CUET (UG)

Mathematics Sample Paper - 04

Solved

Time Allowed: 50 minutes Maximum Marks: 200

General Instructions:

- 1. There are 50 questions in this paper.
- 2. Section A has 15 questions. Attempt all of them.
- 3. Attempt any 25 questions out of 35 from section B.
- 4. Marking Scheme of the test:
- a. Correct answer or the most appropriate answer: Five marks (+5).
- b. Any incorrectly marked option will be given minus one mark (-1).
- c. Unanswered/Marked for Review will be given zero mark (0).

Section A

1. If
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
, then A^2 is equal to

a) $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$

 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

 $\begin{array}{c|c} c) & 1 & 0 \\ \hline & 1 & 0 \end{array}$

- $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- 2. If a diagonal matrix is commutative with every matrix of the same order then it is necessarily [5]
 - a) A diagonal matrix with atleast two different diagonal elements
- b) A unit matrix
- c) A diagonal matrix with exactly two different diagonal elements
- d) A scalar matrix
- 3. Total number of possible matrices of order 3×3 with each entry 2 or 0 is [5]
 - a) 27

b) 81

c) 9

d) 512

- 4. The equation of tangent at those points where the curve $y = x^2 3x + 2$ meets x-axis are [5]
 - a) x + y + 2 = 0 = x y 1
- b) x y = 0 = 0 x + y

c) x - y - 1 = 0 = x - y

- d) x + y 1 = 0 = x y 2
- 5. $f(x) = \csc x \text{ in } (-\pi, 0) \text{ has a maxima at }$

[5]

[5]

 $x = \frac{-\pi}{2}$

b) x = 0

c) $-\pi$ $x = \frac{\pi}{3}$

- $d) \qquad -\pi \\ x = \frac{\pi}{4}$
- 6. The tangent to the curve given by $x = e^t \times \cos t$, $y = e^t \times \sin t$ at $t = \frac{\pi}{4}$ makes with x-

axis an angle:

a) 0

- b) π
 - $\frac{-}{4}$

c) π

- d) π
- 7. The primitive of the function $f(x) = \left(1 \frac{1}{x^2}\right)a^{x + \frac{1}{x}}, a > 0$ is

a)
$$1$$

$$a^{x+\frac{1}{x}}$$

b)
$$1 \\ \log_e a \cdot a^{x+\frac{1}{x}}$$

$$\frac{1}{x} \log_e a$$

c)
$$1$$

$$a^{x+}\frac{1}{x}$$

d)
$$\frac{1}{a_{\chi}}$$

$$\overline{\log_e a}$$

$$x \frac{1}{\log_e a}$$

8.
$$\int \sec^2(7 - 4x) dx = ?$$

a) -
$$4 \tan (7 - 4x) + C$$

b)
$$-1$$
 $\frac{1}{4}\tan(7-4x) + C$

c)
$$4 \tan (7 - 4x) + C$$

d)
$$1 = \frac{1}{4} \tan(7 - 4x) + C$$

9.
$$\int x \sin^3 x^2 \cos x^2 dx = ?$$

a)
$$\frac{1}{8} \sin^4 x^2 + C$$

$$\frac{1}{4} \sin^4 x^2 + C$$

d)
$$\frac{1}{2} \sin^4 x^2 + C$$

10. The area bounded by
$$y = 2 - x^2$$
 and $x + y = 0$ is

Section B

Attempt any 25 questions

16. Identity relation R on a set A is

[5]

a) Reflexive only

b) Transitive only

c) Equivalence

- d) Symmetric only
- 17. If $\cot^{-1}(\frac{-1}{5}) = x$ then $\sin x = ?$

[5]

a) 7

b) None of these

c) $\frac{1}{\sqrt{26}}$

- d) 5 $\sqrt{26}$
- 18. If $A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ and $(A + B)^2 = (A^2 + B^2)$ then

[5]

a) None of these

b) a = -2, b = 3

c) a = 1, b = 4

- d) a = 2, b = -3
- 19. Let $f(x) = \begin{vmatrix} x & -4 & 5 \\ 1 & 1 & -2 \\ 2 & x & 1 \end{vmatrix}$, then f'(5) is equal to

[5]

a) 40

b) 1

c) 26

d) 24

20.	If A is an invertible matrix of order 2, then $det(A^{-1})$ is equal to				
	a) 0	b) 1			
		det (A)			
	c) det (A)	d) 1			
21.	If A and B are invertible matrices of orde	r 3, then $det(adj A) =$	[5]		
	a) $ A ^2$	b) None of these			
	$^{\rm c)} (\det A)^2$	d) 1			
22.	What is the rate of change of $\sqrt{x^2 + 16}$ w	$x.r.t. x^2 at x = 3?$	[5]		
	a) 1	b) 1			
	5	15			
	c) 1	d) 1			
	10	$\overline{20}$			
23.	The function $f(x) = \begin{cases} \frac{\sin x}{x} + \cos x, & \text{if } x \end{cases}$	$\neq 0$ is continuous at $x = 0$, then the value of k	[5]		
	is	1.) 2			
	a) 1 5	b) 3			
	c) 1.5	d) 2			
24.	Derivative of $\sin^3 x$ w.r.t $\cos^3 x$ is		[5]		
	a) cot x	b) – tan x			

c)	tan3	
-,	tan	Х

d) tan x

25. If
$$y = x^{x^{x} + \infty}$$
 then $\frac{dy}{dx} = ?$

[5]

a) None of these

b) $\frac{y}{x(1-\log x)}$

c) y^2 $x(1-y\log x)$

d) y^2 $\frac{1-\log x}{x(1-\log x)}$

26. If a function f is derivable at
$$x = a$$
, then Lt
$$\frac{f(a-h)-f(a)}{h}$$
 is equal to $h \to 0$

a) f '(a)

b) None of these

c) does not exist

d) - f'(a)

