Exercise 14.1

Q. 1. A survey was conducted by a group of students as a part of their environment awareness programmed, in which they collected the following data regarding the number of plants in 20 houses in a locality. Find the mean number of plants per house.

No. of	0-2	2-4	4-6	6-8	8-10	10-12	12-14
plants							
No. of	1	2	1	5	6	2	3
houses							

Answer : Let's find mean of the data using direct method.

First, construct a table for ease of calculation.

No. of	Midpoints	No. of	xifi
plants	(x _i)	houses (frequency)	
		(f _i)	
0-2	1	1	$1 \times 1 = 1$
2-4	3	2	3 × 2 = 6
4-6	5	1	5 × 1 = 5
6-8	7	5	7 × 5 = 35
8-10	9	6	9 × 6 = 54
10-12	11	2	11 × 2 = 22
12-14	13	3	$13 \times 3 = 39$
TOTAL		$\Sigma f_i = 20$	$\Sigma x_i f_i = 162$

Mean is given by

$$Mean = \frac{\sum x_i f_i}{\sum f_i}$$

⇒ Mean = 162/20

 \Rightarrow Mean = 8.1

Thus, mean number of plants per house is 8.1.

Q. 2. Consider the following distribution of daily wages of 50 workers of a factory.

Daily wages in Rupees	200-250	250-300	300-350	350-400	400-450
Number of workers	12	14	8	6	10

Find the mean daily wages of the workers of the factory by using an appropriate method.

Answer : Let's find mean of the data using assumed mean method.

We are using assumed mean method to avoid miscalculation and false answer, as x_i 's are large in this question.

First, construct a table for ease of calculation.

Daily	Midpoints	$d_i = x_i$	No. of	fidi
wages	(x _i)	- 325	workers	
(Rs.)			(frequency)	
			(f _i)	
200-250	225	-100	12	-1200
250-300	275	-50	14	-700
300-350	325 = A	0	8	0
350-400	375	50	6	300
400-450	425	100	10	1000
TOTAL			$\Sigma f_i = 50$	$\Sigma f_i d_i = -600$

Mean is given by

$$Mean = A + \frac{\sum f_i d_i}{\sum f_i}$$

Where A = assumed mean

$$\Rightarrow \text{Mean} = 325 + \frac{-600}{50}$$

 $\Rightarrow Mean = 325 - 12 = 313$

Thus, mean daily wages of the workers is Rs. 313.

Q. 2. Consider the following distribution of daily wages of 50 workers of a factory.

Daily wages in Rupees	200-250	250-300	300-350	350-400	400-450
Number of workers	12	14	8	6	10

Find the mean daily wages of the workers of the factory by using an appropriate method.

Answer : Let's find mean of the data using assumed mean method.

We are using assumed mean method to avoid miscalculation and false answer, as x_i 's are large in this question.

First, construct a table for ease of calculation.

Daily	Midpoints	$d_i = x_i$	No. of	fidi
wages	(x _i)	- 325	workers	
(Rs.)			(frequency)	
			(f _i)	
200-250	225	-100	12	-1200
250-300	275	-50	14	-700
300-350	325 = A	0	8	0
350-400	375	50	6	300
400-450	425	100	10	1000
TOTAL			Σf _i = 50	∑f _i d _i = -600

Mean is given by

$$Mean = A + \frac{\sum f_i d_i}{\sum f_i}$$

Where A = assumed mean

$$\Rightarrow \text{Mean} = 325 + \frac{-600}{50}$$

 \Rightarrow Mean = 325 - 12 = 313

Thus, mean daily wages of the workers is Rs. 313.

Q. 3. The following distribution shows the daily pocket allowance of children of a locality. The mean pocket allowance is `18. Find the missing frequency f.

Daily pocket allowance (in Rupees)	11-13	13-15	15-17	17-19	19-21	21-23	23-25
Number of children	7	6	9	13	f	5	4

Answer : To find f, we'll need to find mean pocket allowance by direct method and equate it to the given mean pocket allowance, 18.

So, let's construct a table finding midpoints and stating frequencies.

Daily pocket	Midpoints	No. of	x _i f _i
allowance	(x _i)	children	
(Rs.)		(frequency)	
		(f _i)	
11-13	12	7	12 × 7 = 84
13-15	14	6	14 × 6 = 84
15-17	16	9	16 × 9 = 144
17-19	18	13	18 × 13 = 234
19-21	20	f	20 × f = 20f
21-23	22	5	22 × 5 = 110
23-25	24	4	24 × 4 = 96
TOTAL		$\Sigma f_i = 44 + f$	$\Sigma x_i f_i = 752 + 20f$

Mean is given by

 $Mean = \frac{\sum x_i f_i}{\sum f_i}$ $\Rightarrow 18 = \frac{752+20f}{44+f} \text{ [given, mean = 18]}$ $\Rightarrow 18(44+f) = 752 + 20f$ $\Rightarrow 792 + 18f = 752 + 20f$ $\Rightarrow 20f - 18f = 792 - 752$ $\Rightarrow 2f = 40$ $\Rightarrow f = 40/2$ $\Rightarrow f = 20$

Thus, the missing frequency f is 20.

