
11

Learning Objectives

After the completion of this chapter, the
student will be able to Understand

• what is Abstract Data structures.

• Abstract data type.

• Difference between concrete and abstract
implementation.

• Pairs.

• Data Abstration in Structure.

Data Abstraction-
Introduction

2.1

 Data abstraction is a powerful
concept in computer science that allows
programmers to treat code as objects — for
example, car objects, pencil objects, people
objects, etc. Programmers need not to worry
about how code is implemented — they have
to just know what it does.

 This is especially important when
several people are doing a project. Here
project refers to the programming .With
data abstraction, your group members won’t
have to read through every line of your code
to understand. They can just assume that it
does work.

 Abstraction provides modularity
(modularity means splitting a program in
to many modules). Classes (structures) are
the representation for “Abstract Data Types”,
(ADT)

Unit I CHAPTER 2

DATA ABSTRACTION

Abstract Data Types 2.2

 Abstract Data type (ADT) is a type (or
class) for objects whose behavior is defined
by a set of value and a set of operations.

 The definition of ADT only mentions
what operations are to be performed but not
how these operations will be implemented. It
does not specify how data will be organized
in memory and what algorithms will be
used for implementing the operations.
It is called “abstract” because it gives an
implementation independent view. The
process of providing only the essentials and
hiding the details is known as abstraction.

 You can see that these definitions
do not specify how these ADTs will be
represented and how the operations will be
carried out. There can be different ways to
implement an ADT, for example, the List
ADT can be implemented using singly linked
list or doubly linked list. Similarly, stack
ADT and Queue ADT can be implemented
using lists.

 Data abstraction replicate how we
think about the world. For example, when
you want to drive a car, you don’t need to
know how the engine was built or what
kind of material the tires are made of. You
just have to know how to turn the wheel
and press the gas pedal. To facilitate data
abstraction, you will need to create two
types of functions: constructors and
selectors.

XII Std - CS EM Chapter-2.indd 11 08-12-2021 18:14:45

12 13XII Std Computer Science Data Abstraction

constructors and selectors2.3

 Constructors are functions that
build the abstract data type. Selectors are
functions that retrieve information from
the data type.

 For example, say you have an abstract
data type called city. This city object will
hold the city’s name, and its latitude and
longitude. To create a city object, you’d use a
function like

 city = makecity (name, lat, lon)

 To extract the information of a city
object, you would use functions like

• getname(city)

• getlat(city)

• getlon(city)

 The following pseudo code will
compute the distance between two city
objects:

distance(city1, city2):
 lt1, lg1 := getlat(city1), getlon(city1)
 lt2, lg2 := getlat(city2), getlon(city2)
 return ((lt1 - lt2)**2 + (lg1 - lg2)**2))1/2

 In the above code read distance(),
getlat() and getlon() as functions and read
lt as latitude and lg longitude. Read := as
“assigned as” or “becomes”

 lt1, lg1 := getlat(city1), getlon(city1)

 is read as lt1 becomes the value of
getlat(city1) and lg1 becomes the value of
getlon (city1).

 Notice that you don’t need to know
how these functions were implemented. You
are assuming that someone else has defined
them for us.

 It’s okay if the end user doesn’t know
how functions were implemented. However,
the functions still have to be defined by
someone.

 Let us identify the constructors and
selectors in the above code

 As you already know that
Constructors are functions that build the
abstract data type. In the above pseudo code
the function which creates the object of the
city is the constructor.

 city = makecity (name, lat, lon)

 Here makecity (name, lat, lon) is the
constructor which creates the object city.

(name, lat, lon)

make city ()

city

lonlat

value passed as parameter

Fig 1 constructor

 Selectors are nothing but the
functions that retrieve information from the
data type. Therefore in the above code

• getname(city)
• getlat(city)
• getlon(city)
are the selectors because these functions
extract the information of the city object

XII Std - CS EM Chapter-2.indd 12 08-12-2021 18:14:45

12 13XII Std Computer Science Data Abstraction

getname () getlat () getlon ()

city value passed as parameter city value passed as parameter city value passed as parameter

Now let us consider one more example to
identify the constructor and selector for a
slope.Read - - as comments.

