
Circuit Components (Resistors, Inductors, Capacitors)

Frequency Errors in Resistors

(Equivalent circuit of a resistor at low and medium frequencies)

☐ Effective resistance

$$R_{\text{eff}} = \frac{R}{1 + \omega^2 C(CR^2 - 2L)}$$

☐ Effective inductance or residual inductance

$$L_{eff} = \frac{L - CR^2}{1 + \omega^2 C(CR^2 - 2L)}$$

$$tan\phi = \frac{X_{eff}}{R_{eff}} = \frac{\omega L_{eff}}{R_{eff}} = \frac{\omega (L - CR^2)}{R} = \omega \left(\frac{L}{R} - CR\right)$$

where, ϕ = Phase deflection angle

☐ Time constant

$$\tau = \frac{L_{eff}}{R_{eff}} = \frac{L - GR^2}{R} \frac{L}{F} - CR$$

Condition for resistance to remain independent of frequency

$$CR^2 = 2L$$

Condition for resistance to show no inductive effect

$$CR^2 = L$$

☐ Effective resistance for zero effective inductance

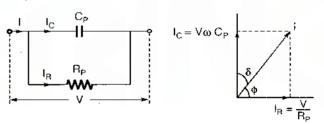
$$R_{eff} = \frac{R}{1 - \omega^2 LC}$$

Quality factor

$$Q = \frac{\omega L}{R}$$

Frequency Errors in Inductors

☐ Effective resistance


$$R_{eff} = \frac{R}{(1 - \omega^2 LC)^2}$$

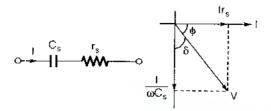
□ Effective inductance

$$L_{eff} = L(1 + \omega^2 LC)$$

Capacitor

1. Parallel Representation

□ Dielectric loss

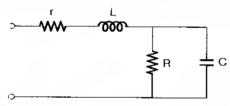

$$P_L = \omega C_P V^2 \tan \delta$$

Dissipation factor

$$D = \tan \delta = \frac{1}{\omega C_P R_P}$$

where, $\delta = loss$ angle of the capacitor.

2. Series Representation


□ Dielectric loss

$$P_{L} = \frac{l^{2}}{\omega C_{s}} tan\delta$$

Dissipation factor

$$D = \tan \delta = \omega C_s r_s$$

Frequency Errors in Capacitors

Equivalent Circuit of a Capacitor

☐ Effective capacitance

$$C_{\text{eff}} = \frac{C}{1 - \omega^2 L C}$$

1. For Medium Frequency

□ Effective capacitance

$$C_{\text{eff}} = C(1 + \omega^2 LC)$$

☐ Effective series resistance

$$R_{\text{eff}} = r + \frac{R}{1 + \omega^2 R^2 C^2}$$

where, r = resistance of lead

oss angle

$$\tan \delta = \frac{1 - \omega^2 LC}{\omega r + \frac{1}{\omega CR}}$$

2. For Low Frequency

☐ Effective capacitance

$$C_{eff} = C + \frac{1}{\omega^2 CR^2}$$

□ Effective series resistance

$$R_{eff} = \frac{R}{1 + \omega^2 C^2 R^2}$$

□ Loss angle

$$\tan \delta = \omega C r + \frac{1}{\omega CR}$$