Q. 4. Thirty women were examined in a hospital by a doctor and their of heart beats per minute were recorded and summarized as shown. Find the mean heart beats per minute for these women, choosing a suitable method.

Number of	65-68	68-71	71-74	74-77	77-80	80-83	83-86
heart							
beats/minute							
Number of	2	4	3	8	7	4	2
women							

Answer : We shall use assumed mean method to find mean heart beats per minute, as this data has large values of x_i 's and has a risk of miscalculation. But by using assumed mean method, we'll be able to solve it with ease and more accuracy.

No. of heart	Midpoints	di = x _i - 75.5	No. of	f _i d _i
beats per	(x _i)		women	
minute			(frequency)	
			(f _i)	
65-68	66.5	66.5 - 75.5 = -9	2	-9 × 2 = -18
68-71	69.5	69.5 - 75.5 = -6	4	-6 × 4 = -24
71-74	72.5	72.5 - 75.5 = -3	3	-3 × 3 = -9
74-77	75.5 = A	75.5 - 75.5 = 0	8	$0 \times 8 = 0$
77-80	78.5	78.5 - 75.5 = 3	7	3 × 7 = 21
80-83	81.5	81.5 - 75.5 = 6	4	6 × 4 = 24
83-86	84.5	84.5 - 75.5 = 9	2	9 × 2 = 18
TOTAL			∑f _i = 30	$\Sigma f_i d_i = 12$

Mean is given by

$$Mean = A + \frac{\sum f_i d_i}{\sum f_i}$$

$$\Rightarrow Mean = 75.5 + \frac{12}{30}$$

$$\Rightarrow Mean = \frac{755}{10} + \frac{4}{10}$$

$$\Rightarrow Mean = \frac{755+4}{10} = \frac{759}{10}$$

 \Rightarrow Mean = 75.9

Thus, mean heart beats per minute of these women is 75.9.

Q. 5. In a retail market, fruit vendors were selling oranges kept in packing basket. These baskets contained varying number of oranges. The following was distribution of oranges.

Number of oranges	10-14	15-19	20-24	25-29	30-34
Number of baskets	15	110	135	115	25

Find the mean number of oranges kept in each basket. Which method of finding the mean did you choose?

Answer : We shall use assumed mean method to find mean number of oranges.

So, while converting data into exclusive type won't change any calculation in finding mean, we are however converting the inclusive data type to exclusive data type for better representation.

No. of oranges	Midpoints (x _i)	di = x _i – 22	No. of baskets (frequency) (f _i)	f _i d _i
9.5-14.5	12	12 - 22 = -10	15	-10 × 15 = - 150
14.5-19.5	17	17 - 22 = -5	110	-5 × 110 = - 550
19.5-24.5	22 = A	22 - 22 = 0	135	0 × 135 = 0
24.5-29.5	27	27 - 22 = 5	115	5 × 115 = 575
29.5-34.5	32	32 - 22 = 10	25	$10 \times 25 = 250$
TOTAL			$\Sigma f_i = 400$	∑f _i d _i = 125

Mean is given by

Mean = A + $\frac{\sum f_i d_i}{\sum f_i}$ ⇒ Mean = 22 + $\frac{125}{400}$ ⇒ Mean = 22 + 0.3125 ⇒ Mean = 22.3125 Thus, mean number of oranges is 22.31.

We have used assumed mean method here, because of larger data values of f_i 's. Assumed mean method gives result to accuracy and ease when data is large.

Q. 6. The table below shows the daily expenditure on food of 25 households in a locality.

Daily	100-	150-	200-	250-	300-
expenditure	150	200	250	300	350
(in Rupees)					
Number of	4	5	12	2	2
house					
holds					

Find the mean daily expenditure on food by a suitable method.

Answer :

Let's find mean of the data using assumed mean method for ease of calculation.

Daily	Midpoints	d _i = x _i - 225	No. of house	fidi
expenditure	(x _i)		holds	
(Rs.)			(frequency)	
			(f _i)	
100-150	125	125 - 225 = -	4	-100 × 4 = -400
		100		
150-200	175	175 - 225 = -50	5	-50 × 5 = -250
200-250	225 = A	225 - 225 = 0	12	$0 \times 12 = 0$
250-300	275	275 - 225 = 50	2	$50 \times 2 = 100$
300-350	325	325 - 225 = 100	2	$100 \times 2 = 200$
TOTAL			Σf _i = 25	$\sum x_i f_i = -350$

Mean is given by

Mean = A +
$$\frac{\sum f_i d_i}{\sum f_i}$$

⇒ Mean = 225 + $\frac{-350}{25}$
⇒ Mean = 225 - 14

 \Rightarrow Mean = 211

Thus, mean daily expenditure on food is 211.

Q. 7. To find out the concentration of SO_2 in the air (in parts per million, i.e., ppm), the data was collected for 30 localities in a certain city and is presented below:

Concentration	0.00-	0.04-	0.08-	0.12-	0.16-	0.20-
of so ₂ in	0.04	0.08	0.12	0.16	0.20	0.24
ppm						
Frequency	4	9	9	2	4	2

Find the mean concentration of SO_2 in the air.

Answer : Let's find mean of the data using direct method as data given have smaller values.

First, construct a table for ease of calculation.