- - constructor
makepoint(x, y):
 return x, y
- - selector
 xcoord(point):
 return point[0]
- -selector
ycoord(point):
 return point[1]

 Data abstraction is supported by
defining an abstract data type (ADT),
which is a collection of constructors
and selectors. Constructors create an
object, bundling together different pieces
of information, while selectors extract
individual pieces of information from the
object.

Note

Representation of Abstract
datatype using Rational

numbers

2.4

 The basic idea of data abstraction is
to structure programs so that they operate
on abstract data. That is, our programs
should use data in such a way, as to make
as few assumptions about the data as
possible. At the same time, a concrete data

representation is defined as an independent
part of the program.

In concrete data representation, a
definition for each function is known

Note

 Any program consist of two parts.
The two parts of a program are, the part
that operates on abstract data and the part
that defines a concrete representation, is
connected by a small set of functions that
implement abstract data in terms of the
concrete representation. To illustrate this
technique, let us consider an example to
design a set of functions for manipulating
rational numbers.

Example

 A rational number is a ratio of
integers, and rational numbers constitute
an important sub-class of real numbers.
A rational number such as 8/3 or 19/23 is
typically written as:

<numerator>/<denominator>

 where both the <numerator> and
<denominator> are placeholders for integer
values. Both parts are needed to exactly
characterize the value of the rational number.
Actually dividing integers produces a float
approximation, losing the exact precision of
integers.

XII Std - CS EM Chapter-2.indd 13 08-12-2021 18:14:45

14 15XII Std Computer Science Data Abstraction

 8/3 =2.6666666666666665

 However, you can create an exact
representation for rational numbers by
combining together the numerator and
denominator.

 As we know from using functional
abstractions, we can start programming
productively before you have an
implementation of some parts of our
program. Let us begin by assuming that
you already have a way of constructing a
rational number from a numerator and a
denominator. You also assume that, given
a rational number, you have a way of
selecting its numerator and its denominator

component. Let us further assume that the
constructor and selectors are also available.

 We are using here a powerful strategy
for designing programs: 'wishful thinking'.
We haven't yet said how a rational number
is represented, or how the constructor and
selectors should be implemented.

 Wishful Thinking is the formation
of beliefs and making decisions according
to what might be pleasing to imagine
instead of by appealing to reality.

Note

- - constructor
- - constructs a rational number with numerator n, denominator d
rational(n, d)
- - selector
numer(x) → returns the numerator of rational number x
denom(y) → returns the denominator of rational number y

Example: An ADT for rational numbers

 Now you have the operations on
rational numbers defined in terms of the
selector functions numer and denom, and
the constructor function rational, but you
haven't yet defined these functions. What
you need is some way to glue together
a numerator and a denominator into a
compound value.

 The pseudo code for the
representation of the rational number using
the above constructor and selector is

x,y:=8,3
rational(n,d)
 numer(x)/denom(y)
 - - output : 2.6666666666666665

Lists,Tuples2.5

 To enable us to implement the
concrete level of our data abstraction, Some
languages like Python provides a compound
structure called Pair which is made up of list
or Tuple. The first way to implement pairs is
with the List construct.

2.5.1 List

 List is constructed by placing
expressions within square brackets
separated by commas. Such an expression
is called a list literal. List can store multiple
values. Each value can be of any type and
can even be another list.

XII Std - CS EM Chapter-2.indd 14 08-12-2021 18:14:45

14 15XII Std Computer Science Data Abstraction

 Example for List is [10, 20].

 The elements of a list can be accessed
in two ways. The first way is via our familiar
method of multiple assignment, which
unpacks a list into its elements and binds
each element to a different name.

 lst := [10, 20]

 x, y := lst

 In the above example x will become10
and y will become 20.

 A second method for accessing the
elements in a list is by the element selection
operator, also expressed using square
brackets. Unlike a list literal, a square-
brackets expression directly following
another expression does not evaluate to a
list value, but instead selects an element
from the value of the preceding expression.

 lst[0]
 10
 lst[1]
 20

In both the example mentioned above
mathematically we can represent list similar
to a set.

lst[(0, 10), (1, 20)] - where

(0, 10) (1, 20)

Index position value Index position value

 Any way of bundling two values
together into one can be considered as a
pair. Lists are a common method to do so.
Therefore List can be called as Pairs.