27.
$$f(x) = \sin x - kx$$
 is decreasing for all $x \in R$, when

[5]

[5]

a) $k \ge 1$

b) k < 1

c) k > 1

d) $k \le 1$

28. The curve
$$y = a x^3 + bx^2 + c x$$
 is inclined at 45° to the X – axis at $(0, 0)$ but it touches [5] X – axis at $(1, 0)$, then the values of a, b, c, are given by

a)
$$a = 1$$
, $b = -2$, $c = 1$

b)
$$a = 1$$
, $b = 1$, $c = -2$

c)
$$a = -2$$
, $b = 1$, $c = 1$

d)
$$a = -1$$
, $b = 2$, $c = 1$.

29. Tangents to the curve
$$y = x^3$$
 at the points $(1, 1)$ and $(-1, -1)$ are

[5]

a) perpendicular

b) parallel

c) none of these

- d) intersecting but not at right angles
- 30. Let f(x) = x|x|, then f(x) has

[5]

- a) point of inflexion at x = 0
- b) none of these

c) local minima at x = 0

d) local maxima at x = 0

 $31. \quad \int \frac{(1+\sin x)}{(1+\cos x)} dx = ?$

[5]

- a) $\frac{x}{\tan \frac{\pi}{2}} 2\log \left| \cos \frac{x}{2} \right| + C$
- b) none of these

- c) $\frac{x}{-\tan\frac{\pi}{2}} + 2\log\left|\cos\frac{x}{2}\right| + C$
- d) $\frac{x}{\tan \frac{\pi}{2}} + 2\log \left| \cos \frac{x}{2} \right| + C$
- 32. If $\int \frac{3e^x 5e^{-x}}{4e^x + 5e^{-x}} dx = ax + b \cdot \log|4e^x + 5e^{-x}| + C$, then
 - a) $a = \frac{-1}{8}$, $b = \frac{7}{8}$

b) $a = \frac{-1}{8}, b = \frac{-7}{8}$

c) $1 = \frac{7}{8}$, $b = \frac{7}{8}$

d) $a = \frac{1}{8}, b = \frac{-7}{8}$

33. $\int \sin^3 x \cos^3 x dx = ?$

[5]

[5]

- a) $(\sin x)^4 (\sin x)^6 = \frac{4}{6} + c$
- b) $1 \frac{1}{4}\cos^4 x + \frac{1}{6}\cos^6 x + C$

c)
$$\frac{1}{-\frac{1}{4}\cos^4 x + \frac{1}{6}\cos^6 x + C}$$

d) None of these

34.
$$\int \{(2x+1)\sqrt{x^2+x+1}\}dx = ?$$

[5]

[5]

[5]

b)
$$2$$

$$\frac{1}{3}(x^2+x+1)^{3/2}+C$$

c)
$$3 \frac{1}{2}(x^2+x+1)^{3/2}+C$$

d)
$$3$$

$$\frac{1}{2}(2x+1)^{3/2} + C$$

35. The area of the region bounded by the curve y = x + 1 and the lines x = 2 and x = 3 is

a) 11
$$\frac{1}{2}$$
 sq units

b) 13
$$\frac{}{2}$$
 sq units

c) 9
$$\frac{1}{2}$$
 sq units

d) 7
$$\frac{1}{2}$$
 sq units

36. General solution of $\frac{dy}{dx} + (\sec x)y = \tan x \left(0 \le x < \frac{\pi}{2}\right)$ is

a)
$$y(\sec x + \tan x) = \sec x + \tan x - x + C$$
 b) $y(\sec x - \tan x) = \sec x + \tan x - x + C$

c)
$$y(\sec x + \tan x) = \sec x - \tan x - x + C$$
 d) $y(\sec x - \tan x) = \sec x - \tan x - x + C$

37. For the differential equation xy = (x + 2)(y + 2) find the solution curve passing

through the point (1, -1).

a)
$$y + x + 2 = log(x^2(y + 2)^2)$$
 b) $y - x - 2 = log(x^2(y - 2)^2)$

c)
$$y - x + 2 = log(x^2(y + 2)^2)$$
 d) $y - x - 2 = log(x^2(y + 2)^2)$

What is the general solution of the differential equation e^{x} tan $ydx + (1 - e^{x}) sec^{2} ydy = 0$?

a)
$$\cos y = C(1 - e^X)$$

b)
$$\sin y = C(1 - e^{X})$$

c)
$$\cot y = C(1 - e^X)$$

- d) None of these
- 39. Let $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ and $\vec{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ be three non-

zero vectors such that \vec{C} is a unit vector perpendicular to both \vec{a} and \vec{b} . If the angle

between
$$\vec{a}$$
 and \vec{b} is $\frac{\pi}{6}$, then
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}^2$$
 is equal to

a)
$$\frac{1}{4} |\vec{a}|^2 |\vec{b}|^2$$

b)
$$\frac{3}{4} |\vec{a}|^2 |\vec{b}|^2$$

		^	^	^
40.	Which one of the following vectors is normal to the vecto	r i	$+ \mathbf{j}$	+ k ?

b)	î	_	î	_	ĥ

c)
$$\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}$$

a) None of these

d)
$$\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}$$

If \vec{a} , \vec{b} represent the diagonals of a rhombus, then 41.