Concentration	Midpoints	Frequency	xifi
of SO ₂ (ppm)	(x _i)	(f _i)	
0.00-0.04	0.02	4	$0.02 \times 4 = 0.08$
0.04-0.08	0.06	9	0.06 × 9 = 0.54
0.08-0.12	0.10	9	$0.10 \times 9 = 0.90$
0.12-0.16	0.14	2	$0.14 \times 2 = 0.28$
0.16-0.20	0.18	4	$0.18 \times 4 = 0.72$
0.20-0.24	0.22	2	$0.22 \times 2 = 0.44$
TOTAL		$\Sigma f_i = 30$	∑x _i f _i = 2.96

Mean is given by

$$Mean = \frac{\sum x_i f_i}{\sum f_i}$$

⇒ Mean = 2.96/30

 \Rightarrow Mean = 0.0987

Or approximately, mean = 0.099

Thus, mean concentration of SO₂ in the air is 0.099 ppm.

Q. 8. A class teacher has the following attendance record of 40 students of a class for the whole term. Find the mean number of days a student was present out of 56 days in the term

Number	35-	38-	41-	44-	47-	50-	53-
of days	38	41	44	47	50	53	56
Number	1	3	4	4	7	10	11
of							
students							

Answer : Here, we can find mean by either direct or assumed mean method. Let's find mean of the data using direct method as data given have smaller values.

First, construct a table for ease of calculation.

No. of days	Midpoints	No. of	xifi
	(x _i)	student	
		(frequency)	
		(f _i)	
35-38	36.5	1	36.5 × 1 = 36.5
38-41	39.5	3	39.5 × 3 = 118.5
41-44	42.5	4	42.5 × 4 = 170
44-47	45.5	4	45.5 × 4 = 182
47-50	48.5	7	48.5 × 7 = 339.5
50-53	51.5	10	51.5 × 10 = 515
53-56	54.5	11	54.5 × 11 = 599.5
TOTAL		$\Sigma f_i = 40$	$\Sigma x_i f_i = 1961$

Mean is given by

$$Mean = \frac{\sum x_i f_i}{\sum f_i}$$

⇒ Mean = 1961/40

⇒ Mean = 49.025

Or approximately, mean = 49

Thus, mean number of days a student was present is 49.

Q. 9. The following table gives the literacy rate (in percentage) of 35 cities. Find the mean literacy rate.

Literacy	45-	55-	65-	75-	85-
rate in %	55	65	75	85	95
Number of cities	3	10	11	8	3

Answer :Let's find mean of the data using direct method as data given have smaller values.

First, construct a table for ease of calculation.

Literacy rate	Midpoints	No. of cities	xifi
(%)	(x _i)	(frequency)	
		(f _i)	
45-55	50	3	50 × 3 = 150
55-65	60	10	$60 \times 10 = 600$
65-75	70	11	70 × 11 = 770
75-85	80	8	80 × 8 = 640
85-95	90	3	90 × 3 = 270
TOTAL		∑f _i = 35	$\sum x_i f_i = 2430$

Mean is given by

$$Mean = \frac{\sum x_i f_i}{\sum f_i}$$

⇒ Mean = 2430/35

 \Rightarrow Mean = 69.429

Or approximately, mean = 69.43

Thus, mean literacy rate is 69.43%.

Exercise 14.2

Q. 1. The following table shows the ages of the patients admitted in a hospital during a year :

Age (in years)	5- 15	15- 25	25- 35	35- 45	45- 55	55- 65
Number	6	11	21	23	14	5
of patients						

Find the made and the mean of the data given above. Compare and interpret the two measures of central tendency.

Answer :

For mode:

Here, highest frequency is 23.

So, the modal class = 35-45

Mode is given by

$$Mode = L + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$$

Where,

h = class interval of the modal class = 10

 $f_1 =$ frequency of the modal class = 23

 f_0 = frequency of the class preceding the modal class = 21

 f_2 = frequency of the class succeeding the modal class = 14

Substituting values in the formula of mode,

$$Mode = 35 + \frac{23 - 21}{2 \times 23 - 21 - 14} \times 10$$

$$\Rightarrow Mode = 35 + \frac{2}{11} \times 10$$

$$\Rightarrow Mode = 35 + 20/11$$

 \Rightarrow Mode = 36.8

For mean:

Let's draw a table showing midpoints and frequencies.

Age (in yrs)	Midpoints (x _i)	No. of patients (frequency) (f _i)	xifi
5-15	10	6	$10 \times 6 = 60$
15-25	20	11	20 × 11 = 220
25-35	30	21	30 × 21 = 630
35-45	40	23	40 × 23 = 920
45-55	50	14	$50 \times 14 = 700$
55-65	60	5	$60 \times 5 = 300$
TOTAL		$\Sigma f_i = 80$	$\sum x_i f_i = 2830$

Mean is given by

$$Mean = \frac{\sum x_i f_i}{\sum f_i}$$

⇒ Mean = 2830/80

⇒ Mean = 35.37

Thus, mode is 36.8 and mean is 35.37.

The mode shows maximum number of patients admitted in the hospital is of age 36.8 years approximately and mean shows that on an average, number of patients admitted is of age 35.37 years.

Q. 2. The following data gives the information on the observed life times (in hours) of 225 electrical components :

Determine the modal lifetimes of the components.