Representing Rational Numbers Using
List
 You can now represent a rational
number as a pair of two integers in pseudo

code : a numerator and a denominator.

rational(n, d):

 return [n, d]
numer(x):

 return x[0]
denom(x):

 return x[1]

2.5.2 Tuple

 Remember, a pair is a compound
data type that holds two other pieces of data.
So far,we have provided you with two ways
of representing the pair data type. The first
way is using List construct and the second
way to implement pairs is with the tuple
construct.

 A tuple is a comma-separated
sequence of values surrounded with
parentheses. Tuple is similar to a list. The
difference between the two is that you
cannot change the elements of a tuple once
it is assigned whereas in a list, elements can
be changed.

Example colour= ('red', 'blue', 'Green')

Representation of Tuple as a Pair

nums := (1, 2)
nums[0]
1
nums[1]
2

 Note the square bracket notation is
used to access the data you stored in the
pair. The data is zero indexed, meaning you
access the first element with nums[0] and
the second with nums[1].

XII Std - CS EM Chapter-2.indd 15 08-12-2021 18:14:47

16 17XII Std Computer Science Data Abstraction

Data Abstraction in
Structure

2.6

 As you already know that List allow
data abstraction in that you can give a name
to a set of memory cells. For instance, in the
game Mastermind, you must keep track of
a list of four colors that the player guesses.
Instead of using four separate variables
(color1, color2, color3, and color4) you can
use a single variable ‘Predict’, e.g.,

 Predict =['red', 'blue', 'green', 'green']

 What lists do not allow us to do
is name the various parts of a multi- item
object. In the case of a Predict, you don't
really need to name the parts:

using an index to get to each color suffices.

 But in the case of something more
complex, like a person, we have a multi- item
object where each 'item' is a named thing:
the firstName, the lastName, the id, and the
email. One could use a list to represent a
person:

 person=['Padmashri', 'Baskar', '994-
222-1234', 'compsci@gmail.com']

but such a representation doesn't explicitly
specify what each part represents.

 For this problem instead of using a
list, you can use the structure construct (In
OOP languages it's called class construct)
to represent multi-part objects where each
part is named (given a name). Consider the
following pseudo code:

class Person:

 creation()

 firstName := " "

 lastName := " "

 id := " "

 email := " "

The new data type Person is pictorially
represented as

Person

creation ()

first Name

last Name

id

email
}

class name (multi part data representation)

function belonging to the new datatype

variable (field) beloging to the new
datatype

XII Std - CS EM Chapter-2.indd 16 08-12-2021 18:14:47

16 17XII Std Computer Science Data Abstraction

Let main() contains

 p1:=Person() statement creates the object.

firstName := " Padmashri " setting a field called firstName with value Padmashri

lastName :="Baskar" setting a field called lastName with value Baskar

 id :="994-222-1234" setting a field called id value 994-222-1234

email="compsci@gmail.com" setting a field called email with value compsci@gmail.com

- - output of firstName : Padmashri

 The class (structure) construct
defines the form for multi-part objects that
represent a person. Its definition adds a new
data type, in this case a type named Person.
Once defined, we can create new variables
(instances) of the type. In this example
Person is referred to as a class or a type,
while p1 is referred to as an object or an
instance. You can think of class Person as a
cookie cutter, and p1 as a particular cookie.
Using the cookie cutter you can make many
cookies. Same way using class you can create
many objects of that type.

 So far, you've seen how a class defines
a data abstraction by grouping related data
items. A class is not just data, it has functions
defined within it. We say such functions are
subordinate to the class because their job is
to do things with the data of the class, e.g.,
to modify or analyze the data of a Person
object.
 Therefore we can define a class as
bundled data and the functions that work
on that data. From All the above example
and explanation one can conclude the
beauty of data abstraction is that we can
treat complex data in a very simple way.

• Abstract Data type (ADT) is a type (or class) for objects whose behavior is defined by
a set of value and a set of operations.

• The definition of ADT only mentions what operations are to be performed but not
how these operations will be implemented.