[5]

a)
$$\vec{a} \times \vec{b} = \vec{0}$$

b)
$$\vec{a} + \vec{b} = 1$$

c)
$$\vec{a} \times \vec{b} = \vec{a}$$

d)
$$\vec{a} \cdot \vec{b} = 0$$

If $|\vec{a}| = 3$ and $-1 \le k \le 2$, then $|k\vec{a}|$ lies in the interval. 42.

[5]

a)
$$[-3, 6]$$

If \vec{a} and \vec{b} are mutually perpendicular unit vectors then $(3\vec{a} + 2\vec{b}) \cdot (5\vec{a} - 6\vec{b}) = ?$ [5] 43.

The distance d from a point $P(x_1, y_1, z_1)$ to the plane Ax + By + Cz + D = 0 is 44. [5]

a)
$$Ax_1 + By_1 + Cz_1 + D$$

$$d = \begin{cases} Ax_1 + By_1 + Cz_1 + D \\ Ax_1 + By_2 + Cz_1 + D \end{cases}$$

$$d = \begin{vmatrix} Ax_1 + By_1 + Cz_1 + D & b \\ \hline \sqrt{A^2 + B^2 + C^2} & d = \end{vmatrix} \frac{Ax_1 + By_1 + 2Cz_1 + D}{\sqrt{A^2 + B^2 + C^2}}$$

c)
$$Ax_1 + 2By_1 + Cz_1 + D$$
 d) $Ax_1 + By_1 + Cz_1 + 2D$
$$d = \left| \frac{1}{\sqrt{A^2 + B^2 + C^2}} \right|$$

$$d = \left| \frac{1}{\sqrt{A^2 + B^2 + C^2}} \right|$$

d)
$$d = \frac{Ax_1 + By_1 + Cz_1 + 2D}{\sqrt{A^2 + B^2 + C^2}}$$

Find the distance of the point (0, 0, 0) from the plane 3x - 4y + 12z = 345.

[5]

a) 3 13 b) 7 $\overline{13}$

c) 9 13

- d) 5 13
- Find the equation of the plane with intercept 3 on the y axis and parallel to ZOX 46. [5] plane.
 - a) y = 3

b) y = 5

c) y = 4

- d) y = 2
- 47. A bag contains 3 white, 4 black and 2 red balls. If 2 balls are drawn at random (without replacement), then the probability that both the balls are white is:
 - a) 1 18

b) 1 12

c) 1 24

- d) 1 36
- A machine operates only when all of its three components function. The probabilities of [5] 48. the failures of the first, second and third component are 0.2, 0.3 and 0.5 respectively. What is the probability that the machine will fail?
 - a) None of these

b) 0.07

c) 0.72

d) 0.70

b) 45

512

c) 57

512

d) 41

512

50. A problem in Statistics is given to three students A, B and C whose chances of solving it [5] $\frac{1}{2}$ $\frac{1}{3}$ and $\frac{1}{4}$, respectively. The probability that the problem will be

solved, is

a) 3

4

b) 1

 $\frac{1}{2}$

c) 11

12

d) 1

12

Solutions

Section A

1.

(d)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Explanation:
$$A^2 = A \cdot A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

2.

(d) A scalar matrix

Explanation: By definition of scalar matrix, it should be a scalar matrix.

3.

(d) 512

Explanation: Since each element a_{ij} can be filled in two ways (with either '2' or "0'), total number of possible matrices is 8x8x8 = 512

4.

(d)
$$x + y - 1 = 0 = x - y - 2$$

Explanation:
$$y = x^2 - 3x + 2$$

Slope of tangent

$$\frac{dy}{dx} = 2x - 3$$

Tangent meets at x-axis hence y = 0

$$x^2 - 3x + 2 = 0$$

$$(x - 2)(x - 1) = 0$$

$$x = 2 \text{ or } x = 1$$

For
$$x = 2 \implies m = \left(\frac{dy}{dx}\right)_{12,0} = 1$$

Equation of tangent m = -1, point (1, 0)

$$y - 0 = x - 2$$

$$\Rightarrow$$
 x - y - 2 = 0

For
$$x = 1 \implies m = \left(\frac{dy}{dx}\right)_{(1,0)} = -1$$

Equation of tangent m = -1, point (1, 0)

$$y - 0 = -1(x - 1)$$

$$\Rightarrow x + y - 1 = 0$$

5. **(a)**
$$x = \frac{-\pi}{2}$$

Explanation: We can go through options for this question Option a is wrong because 0 is not included in $(-\pi, 0)$

At
$$x = \frac{-\pi}{4}$$
 value of f(x) is $-\sqrt{2} = -1.41$

At
$$x = \frac{-\pi}{3}$$
 value of f(x) is -2.

At
$$x = \frac{-\pi}{2}$$
 value of $f(x) = -1$.

$$f(x) \text{ has max value at } x = \frac{-\pi}{2}$$

Which is -1. This is the required solution.

6.