Lifetimes	0-	20-	40-	60-	80-	100-
(in hours)	20	40	60	80	100	120
Frequency	10	35	52	61	38	29

Answer : For mode:

Here, highest frequency is 61.

So, the modal class = 60-80

Mode is given by

$$Mode = L + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$$

Where,

L = Lower class limit of the modal class = 60

h = class interval of the modal class = 20

 f_1 = frequency of the modal class = 61

 f_0 = frequency of the class preceding the modal class = 52

 f_2 = frequency of the class succeeding the modal class = 38

Substituting values in the formula of mode,

$$Mode = 60 + \frac{61 - 52}{2 \times 61 - 52 - 38} \times 20$$

$$\Rightarrow Mode = 60 + \frac{9}{32} \times 20$$

$$\Rightarrow Mode = 60 + 180/32$$

$$\Rightarrow Mode = 60 + 5.625$$

$$\Rightarrow Mode = 65.625$$

Thus, modal lifetime of the components is 65.625 years.

Q. 3. The following data gives the distribution of total monthly household expenditure of 200 families of Gummandidala village. Find the modal monthly expenditure of the families. Also, find the mean monthly expenditure.

Expenditure	1000-	1500-	2000-	2500-	3000-	35000-	4000-	4500-
(in rupees)	1500	2000	2500	3000	3500	4000	4500	5000
Number of families	24	40	33	28	30	22	16	7

Answer : For mode:

Here, highest frequency is 40.

So, the modal class = 1500-2000

Mode is given by

$$Mode = L + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$$

Where,

L = Lower class limit of the modal class = 1500

h = class interval of the modal class = 500

 $f_1 =$ frequency of the modal class = 40

 f_0 = frequency of the class preceding the modal class = 24

 f_2 = frequency of the class succeeding the modal class = 33

Substituting values in the formula of mode,

Mode =
$$1500 + \frac{40 - 24}{2 \times 40 - 24 - 33} \times 500$$

⇒ Mode = $1500 + \frac{16}{23} \times 500$

- ⇒ Mode = 1500 + 347.8
- ⇒ Mode = 1847.8

For mean:

Using assumed-mean method, as values of the data are large.

Let's draw a table showing midpoints and frequencies.

Expenditure (Rs.)	Midpoints (xi)	d _i = x _i - 2750	No. of families (frequency)	fidi
			(f _i)	
1000-1500	1250	1250 - 2750 = -1500	24	-1500 × 24 = -36000
1500-2000	1750	1750 - 2750 = -1000	40	-1000 × 40 = -40000
2000-2500	2250	2250 - 2750 = -500	33	-500 × 33 = -16500
2500-3000	2750 = A	2750 - 2750 = 0	28	$0 \times 28 = 0$
3000-3500	3250	3250 - 2750 = 500	30	500 × 30 = 15000
3500-4000	3750	3750 - 2750 = 1000	22	1000 × 22 = 22000
4000-4500	4250	4250 - 2750 = 1500	16	1500 × 16 = 24000
4500-5000	4750	4750 - 2750 = 2000	7	2000 × 7 = 14000
TOTAL			Σfi = 200	$\Sigma f_i d_i = -17500$

Mean is given by

$$Mean = A + \frac{\sum f_i d_i}{\sum f_i}$$

 $\Rightarrow \text{Mean} = 2750 + \frac{-17500}{200}$

⇒ Mean = 2662.5

Thus, mode is 1847.8 and mean is 2662.5.

Q. 4. The following distribution gives the state-wise, teacher-student ratio in higher secondary schools of India. Find the mode and mean of this data. Interpret the two measures.

Number	15-	20-	25-	30-	35-	40-	45-	50-
of	20	25	30	35	40	45	50	55
students								
Number	3	8	9	10	3	0	0	2
of								
States								

Answer : For mode:

Here, highest frequency is 10.

So, the modal class = 30-35

Mode is given by

$$Mode = L + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$$

Where,

L = Lower class limit of the modal class = 30

h = class interval of the modal class = 5

 f_1 = frequency of the modal class = 10

 f_0 = frequency of the class preceding the modal class = 9

 f_2 = frequency of the class succeeding the modal class = 3

Substituting values in the formula of mode,

Mode = $30 + \frac{10 - 9}{2 \times 10 - 9 - 3} \times 5$ \Rightarrow Mode = $30 + \frac{1}{8} \times 5$ \Rightarrow Mode = 30 + 0.625 \Rightarrow Mode = 30.625Or approximately, mode = 30.6

For mean:

Let's solve by using direct method as values are small.

Let's draw a table showing midpoints and frequencies.

No. of students	Midpoints (x _i)	No. of states (frequency) (f _i)	xifi
15-20	17.5	3	17.5 × 3 = 52.5
20-25	22.5	8	22.5 × 8 = 180
25-30	27.5	9	27.5 × 9 = 247.5
30-35	32.5	10	32.5 × 10 = 325
35-40	37.5	3	37.5 × 3 = 112.5
40-45	42.5	0	$42.5 \times 0 = 0$
45-50	47.5	0	$47.5 \times 0 = 0$
50-55	52.5	2	52.5 × 2 = 105
TOTAL		Σf _i = 35	$\Sigma x_i f_i = 1022.5$

Mean is given by

$$Mean = \frac{\sum x_i f_i}{\sum f_i}$$

⇒ Mean = 1022.5/35

 \Rightarrow Mean = 29.2

Thus, mode is 30.6 and mean is 29.2.

