To Study The Variation In Potential Drop With Length Of a Wire For a Steady Current

Aim

To study the variation in potential drop with length of a wire for a steady current.

Apparatus and material

Apparatus. Potentiometer:

Material: A fully charged 4.5 V battery or battery eliminator, a low resistance rheostat, a voltmeter of range (0-3.0 V), an ammeter (0-3) A, a one way key, a jockey, a set square, connecting wires and a piece of sand paper.

Theory

For a potentiometer with wire of uniform material density and thickness (cross-sectional area) carrying a steady current, potential drop is proportional to the length of the wire.

where K is the drop of potential per unit length. It is called the potential gradient.

Diagram

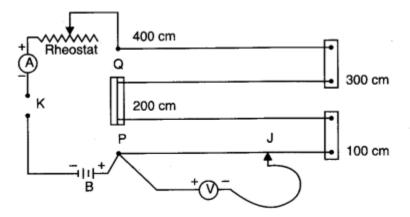


Fig. Studying variation in potential drop with length of a wire.

Procedure

- 1. Draw a circuit diagram showing the scheme of connections as in figure.
- 2. Remove the insulation from the ends of the connecting copper wires with a sand paper.
- 3. Connect the positive pole of the battery (eliminator) (a battery of constant e.m.f.) to the zero end (P) of the potentiometer and the negative pole through a one-way key, an ammeter and a low resistance rheostat to the other end (Q) of the potentiometer.
- 4. Connect the positive terminal of the voltmeter to the end P of the potentiometer and the negative terminal to the jockey.
- 5. Touch the end of the jockey to the end Q of the potentiometer.
- 6. Close the key and set the rheostat such that the voltmeter gives full scale deflection (3 V).
- 7. Touch the jockey at end P at 0 (zero) cm. The voltmeter will give zero deflection.
- 8. Touch the jockey at marks separated by 50 cm length of wire. Note the voltmeter reading in each case.
- 9. Record your observations in tabular form as given ahead.

Observations and Calculations

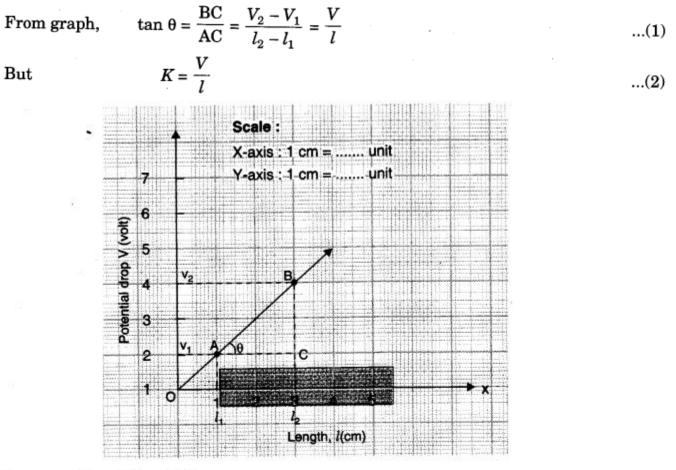

Range of voltmeter	= 3 V
Least count of voltmeter	= 0.05 V
Zero correction of voltmeter	=
Range of ammeter	= 0.3 A
L.C. of ammeter	= 0.05 A
Steady current shown by ammeter	=

Table for length and potential drop

Serial No. of Obs.	Length of potentiometer wire l (cm)	Voltmeter reading V (V)	$Ratio$ $K = \frac{V}{l}$ $(V \ cm^{-1})$
(1)	(2)	(3)	(4)
1.	0	0	
2.	50		
3.	100		
4.	150		
5.	200		
6.	250		
7.	300		
8.	350		
9.	400		

Calculation from graph

Plot a graph choosing a suitable scale, for the values of potential drop V along y-axis and length I along x-axis as shown in figure.

From equation (1) and (2)

$\tan \theta = K$

The slope of straight line OB gives the value of potential gradient.

Result

(i) The graph between V and l is a straight line. Therefore, the potential drop along the length of wire is directly proportional to its length

$$v \propto l$$

 $v = kl$

(ii) The potential drop per unit length of wire is $k = \dots V \operatorname{cm}^{-1}$.