(d)
$$\frac{\pi}{2}$$

Explanation:
$$\frac{dx}{dt} = -e^t \cdot \sin t + e^t \cos t$$
,

$$\frac{dy}{dt} = e^t \cos t + e^t \sin t$$

Therefore,
$$\left(\frac{dy}{dx}\right)_{t=\frac{\pi}{4}} = \frac{\cos t + \sin t}{\cos t - \sin t} = \frac{\sqrt{2}}{0}$$

and hence this option is correct

7.

(c)
$$\frac{a^{x+\frac{1}{x}}}{\log_e a}$$

Explanation:
$$f(x) = \left(1 - \frac{1}{x^2}\right)a^{x + \frac{1}{x}}$$

$$\Rightarrow \int f(x)dx = \int \left(1 - \frac{1}{x^2}\right) a^{x + \frac{1}{x}} dx$$

$$\operatorname{Put} x + \frac{1}{x} = t$$

$$\Rightarrow \left(1 - \frac{1}{x^2}\right) dx = dt$$

$$I = \int a^t dt$$

$$I = \frac{a^t}{\log_e a} + c$$

$$I = \frac{a^{x + \frac{1}{x}}}{\log_e a} + c$$

8.

(b)
$$\frac{-1}{4} \tan(7-4x) + C$$

Explanation: Given integral is $\int \sec^2(7-4 x) dx = ?$

Let,
$$7 - 4x = z$$

$$\Rightarrow$$
 -4dx = dz

So,

$$\int \sec^2(7-4 x) dx = ?$$

$$= \int \sec^2 z \frac{dz}{-4}$$

$$= -\frac{1}{4} \int \sec^2 z dz$$

 $\int \sec^2(7-4x)dx$ where c is the integrating constant.

$$= \int \sec^2 z \frac{dz}{-4}$$

$$= -\frac{1}{4} \int \sec^2 z dz$$

$$= -\frac{1}{4} \tan z + c$$

$$= -\frac{1}{4} \tan(7 - 4x) + c$$

9. (a)
$$\frac{1}{8} \sin^4 x^2 + C$$

Explanation: Formula :- $\int x^n dx = \frac{x^{n+1}}{n+1} + c$; $\int e^x dx = e^x + c$

Therefore,

Put
$$\sin x^2 = t$$

$$\Rightarrow 2 \times \cos x^2 dx = dt$$

$$=\frac{1}{2}\int t^3 dt$$

$$= \frac{1}{2} \frac{t^4}{4} + c \implies \frac{t^4}{8} + c$$
$$= \frac{\left(\sin x^2\right)^4}{8} + c$$

10. (a) $\frac{9}{2}$ sq. units

Explanation: The area bounded by $y = 2 - x^2$ and $x + y = 0 \implies y = -x$

$$2 - x^2 = -x$$

$$x^2 - x - 2 = 0$$

$$\Rightarrow (x-2)(x+1) = 0$$

$$\Rightarrow$$
 x = 2 or x = -1

$$\int_{-1}^{2} \left(2 - x^2 - x\right) dx$$

$$\left[2x - \frac{x^3}{3} + \frac{x^2}{2}\right]_1^2$$

$$2(2+1) - \left(\frac{8}{3} + \frac{1}{3}\right) + \left(2 - \frac{1}{2}\right)$$

$$6-3+\frac{3}{2}$$

$$\frac{9}{2}$$
 sq. units

11.

(d)
$$y = (Ax + B)e^{X}$$

Explanation: For $y = (Ax + B)e^{X}$

$$\frac{dy}{dx} = (Ax + B)e^{X} + Ae^{X} = (Ax + A + B)e^{X}$$

$$\Rightarrow \frac{d^2y}{dx^2} = (Ax + A + B)e^X + Ae^X = (Ax + 2A + B)e^X$$

$$\therefore \frac{d^2y}{dx^2} - 2\left(\frac{dy}{dx}\right) + y$$

=
$$(Ax + 2A + B)e^{X} - 2(Ax + A + B)e^{X} + (Ax + B)e^{X}$$

= 0

12.

(c)
$$xy = C$$

Explanation: Given, xdy + ydx = 0

$$xdy = -ydx$$

$$-\frac{dy}{y} = \frac{dx}{x}$$

On integrating on both sides, we obtain

$$-\log y = \log x + \log c$$

$$\log x + \log y = \log c$$

$$\log xy = \log c$$

$$xy = C$$

13.

(c) R

Explanation:

Corner points	Value of $Z = 2x + 5y$		
P(0, 5)	Z = 2(0) + 5(5) = 25		
Q(1, 5)	Z = 2(1) + 5(5) = 27		
R(4, 2)	$Z = 2(4) + 5(2) = 18 \rightarrow Minimum$		
S(12, 0)	Z = 2(12) + 5(0) = 24		

Thus, minimum value of Z occurs ar R(4, 2)

14. **(a)** 32

Explanation: We know that, $\sum P(X) = 1$

$$\Rightarrow \frac{5}{k} + \frac{7}{k} + \frac{9}{k} + \frac{11}{k} = 1$$

$$\Rightarrow \frac{32}{k} = 1$$

$$\therefore k = 32$$

15.