Mode implies that most states have student teacher ratio of 30.6 and mean implies that on an average, student teacher ratio in most states is found to be 29.2.

Q. 5. The given distribution shows the number of runs scored by some top batsmen of the world in one-day international cricket matches.

Runs	3000-	4000-	5000-	6000-	70000-	8000-	9000-	10000-
	4000	5000	6000	7000	8000	9000	10000	11000
Number	4	18	9	7	6	3	1	1
of								
batsman								

Find the mode of the data.

Answer :

For mode:

Here, highest frequency is 18.

So, the modal class = 4000-5000

Mode is given by

$$Mode = L + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$$

Where,

L = Lower class limit of the modal class = 4000

h = class interval of the modal class = 1000

 f_1 = frequency of the modal class = 18

 f_0 = frequency of the class preceding the modal class = 4

 f_2 = frequency of the class succeeding the modal class = 9

Substituting values in the formula of mode,

 $Mode = 4000 + \frac{18 - 4}{2 \times 18 - 4 - 9} \times 1000$ $\Rightarrow Mode = 4000 + \frac{14}{23} \times 1000$ $\Rightarrow Mode = 4000 + 608.7$ $\Rightarrow Mode = 4608.7$

Thus, the mode of the data is 4608.7.

Q. 6.A student noted the number of cars passing through a spot on a road for 100 periods, each of 3 minutes, and summarized this in the table given below.

Number	0-	10-	20-	30-	40-	50-	60-	70-
of cars	10	20	30	40	50	60	70	80
frequency	7	14	13	12	20	11	15	8

Find the mode of the data.

Answer :

For mode: Here, highest frequency is 20.

So, the modal class = 40-50

Mode is given by

$$Mode = L + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$$

Where,

L = Lower class limit of the modal class = 40

h = class interval of the modal class = 10

 f_1 = frequency of the modal class = 20

 f_0 = frequency of the class preceding the modal class = 12

f₂ = frequency of the class succeeding the modal class = 11

Substituting values in the formula of mode,

 $Mode = 40 + \frac{20 - 12}{2 \times 20 - 12 - 11} \times 10$ $\Rightarrow Mode = 40 + \frac{8}{17} \times 10$ $\Rightarrow Mode = 40 + 4.7$ $\Rightarrow Mode = 44.7$

Thus, the mode of the data is 44.7.

Exercise 14.3

Q. 1. The following frequency distribution gives the monthly consumption of electricity of 68 consumers of a locality. Find the median, mean and mode of the data and compare them.

Monthly	65-	85-	105-	125-	145-	165-	185-
consumption	85	105	125	145	165	185	205
Number of	4	5	13	20	14	8	4
consumers							

Monthly consumption	Midpoint (xi)	d _i = x _i - 135	No. of consumers (frequency) (f _i)	f _i di	Cumulative frequency cf.
65-85	75	75 - 135 = -60	4	4 × -60 = -240	4
85-105	95	95 - 135 = -40	5	5 × -40 = -200	4 + 5 = 9
105-125	115	115 - 135 = -20	13	13 × -20 = -260	9 + 13 = 22
125-145	135 = A	135 - 135 = 0	20	$20 \times 0 = 0$	22 + 20 = 42
145-165	155	155 - 135 = 20	14	$14 \times 20 = 280$	42 + 14 = 56
165-185	175	175 - 135 = 40	8	8 × 40 = 320	56 + 8 = 64
185-205	195	195 - 135 = 60	4	4 × 60 = 240	64 + 4 = 68
TOTAL			$\Sigma f_i = 68$	$\Sigma f_i d_i = 140$	N = 68

Answer : Let's draw a table showing midpoints, frequencies and cumulative frequency.

For median:

We have, total frequency, N = 68

N/2 = 68/2 = 34

Observe, cf = 42 is just greater than 34.

Thus, median class = 125-145

Median is given by

$$Median = L + \left[\frac{\frac{N}{2} - cf}{f}\right] \times h$$

Where,

L = Lower class limit of median class = 125

N/2 = 34

cf = cumulative frequency of the class preceding median class = 22

f = frequency of the median class = 20

h = class interval of the median class = 20

Substituting these values in the formula of median, we get

Median =
$$125 + \left[\frac{34 - 22}{20}\right] \times 20$$

 \Rightarrow Median = $125 + 12$
 \Rightarrow Median = 137
For mean:
Mean is given by
Mean = $A + \frac{\sum f_i d_i}{\sum f_i}$
 \Rightarrow Mean = $135 + \frac{140}{68}$

For mode:

Here, highest frequency is 20.

So, the modal class = 125-145

Mode is given by

$$Mode = L + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$$

Where,

L = Lower class limit of the modal class = 125

h = class interval of the modal class = 20

 f_1 = frequency of the modal class = 20

 f_0 = frequency of the class preceding the modal class = 13

 f_2 = frequency of the class succeeding the modal class = 14

Substituting values in the formula of mode,

 $Mode = 125 + \frac{20 - 13}{2 \times 20 - 13 - 14} \times 20$ $\Rightarrow Mode = 125 + \frac{7}{13} \times 20$ $\Rightarrow Mode = 125 + 10.76$ $\Rightarrow Mode = 135.76$

Thus, median is 137, mean is 137.06 and mode is 135.76.