• ADT does not specify how data will be organized in memory and what algorithms
will be used for implementing the operations

• Constructors are functions that build the abstract data type.

• Selectors are functions that retrieve information from the data type.

• Concrete data types or structures (CDT's) are direct implementations of a relatively
simple concept.

• Abstract Data Types (ADT's) offer a high level view (and use) of a concept independent
of its implementation.

Points to remember:

XII Std - CS EM Chapter-2.indd 17 08-12-2021 18:14:47

18 19XII Std Computer Science Data Abstraction

• A concrete data type is a data type whose representation is known and in abstract data
type the representation of a data type is unknown

• Pair is a compound structure which is made up of list or Tuple

• List is constructed by placing expressions within square brackets separated by commas

• The elements of a list can be accessed in two ways. The first way is via multiple
assignment and the second method is by the element selection operator

• Bundling two values together into one can be considered as a pair

• List does not allow to name the various parts of a multi-item object.

Points to remember:

Evaluation

Part - I

Choose the best answer (1 Mark)

1. Which of the following functions that build the abstract data type ?

(A) Constructors (B) Destructors (C) recursive (D)Nested

2. Which of the following functions that retrieve information from the data type?

(A) Constructors (B) Selectors (C) recursive (D)Nested

3. The data structure which is a mutable ordered sequence of elements is called

(A) Built in (B) List (C) Tuple (D) Derived data

4. A sequence of immutable objects is called

(A) Built in (B) List (C) Tuple (D) Derived data

5. The data type whose representation is known are called

(A) Built in datatype (B) Derived datatype

(C) Concrete datatype (D) Abstract datatype

6. The data type whose representation is unknown are called

(A) Built in datatype (B) Derived datatype

(C) Concrete datatype (D) Abstract datatype

7. Which of the following is a compound structure?

(A) Pair (B) Triplet (C) single (D) quadrat

XII Std - CS EM Chapter-2.indd 18 08-12-2021 18:14:47

18 19XII Std Computer Science Data Abstraction

8. Bundling two values together into one can be considered as

(A) Pair (B) Triplet (C) single (D) quadrat

9. Which of the following allow to name the various parts of a multi-item object?

(A) Tuples (B) Lists (C) Classes (D) quadrats

10. Which of the following is constructed by placing expressions within square brackets?

(A) Tuples (B) Lists (C) Classes (D) quadrats

Part - II

Answer the following questions (2 Marks)

1. What is abstract data type?

2. Differentiate constructors and selectors.

3. What is a Pair? Give an example.

4. What is a List? Give an example.

5. What is a Tuple? Give an example.

Part - III

Answer the following questions (3 Marks)

1. Differentiate Concrete data type and abstract datatype.

2. Which strategy is used for program designing? Define that Strategy.

3. Identify Which of the following are constructors and selectors?

(a) N1=number() (b) accetnum(n1) (c) displaynum(n1)

(d) eval(a/b) (e) x,y= makeslope (m), makeslope(n)

(f) display()

4. What are the different ways to access the elements of a list. Give example.

5. Identify Which of the following are List, Tuple and class ?

(a) arr [1, 2, 34] (b) arr (1, 2, 34) (c) student [rno, name, mark]

(d) day= (‘sun’, ‘mon’, ‘tue’, ‘wed’) (e) x= [2, 5, 6.5, [5, 6], 8.2]

(f) employee [eno, ename, esal, eaddress]

XII Std - CS EM Chapter-2.indd 19 08-12-2021 18:14:47

20 PBXII Std Computer Science Data Abstraction

Part - IV

Answer the following questions (5Marks)

1. How will you facilitate data abstraction. Explain it with suitable example

2. What is a List? Why List can be called as Pairs. Explain with suitable example

3. How will you access the multi-item. Explain with example.

Reference Books

1. Data structure and algorithmic thinking with python by narasimha karumanchi

2. sign and analysis of algorithms by s sridhar

3. Data Structures and Algorithms in Python by Goodrich, Tamassia & Goldwasser

4. https://www.tutorialspoint.com

XII Std - CS EM Chapter-2.indd 20 08-12-2021 18:14:48

	12th Computer Science_EM Chapter 2