(c) 1.5

Explanation: Let X is the random variable of "number of heads" X = 0, 1, 2, 3.

$$P(X = 0) = P(HHH) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$$

$$P(X = 1) = P(H\bar{H}\bar{H} \text{ or } \bar{H}H\bar{H} \text{ or } \bar{H}\bar{H}H) = 3 \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{3}{8}$$

$$P(X = 2) = P(HH\bar{H} \text{ or } H\bar{H}H \text{ or } HHH) = 3 \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{3}{8}$$

$$P(X = 3) = P(HHH) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$$

Therefore, the probability distribution is:

X	0	1	2	3
P(X)	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

Therefore, Mean of Heads is:

$$E(X) = \sum_{i=1}^{n} X_i P(X_i) = 0 \times \frac{1}{8} + 1 \times \frac{3}{8} + 2 \times \frac{3}{8} + 3 \times \frac{1}{8} = \frac{12}{8} = 1.5$$

16.

(c) Equivalence

Explanation: Identity relation R in a set A is defined as

 $R = \{(a, a) : a \in A\}$

Important Note: A Identity relation is Reflexive, Symmetric and Transitive.

Thus Identity relation is always an **Equivalence Relation**.

17.

(d)
$$\frac{5}{\sqrt{26}}$$

Explanation: Given: $\cot^{-1}(\frac{-1}{5}) = x$

$$\Rightarrow \cot x = \frac{-1}{5} = \frac{\text{adjacent side}}{\text{opposite side}}$$

By pythagorus theroem,

 $(Hypotenuse)^2 = (opposite side)^2 + (adjacent side)^2$

Therefore, Hypotenuse = $\sqrt{26}$

$$\Rightarrow \sin x = \frac{\text{opposite side}}{\text{hypotenuse}} = \frac{5}{\sqrt{26}}$$

18.

(c)
$$a = 1, b = 4$$

Explanation: $A = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} B = \begin{pmatrix} a & 1 \\ b & -1 \end{pmatrix}$

$$A + B = \begin{pmatrix} 1 + a & 0 \\ 2 + b & -2 \end{pmatrix}$$

$$(A+B)^2 = \begin{pmatrix} 1+a & 0 \\ 2+b & -2 \end{pmatrix} \begin{pmatrix} 1+a & 0 \\ 2+b & -2 \end{pmatrix}$$

$$= \begin{pmatrix} (1+a)^2 & 0\\ (2+b)(1+a)-4-2b & -4 \end{pmatrix}$$

$$= \begin{pmatrix} (1+a)^2 & 0 \\ 2+2a+b+ab-4-2b & 4 \end{pmatrix}$$

$$= \begin{pmatrix} (1+a)^2 & 0 \\ 2a+ab-b-2 & 4 \end{pmatrix}$$

$$A^{2} = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$B^{2} = \begin{pmatrix} \mathbf{a} & \mathbf{1} \\ \mathbf{b} & -\mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{a} & \mathbf{1} \\ \mathbf{b} & -\mathbf{1} \end{pmatrix}$$
$$= \begin{pmatrix} a^{2} + b & a - 1 \\ ab - b & b + 1 \end{pmatrix}$$

Given that; $(A + B)^2 = (A^2 + B^2)$

$$\Rightarrow \begin{pmatrix} (1+a)^2 & 0 \\ 2a+ab-b-2 & 4 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} + \begin{pmatrix} a^2+b & a-1 \\ ab-b & b+1 \end{pmatrix}$$
$$= \begin{pmatrix} -1+a^2+b & a-1 \\ ab-b & b \end{pmatrix}$$

By comparison

$$a - 1 = 0$$

$$a = 1$$

$$b = 4$$

19.

(c) 26

Explanation:
$$f(x) = \begin{vmatrix} x & -4 & 5 \\ 1 & 1 & -2 \\ 2 & x & 1 \end{vmatrix} = x (1 + 2x) - 1 (-4 - 5x) + 2 (8 - 5)$$

$$= x + 2x^2 + 4 + 5x + 6 = 2x^2 + 6x + 10$$

$$f'(x) = 4x + 6$$

$$f'(5) = 20 + 6 = 26$$

20.

(b)
$$\frac{1}{\det(A)}$$

Explanation: We know that, $A^{-1} = \frac{1}{|A|} Adj (A)$

So,
$$\left| A^{-1} \right| = \left| \frac{1}{|A|} \operatorname{Adj}(A) \right|$$
$$= \frac{1}{|A|^n} |\operatorname{Adj}(A)|$$

$$= \frac{1}{|A|^n} |A|^{n-1} = \frac{1}{|A|^1}$$
$$= \frac{1}{|A|^1}$$

{since adj(A) is of order n and $|Adj(A)| = |A|^{n-1}$ }

21. (a) $|A|^2$

Explanation: Let A be a non singular square matrix of order n then, $\det(\operatorname{adj} A) = |A|^{n-1}$ Here order is 3 so $\det(\operatorname{adj} A) = |A|^{3-1} = |A|^2$

22.

(c)
$$\frac{1}{10}$$

Explanation: Let $u = \sqrt{x^2 + 16}$ and $v = x^2$

Now,
$$\frac{du}{dx} = \frac{1}{2\sqrt{x^2 + 16}} \times 2x = \frac{x}{\sqrt{x^2 + 16}}$$
 and $\frac{dv}{dx} = 2x$

Now, rate of change of u w.r.t. v is

$$\frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{x}{\sqrt{x^2 + 16}} \times \frac{1}{2x}$$

$$\frac{du}{dv} = \frac{1}{2\sqrt{x^2 + 16}}$$

$$\Rightarrow \frac{du}{dv} \text{ at}(x=3) = \frac{1}{2\sqrt{9+16}}$$

$$=\frac{1}{2\sqrt{25}}$$

$$=\frac{1}{2\times5}=\frac{1}{10}$$

$$\therefore \frac{d^{\sqrt{\left(x^2+16\right)}}}{d\left(x^2\right)} = \frac{1}{10} \text{ at } x = 3$$

23.