Median and mean, both gives us the average value of a data, with just the difference that mean can give us quantitative measure only but median can give us both quantitative as well as qualitative measure of a data. And that is why, mean and median have come out to be very close in this question.

Mode gives the value that appears most in a given data. Thus, the maximum monthly consumption of electricity is 135.76.

Q. 2. If the median of 60 observations, given below is 28.5, find the values of x and y.

Class	0-	10-	20-	30-	40-	50-
interval	10	20	30	40	50	60
Frequency	5	Х	20	15	у	5

Answer :

Class	Frequency	Cumulative frequency
interval	(f _i)	cf
0-10	5	5
10-20	х	5 + x
20-30	20	5 + x + 20 = 25 + x
30-40	15	25 + x + 15 = 40 + x
40-50	у	40 + x + y
50-60	5	40 + x + y + 5 = 45
		+ x + y
TOTAL	$\Sigma f_i = 45 + x$	N = 45 + x + y
	+ y	

For median:

Since, given that: Median = 28.5

We know, median class = 20-30

Median is given by

Median = L +
$$\left[\frac{\frac{N}{2} - cf}{f}\right] \times h$$

Where,

L = Lower class limit of median class = 20

N/2 = 60/2 = 30 [:, given: total observation = 60]

cf = cumulative frequency of the class preceding median class = 5 + x

f = frequency of the median class = 20

h = class interval of the median class = 10

Substituting these values in the formula of median, we get

Median =
$$20 + \left[\frac{30 - 5 - x}{20}\right] \times 10$$

 \Rightarrow Median = $20 + (25 - x)/2$
 $\Rightarrow 28.5 = (40 + 25 - x)/2$
 $\Rightarrow 57 = 65 - x$
 $\Rightarrow x = 65 - 57 = 8$
Recall, N = $45 + x + y = 60$ [given]
And x = 8
 $\Rightarrow 45 + 8 + y = 60$
 $\Rightarrow 53 + y = 60$
 $\Rightarrow y = 60 - 53$
 $\Rightarrow y = 7$

Thus, x = 8 and y = 7.

Q. 3. A life insurance agent found the following data about distribution of ages of 100 policy holders. Calculate the median age. [Policies are given only to persons having age 18 years onwards but less than 60 years.]

Age (in	Below								
years)	20	25	30	35	40	45	50	55	60
Number of policy holders	2	6	24	45	78	89	92	98	100

Answer :

Age in years	Class	No. of	Cumulative
		consumers	frequency
		(frequency)	cf
		(f _i)	
Below 20	15-20	2	2
Below 25	20-25	6	2 + 6 = 8
Below 30	25-30	24	8 + 24 = 32
Below 35	30-35	45	32 + 45 = 77
Below 40	35-40	78	77 + 78 = 155
Below 45	40-45	89	155 + 89 = 244
Below 50	45-50	92	244 + 92 = 336
Below 55	50-55	98	336 + 98 = 434
Below 60	55-60	100	434 + 100 =
			534
TOTAL			N = 534

For median:

We have, total frequency, N = 534

N/2 = 534/2 = 267

Observe, cf = 336 is just greater than 267.

Thus, median class = 45-50

Median is given by

Median = L +
$$\left[\frac{\frac{N}{2} - cf}{f}\right] \times h$$

Where,

N/2 = 267

cf = cumulative frequency of the class preceding median class = 244

f = frequency of the median class = 92

h = class interval of the median class = 5

Substituting these values in the formula of median, we get

Median =
$$45 + \left[\frac{267 - 244}{92}\right] \times 5$$

 \Rightarrow Median = $45 + \left[\frac{23}{92}\right] \times 5$
 \Rightarrow Median = $45 + 115/92$
 \Rightarrow Median = $45 + 1.25$
 \Rightarrow Median = 46.25

Thus, the median is 46.25.

Q. 4. The lengths of 40 leaves of a plant are measured correct to the nearest millimeter, and the data obtained is represented in the following table :

Length	118-	127-	136-	145-	154-	163-	172-
(in mm)	126	135	144	153	162	171	180
Number of leaves	3	5	9	12	5	4	2

Find the median length of the leaves. (Hint : The data needs to be converted to continuous classes for finding the median, since the formula assumes

continuous classes. The classes then change to 117.5 – 126.5, 126.5 – 135.5,, 171.5 – 180.5.)

Length	No. of leaves	Cumulative
(mm)	(frequency)	frequency
	(f _i)	cf
117.5-126.5	3	3
126.5-136.5	5	3 + 5 = 8
136.5-144.5	9	8 + 9 = 17
144.5-153.5	12	17 + 12 = 29
153.5-162.5	5	29 + 5 = 34
162.5-171.5	4	34 + 4 = 38
171.5-180.5	2	38 + 2 = 40
		N = 40

Answer : We'll convert this inclusive data into exclusive data type.

For median:

We have, total frequency, N = 40

N/2 = 40/2 = 20

Observe, cf = 29 is just greater than 20.

