AF^2 + OF^2$ 17 - x $\Rightarrow r^2 = 5^2 + (17 - x)^2$ $5 \text{ cm}_F 5 \text{ cm} B$ \Rightarrow $r^2 = 25 + 289 - 34x + x^2$...(ii) From (i) and (ii), we get $144 + x^2 = 25 + 289 - 34x + x^2$ $\Rightarrow 34x = 170 \Rightarrow x = 5 \text{ cm}$

Now, from eq (i), we have $r^2 = 144 + 25 = 169$ $\Rightarrow r = 13 \text{ cm}$ Hence radius of the circle is 13 cm.

We have, AR = 3 cm, BQ = 5 cm, RT = 4 cm and ST: TQ = 1:3

TR and *TS* are two tangents drawn from an external point *T* to the circle with centre *A*

$$\therefore TR = TS \text{ and } \frac{ST}{TQ} = \frac{1}{3}$$

$$\Rightarrow \frac{TR}{TQ} = \frac{1}{3} \Rightarrow \frac{4}{TQ} = \frac{1}{3} \qquad [\because TR = 4 \text{ cm}]$$

$$\Rightarrow TQ = 12 \text{ cm}$$
Now, in $\Delta ART, \angle R = 90^{\circ}$

$$\therefore AT^{2} = AR^{2} + RT^{2}$$

$$\Rightarrow AT^{2} = (3)^{2} + (4)^{2} = 9 + 16 = 25 \Rightarrow AT = 5 \text{ cm}$$
and in $\Delta BQT, \angle Q = 90^{\circ}$

$$\therefore BT^{2} = BQ^{2} + TQ^{2}$$

$$\Rightarrow BT^{2} = (5)^{2} + (12)^{2} = 25 + 144 = 169$$

$$\Rightarrow BT = 13 \text{ cm}$$
Now $AB = AT + BT$

$$\Rightarrow AB = 5 + 13 = 18 \text{ cm}$$
Hence, $QT = 12 \text{ cm}$ and $AB = 18 \text{ cm}$
13. (i) We have, $6x^{2} + x - 2 = 0$

$$\Rightarrow 6x^{2} - 3x + 4x - 2 = 0 \Rightarrow (3x + 2)(2x - 1) = 0$$

$$\Rightarrow x = \frac{1}{2}, \frac{-2}{3}$$
(ii) $x^{2} - 28x - 160 = 0$

$$\Rightarrow x(x - 20) - 8(x - 20) = 0$$

$$\Rightarrow (x - 20) (x - 8) = 0$$

$$\therefore x = 20 \text{ or } 8.$$
14. (i) $\angle XAP = 45^{\circ}$ [Alternate interior angles]
In $\Delta APD, \frac{AD}{DP} = \tan 45^{\circ}$

$$\Rightarrow \frac{100}{DP} = 1 \Rightarrow DP = 100 \text{ m}$$
(ii) In $\Delta AQD, \frac{AD}{QD} = \tan 30^{\circ}$

$$\Rightarrow \frac{100}{QD} = \frac{1}{\sqrt{3}} \Rightarrow QD = 100\sqrt{3} \text{ m}$$