(d) 2

Explanation: Since the given function is continuous,

$$\therefore k = \lim_{x \to 0} \frac{Sinx}{x} + Cosx$$

$$\Rightarrow$$
 k = 1 + 1 = 2

24.

(b)
$$-\tan x$$

Explanation: Let
$$y = \sin^3 x$$
 and $z = \cos^3 x$, then, $\frac{dy}{dz} = \frac{\frac{dy}{dx}}{\frac{dz}{dx}} = \frac{3\sin^2 x \cos x}{3\cos^2 x (-\sin x)} = -\tan x$.

Which is the required solution.

25.

(c)
$$\frac{y^2}{x(1-y\log x)}$$

Explanation: Given:

$$y = x^{x} + \infty$$

We can write it as

$$\Rightarrow y = x^y$$

Taking log of both sides we obtain

$$\log y = y \log x$$

Differentiating with respect to x,we get

$$\Rightarrow \frac{1}{y}\frac{dy}{dx} = \frac{dy}{dx}\log x + y \cdot \frac{1}{x}$$

$$\Rightarrow \left(\frac{1}{y} - \log x\right) \frac{dy}{dx} = \frac{y}{x}$$

$$\Rightarrow \frac{dy}{dx} = \frac{y}{x} \left(\frac{y}{1 - y \log x} \right)$$

$$\Rightarrow \frac{dy}{dx} = \frac{y^2}{x(1 - y\log x)}.$$

Which is the required solution.

26.

$$(d) - f'(a)$$

Explanation:
$$\lim_{h \to 0} \frac{f(a-h) - f(a)}{h} = \lim_{t \to 0} \frac{f(a+t) - f(a)}{-t} (put. . h = -t, as. . h \to 0, t \to 0)$$

$$\Rightarrow -\lim_{t \to 0} \frac{f(a+t) - f(a)}{t} = -f'(a)$$

27. **(a)**
$$k \ge 1$$

Explanation: Given, $f(x) = \sin x - kx$

$$f'(x) = \cos x - k$$

$$\therefore$$
 f decreases, if $f'(x) \le 0$

$$\Rightarrow \cos x - k \le 0$$

$$\Rightarrow \cos x \le k$$

Therefore, for decreasing $k \ge 1$

28. (a)
$$a = 1$$
, $b = -2$, $c = 1$

Explanation: $y = ax^3 + bx^2 + cx$

$$\Rightarrow \frac{dy}{dx} = 3ax^2 + 2bx + c.$$

At (0,0), slope of tangent =tan45° = 1. \Rightarrow c = 1. At (1,0), slope of tangent = 0. \Rightarrow 3a+2b+c=0. From this, we get 3a+2b=-1.....(1)

Also, when x = 1, y = 0, therefore, a + b + c = 0. From this, we get, a+b=-1.....(2)

From (1) and (2), we get,

$$a=1$$
, $b=-2$ and $c=1$

29.

(b) parallel

Explanation: $y = x^3$

$$\frac{dy}{dx} = \frac{d}{dx}(x^3) = 3x^2$$

So,
$$\frac{dy}{dx}$$
 at $(1, 1) = 3$ and $\frac{dy}{dx}$ at $(-1, -1) = 3$

Since the slopes are equal, the tangents are parallel.

30. (a) point of inflexion at x = 0

Explanation: Given,
$$f(x) = x|x| = \begin{cases} -x^2, & x < 0 \\ x^2, & x > 0 \end{cases}$$

$$\Rightarrow f'(x) = -2x$$
 when $x < 0$ and $2x$ when $x > 0$ $f'(x) = 0 \Rightarrow x = 0$

Hence f(x) has a point of inflexion at x = 0.

But, x = 0 is not a local extreme as we cannot find an interval I around x = 0 such that

$$f(0) \ge f(x) \ or f(0) \le f(x) \quad \forall x \in I$$

31. **(a)**
$$\tan \frac{x}{2} - 2\log \left| \cos \frac{x}{2} \right| + C$$

Explanation: Formula :-
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$
; $\int \sec^2 x dx = \tan x$

Therefore,

$$\Rightarrow \int \frac{1 + \sin x}{2\cos^2 \frac{x}{2}} dx$$

$$= \int \frac{1}{2\cos^2 \frac{x}{2}} + \frac{2\sin \frac{x}{2}\cos \frac{x}{2}}{2\cos^2 \frac{x}{2}} dx = \frac{1}{2} \int \sec^2 \frac{x}{2} dx + \int \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} dx$$

$$= \frac{1}{2} \tan \frac{x}{2} \times 2 + \int \tan \frac{x}{2} dx$$

$$= \tan\frac{x}{2} + 2\left(-\log\cos\frac{x}{2}\right) + c$$

$$= \tan\frac{x}{2} - 2\log\left|\cos\frac{x}{2}\right| + c$$

$$32. (a) a = \frac{-1}{8}, b = \frac{7}{8}$$

Explanation: On differentiating both sides, we have

$$\frac{3e^{x} - 5e^{-x}}{4e^{x} + 5e^{-x}} = a + b \frac{\left(4e^{x} - 5e^{-x}\right)}{4e^{x} + 5e^{-x}}$$
giving $3e^{x} - 5e^{-x} = a \left(4e^{x} + 5e^{-x}\right) + b \left(4e^{x} - 5e^{-x}\right)$
= $(4a + 4b)e^{x} + (5a - 5b)e^{-x}$
Comparing coefficients on both sides, we obtain $3 = 4a + 4b$ and $-5 = 5a - 5b$

This verifies
$$a = \frac{-1}{8}$$
, $b = \frac{7}{8}$.