Thus, median class = 144.5-153.5

Median is given by

$$Median = L + \left[\frac{\frac{N}{2} - cf}{f}\right] \times h$$

Where,

L = Lower class limit of median class = 144.5

$$N/2 = 20$$

cf = cumulative frequency of the class preceding median class = 17

f = frequency of the median class = 12

h = class interval of the median class = 9

Substituting these values in the formula of median, we get

Median =
$$144.5 + \left[\frac{20 - 17}{12}\right] \times 9$$

 \Rightarrow Median = $144.5 + \left[\frac{3}{12}\right] \times 9$
 \Rightarrow Median = $144.5 + 9/4$
 \Rightarrow Median = $144.5 + 2.25$

 \Rightarrow Median = 146.75

Thus, the median is 146.75 mm.

|--|

Life	1500-	2000-	2500-	3000-	3500-	4000-	4500-
time (in	2000	2500	3000	3500	4000	4500	5000
hours)							
Number	14	56	60	86	74	62	48
of							
lamps							

Find the median life time of a lamp.

Answer :

Life time	No. of lamps	Cumulative
(hours)	(frequency)	frequency
	(f _i)	cf
1500-2000	14	14
2000-2500	56	14 + 56 = 70
2500-3000	60	70 + 60 = 130
3000-3500	86	130 + 86 = 216
3500-4000	74	216 + 74 = 290
4000-4500	62	290 + 62 = 352
4500-5000	48	352 + 48 = 400
		N = 400

For median:

We have, total frequency, N = 400

N/2 = 400/2 = 200

Observe, cf = 216 is just greater than 200.

Thus, median class = 3000-3500

Median is given by

Median = L +
$$\left[\frac{\frac{N}{2} - cf}{f}\right] \times h$$

Where,

L = Lower class limit of median class = 3000

N/2 = 200

cf = cumulative frequency of the class preceding median class = 130

f = frequency of the median class = 86

h = class interval of the median class = 500

Substituting these values in the formula of median, we get

Median =
$$3000 + \left[\frac{200 - 130}{86}\right] \times 500$$

 \Rightarrow Median = $3000 + \left[\frac{70}{86}\right] \times 500$

⇒ Median = 3000 + 406.98

Thus, the median is 3406.98 hours.

Q. 6. 100 sumames were randomly picked up from a local telephone directory and the frequency distribution of the number of letters in the English alphabet in the surnames was obtained as follows

Number	1-	4-	7-	10-	13-	16-
of	4	7	10	13	16	19
letters						
Number	6	30	40	16	4	4
of						
lamps						

Determine the median number of letters in the surnames. Find the mean number of letters in the surnames? Also, find the modal size of the surnames.

Answer :

No. of letters	Midpoint (x _i)	No. of lamps (frequency)	f _i x _i	Cumulative frequency cf
		(li)		
1-4	2.5	6	2.5 × 6 = 15	6
4-7	5.5	30	5.5 × 30 = 165	6 + 30 = 36
7-10	8.5	40	8.5 × 40 = 340	36 + 40 = 76
10-13	11.5	16	$11.5 \times 16 = 184$	76 + 16 = 92
13-16	14.5	4	14.5 × 4 = 58	92 + 4 = 96
16-19	17.5	4	17.5 × 4 = 70	96 + 4 = 100
TOTAL		$\Sigma f_i = 100$	∑f _i x _i = 832	N = 100

For median:

We have, total frequency, N = 100

N/2 = 100/2 = 50

Observe, cf = 76 is just greater than 50.

Thus, median class = 7-10

Median is given by

$$Median = L + \left[\frac{\frac{N}{2} - cf}{f}\right] \times h$$

Where,

L = Lower class limit of median class = 7

$$N/2 = 50$$

cf = cumulative frequency of the class preceding median class = 36

f = frequency of the median class = 40

h = class interval of the median class = 3

Substituting these values in the formula of median, we get

Median = 7 +
$$\left[\frac{50 - 36}{40}\right] \times 3$$

 \Rightarrow Median = 7 + $\left[\frac{14}{40}\right] \times 3$
 \Rightarrow Median = 7 + 1.05
 \Rightarrow Median = 8.05
For mean:
Mean is given by

$$Mean = \frac{\sum f_i x_i}{\sum f_i}$$

 \Rightarrow Mean = $\frac{832}{100}$ [Refer the values from the table given above]

 \Rightarrow Mean = 8.32

For mode:

Here, highest frequency is 40.

So, the modal class = 7-10

Mode is given by

$$Mode = L + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$$

Where,

L = Lower class limit of the modal class = 7

h = class interval of the modal class = 3

 $f_1 = frequency of the modal class = 40$

 f_0 = frequency of the class preceding the modal class = 30

 f_2 = frequency of the class succeeding the modal class = 16

Substituting values in the formula of mode,

 $Mode = 7 + \frac{40 - 30}{2 \times 40 - 30 - 16} \times 3$ $\Rightarrow Mode = 7 + \frac{10}{34} \times 3$ $\Rightarrow Mode = 7 + 0.88$ $\Rightarrow Mode = 7.88$

Thus, median is 8.05, mean is 8.32 and mode is 7.88.

Q. 7. The distribution below gives the weights of 30 students of a class. Find the median weight of the students.

W6eight	40-	45-	50-	55-	60-	65-	70-
(in kg)	45	50	55	60	65	70	75
Number	2	3	8	6	6	3	2
of							
students							

Answer :

Weight (kg)	No. of students (frequency) (f _i)	Cumulative frequency cf
40-45	2	2
45-50	3	2 + 3 = 5
50-55	8	5 + 8 = 13
55-60	6	13 + 6 = 19
60-65	6	19 + 6 = 25
65-70	3	25 + 3 = 28
70-75	2	28 + 2 = 30
TOTAL		N = 30

For median:

We have, total frequency, N = 30

N/2 = 30/2 = 15

Observe, cf = 19 is just greater than 15.

Thus, median class = 55-60

Median is given by

Median = L +
$$\left[\frac{\frac{N}{2} - cf}{f}\right] \times h$$

Where,

L = Lower class limit of median class = 55

N/2 = 15

cf = cumulative frequency of the class preceding median class = 13

- f = frequency of the median class = 6
- h = class interval of the median class = 5

Substituting these values in the formula of median, we get

Median = 55 + $\left[\frac{15-13}{6}\right] \times 5$ ⇒ Median = 55 + $\left[\frac{2}{6}\right] \times 5$ ⇒ Median = 55 + 1.67

 \Rightarrow Median = 56.67

Thus, the median is 56.67 kg.

Q. 1. The following distribution gives the daily income of 50 workers of a factory.

Daily	250-	300-	350-	400-	450-
income	300	350	400	450	500
(in					
Rupees)					
Number	12	14	8	6	10
of					
workers					

Convert the distribution above to a less than type cumulative frequency distribution, and draw its ogive.

Answer : Let's make less than type cumulative frequency table:

Daily income (less than type)	Cumulative frequency cf	
Less than 300	12	
Less than 350	12 + 14 = 26	
Less than 400	26 + 8 = 34	
Less than 450	34 + 6 = 40	
Less than 500	40 + 10 = 50	

Plot points (300,12), (350,26), (400, 34), (450, 40) and (500,50) on a graph.

Q. 2. During the medical check-up of 35 students of a class, their weights were recorded as follows :

Weight (in	Number of
kg)	students
Less than 38	0
Less than 40	3
Less than 42	5
Less than 44	9
Less than 46	14
Less than 48	28
Less than 50	32
Less than 52	35

Draw a less than type ogive for the given data. Hence obtain the median weight from the graph and verify the result by using the formula.

Answer : Using points (38,0), (40,3), (42,5), (44,9), (46,14), (48,28), (50, 32) and (52,35), plot a graph.

To find median graphically,

We have total frequency, N = 35

 \Rightarrow N/2 = 35/2 = 17.5

Plot 17.5 on the y-axis and draw a horizontal line intersecting the ogive parallel to x-axis.

Observe, from the graph the vertical line parallel to y-axis touches y-axis at 46.5 (approx.).

Hence, median is 46.5.

Finding median by formula:

Weight (kg)	Cumulative frequency cf	Class	Frequency (f _i)
Less than 38	0	36-38	0
Less than 40	3	38-40	3 - 0 = 3
Less than 42	5	40-42	5 - 3 = 2
Less than 44	9	42-44	9 - 5 = 4
Less than 46	14	44-46	14 - 9 = 5
Less than 48	28	46-48	28 - 14 = 14
Less than 50	32	48-50	32 - 28 = 4
Less than 52	35	50-52	35 - 32 = 3
	N = 35		

For median:

We have, total frequency, N = 35

N/2 = 35/2 = 17.5

Observe, cf = 28 is just greater than 17.5.

Thus, median class = 46-48

Median is given by

$$Median = L + \left[\frac{\frac{N}{2} - cf}{f}\right] \times h$$

Where,

L = Lower class limit of median class = 46

N/2 = 17.5

cf = cumulative frequency of the class preceding median class = 14

f = frequency of the median class = 14

h = class interval of the median class = 2

Substituting these values in the formula of median, we get

Median =
$$46 + \left[\frac{17.5 - 14}{14}\right] \times 2$$

 \Rightarrow Median = $46 + \left[\frac{3.5}{14}\right] \times 2$
 \Rightarrow Median = $46 + 0.5$
 \Rightarrow Median = 46.5
Thus, median is 46.5.

Hence, verified.

Q. 3. the following table gives production yield per hectare of wheat of 100 farms of a village.

Production	50-	55-	60-	65-	70-	75-
yield	55	60	65	70	75	80
(Qui/Hec)						
Number of	2	8	12	24	38	16
farmers						

Change the distribution to a more than type distribution and draw its ogive.

Answer : Let's make more than type cumulative frequency table:

Production	Cumulative		
yield	frequency		
(more than	cf		
type)			
More than 50	2 + 8 + 12 + 24 +		
	38 + 16 = 100		
More than 55	100 - 2 = 98		
More than 60	98 - 8 = 90		
More than 65	90 - 12 = 78		
More than 70	78 - 24 = 54		
More than 75	54 - 38 = 16		

Plot points (50,100), (55,98), (60, 90), (65, 78), (70, 54) and (75,16) on a graph.