Which is the required solution.

33. (a)
$$\frac{(\sin x)^4}{4} - \frac{(\sin x)^6}{6} + c$$

Explanation: Formula :-
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c; \int \frac{1}{1+x^2} dx = \tan^{-1}x + c$$

Therefore,

$$\Rightarrow \int \cos x(\cos^2 x \sin^3 x) dx$$

$$= \int \cos x((1-\sin^2 x) \sin^3 x) dx$$

$$= \int \cos x(\sin^3 x - \sin^5 x) dx$$

$$= \int \sin^3 x \cos x dx$$

$$= \int \sin^5 x \cos x dx$$
Put $\sin x = t$

$$\Rightarrow \cos x dx = dt$$

$$= \int t^3 dt - \int t^5 dt$$

$$= \frac{t^4}{4} - \frac{t^6}{6} + c$$

$$= \frac{(\sin x)^4}{4} - \frac{(\sin x)^6}{6} + c$$

34.

(b)
$$\frac{2}{3}(x^2+x+1)^{3/2}+C$$

Explanation: Formula :-
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c; \int \frac{1}{x\sqrt{x^2 - 1}} dx = \sec^{-1}x + c$$

Therefore,

Put
$$x^2 + x + 1 = t$$
, $(2x + 1) dx = dt$

$$\Rightarrow \int \sqrt{t} dt = \frac{\frac{3}{2}}{\frac{3}{2}} + c$$

$$\Rightarrow \frac{2}{3}t^{\frac{3}{2}} + c$$

$$\Rightarrow \frac{2}{3} \left(x^2 + x + 1 \right) \frac{3}{2} + c$$

35.

(d)
$$\frac{7}{2}$$
 sq units

Explanation:

Given;

The curve y = x + 1 and the lines x = 2 and x = 3

Required area = $\int_{2}^{3} (x+1)dx$

$$= \left[\frac{x^2}{2} + x\right]_2^3$$

$$= \left(\frac{9}{2} + 3 - 2 - 2\right)$$

$$=\frac{7}{2}$$
 sq. units

36. (a)
$$y(\sec x + \tan x) = \sec x + \tan x - x + C$$

Explanation: $\frac{dy}{dx} + \sec x$. $y = \tan x \Rightarrow P = \sec x$, $Q = \tan x$

$$\Rightarrow I. F = e^{\int \sec x dx} = e^{\log |\sec x + \tan x|} = \log |\sec x + \tan x|$$

$$\Rightarrow y. \log |\sec x + \tan x| = \int \tan x. \log |\sec x + \tan x| dx$$

37.

(c)
$$y - x + 2 = log(x^2(y + 2)^2)$$

Explanation:
$$\frac{ydy}{y+2} = \frac{(x+2)dx}{x}$$

$$\int \frac{ydy}{y+2} = \int \frac{(x+2)dx}{x}$$

$$x+2-2dy \qquad (x+2)$$

$$\int \frac{y+2-2dy}{y+2} = \int \frac{(x+2) dx}{x}$$

$$\int dy - \int \frac{2}{y+2} = \int dx + \int \frac{2}{x}$$

$$y - 2log|y + 2| = x + 2log|x| + c$$

Here x=1 and y=-1 implies

$$-1 - 2log | -1 + 2 | = 1 + 2log | 1 | + c \implies -1 - 2log | 1 | = 1 + c : log | 1 | = 0 \implies \therefore c = -2$$
 Hence,

$$y - 2log|y + 2| = x + 2log|x| - 2$$

$$y - x + 2 = 2log|x| + 2log|y + 2|$$

$$y - x + 2 = 2log |x(y + 2)|$$

$$y - x + 2 = log |x^2(y+2)^2|$$

38.

(d) None of these

Explanation: Given,

$$e^{X} \tan y \, dx + (1 - e^{X}) \sec^{2} y \, dy = 0$$

$$\Rightarrow \frac{e^x}{1 - e^x} \cdot dx + \frac{\sec^2 y}{\tan y} \cdot dy = 0$$

On integrating, we get

$$\int \frac{e^x dx}{1 - e^x} + \int \frac{\sec^2 y}{\tan y} dy = 0$$

$$\Rightarrow$$
 -log(1 - e^X) + log tan y = logC

$$\Rightarrow$$
 log tan y = log C + log(1 - e^{X})

$$= \log C (1 - e^X)$$

$$\therefore$$
 tan y = C(1 - e^X)

39. **(a)**
$$\frac{1}{4} |\vec{a}|^2 |\vec{b}|^2$$

Explanation:
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

=
$$((\vec{a} \times \vec{b}) \cdot \vec{c})^2$$
 (\vec{c} is perpendicular to both \vec{a} and \vec{b} i.e \vec{c} is parallel to $\vec{a} \times \vec{b}$)

=
$$((\vec{a} \times \vec{b}))^2$$
 (: All are unit vectors and cos 0 = 1)

$$= \left(|\vec{a}| \vec{b} | \sin \frac{\pi}{6} \right)^2$$
$$= \frac{|\vec{a}|^2 |\vec{b}|^2}{4}$$

40. (a) None of these

Explanation: Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$

Let any vector normal to \vec{a} , then the dot product of both vectors should be zero.

i.
$$(\hat{i} + \hat{j} + \hat{k}) \cdot (\hat{i} + \hat{j} - \hat{k}) = 1 + 1 - 1 = 1 \neq 0$$

ii.
$$(\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) \cdot (\hat{\mathbf{i}} - \hat{\mathbf{j}} + \hat{\mathbf{k}}) = 1 - 1 + 1 = 1 \neq 0$$

iii.
$$(\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}) \cdot (\hat{\mathbf{i}} - \hat{\mathbf{j}} - \hat{\mathbf{k}}) = 1 - 1 - 1 = -1 \neq 0$$

41.

(d)
$$\vec{a} \cdot \vec{b} = 0$$

Explanation: Diagonals of a rhombus are perpendicular to each other

$$\Rightarrow \vec{a} \cdot \vec{b} = 0$$

42.

Explanation: [0, 6] is the correct answer. The smallest value of $|k\vec{a}|$ will exist at numerically smallest value of k, i.e., at k = 0, which gives $|k\vec{a}| = |k| |\vec{a}| = 0 \times 3 = 0$ The numerically greatest value of k is 2 at which $|k\vec{a}| = 6$.

43.

(d) 3

Explanation: 3

Given
$$|\vec{a}|^2 = |\vec{b}|^2 = 1$$
 and $\vec{a} \cdot \vec{b} = 0$
 $(3\vec{a} + 2\vec{b}) \cdot (5\vec{a} - 6\vec{b}) = 15 |\vec{a}|^2 - 12 |\vec{b}|^2 - 8\vec{a} \cdot \vec{b}$
 $= (15 \times 1) - (12 \times 1) - (8 \times 0)$
 $= (15 - 12 - 0) = 3$

44. (a) d =
$$\frac{Ax_1 + By_1 + Cz_1 + D}{\sqrt{A^2 + B^2 + C^2}}$$

Explanation: The distance d from a point $P(x_1, y_1, z_1)$ to the plane Ax + By + Cz + D = 0 is given

by: d =
$$\left| \frac{Ax_1 + By_1 + Cz_1 + D}{\sqrt{A^2 + B^2 + C^2}} \right|$$
.

45. (a)
$$\frac{3}{13}$$

Explanation: As we know that the length of the perpendicular from point $P(x_1, y_1, z_1)$ from the plane $a_1x + b_1y + c_1z + d_1 = 0$ is given by:

$$\frac{\left|a_{1}x+b_{1}y+c_{1}z+d_{1}\right|}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}.$$

Here,P(0, 0, 0) is the point and equation of plane is 3x - 4y + 12z - 3.

Therefore, the perpendicular distance is: $\frac{|0-0+0-3|}{\sqrt{9+16+144}} = \frac{|-3|}{\sqrt{169}} = \frac{3}{13}$ units.

46. (a)
$$y = 3$$

Explanation: The required equation of plane is y = 3.

47.

(b)
$$\frac{1}{12}$$

Explanation: Total balls = 3 + 4 + 2 = 9

$$n(S) = 9 C_2$$

$$n(E) = 3C_2$$

$$P(E) = \frac{n(E)}{n(S)} = \frac{3C_2}{9C_2} = \frac{\frac{3 \times 2}{2 \times 1}}{\frac{9 \times 8}{2 \times 1}}$$

$$= \frac{3 \times 2}{9 \times 8} = \frac{1}{3 \times 4}$$
$$= \frac{1}{3 \times 4}$$

48.

Explanation: The probability of failure of the first component = 0.2 = P(A)

The probability of failure of second component = 0.3 = P(B)

The probability of failure of third component = 0.5 = P(C)

As the events are independent,

The machine will operate only when all the components work, i.e.,

$$(1 - 0.2)(1 - 0.3)(1 - 0.5) = P(A')P(B')P(C')$$

In rest of the cases, it won't work,

So P(A
$$\cup$$
 B \cup C) = 1 - P(A' \cap B' \cap C') = 1 - (0.8).(0.7).(0.5) \Rightarrow 1 - 0.28 = 0.72

49.

(b)
$$\frac{45}{512}$$

Explanation: Here, probability of getting a spade from a deck of 52 cards = $\frac{13}{52} = \frac{1}{4}$. $p = \frac{1}{4}$, $q = \frac{3}{4}$.

let, x is the number of spades, then x has the binomial distribution with n = 5, $p = \frac{1}{4}$, $q = \frac{3}{4}$.

P(only 3 cards are spades) = P(x = 3) =
$${}^{5}C_{3} \left(\frac{3}{4}\right)^{5-3} \left(\frac{1}{4}\right)^{3} = \frac{45}{512}$$

50. **(a)** $\frac{3}{4}$

Explanation: P (problem will be solved)

= 1 - P (problem will not solved by A, B and C)

$$= 1 - \left\{ \left(1 - \frac{1}{2} \right) \left(1 - \frac{1}{3} \right) \left(1 - \frac{1}{4} \right) \right\}$$
$$= 1 - \frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} = 1 - \frac{1}{4} = \frac{3}{4}$$