RELATIONS AND FUNCTIONS

BASIC CONCEPTS

1. Relation: If A and B are two non-empty sets, then any subset R of $A \times B$ is called relation from set A to set B.

i.e.,
$$R: A \to B \iff R \subseteq A \times B$$

If $(x, y) \in R$, then we write x R y (read as x is R related to y) and if $(x, y) \notin R$, then we write x R y (read as x is not R related to y).

- 2. Domain and Range of a Relation: If R is any relation from set A to set B then,
 - (a) **Domain of** R **is** the set of all first coordinates of elements of R and it is denoted by Dom (R).
 - **(b)** Range of R is the set of all second coordinates of R and it is denoted by Range (R).
- A relation R on set A means, the relation from A to A i.e., $R \subseteq A \times A$. 3. Some Standard Types of Relations:

Let A be a non-empty set. Then, a relation R on set A is said to be

- (a) **Reflexive:** If $(x, x) \in R$ for each element $x \in A$, i.e., if xRx for each element $x \in A$.
- **(b)** Symmetric: If $(x, y) \in R \Rightarrow (y, x) \in R$ for all $x, y \in A$, *i.e.*, if $xRy \Rightarrow yRx$ for all $x, y \in A$.
- (c) Transitive: If $(x, y) \in R$ and $(y, z) \in R \Rightarrow (x, z) \in R$ for all $x, y, z \in A$, i.e., if xRy and $yRz \Rightarrow xRz$.
- 4. Equivalence Relation: Any relation R on a set A is said to be an equivalence relation if R is reflexive, symmetric and transitive.
- **5. Antisymmetric Relation:** A relation *R* in a set *A* is antisymmetric

if
$$(a, b) \in R$$
, $(b, a) \in R \Rightarrow a = b \ \forall \ a, b \in R$, or aRb and $bRa \Rightarrow a = b, \forall \ a, b \in R$.

For example, the relation "greater than or equal to, "≥" is antisymmetric relation as

$$a \ge b, b \ge a \implies a = b \ \forall \ a, b$$

[Note: "Antisymmetric" is completely different from not symmetric.]

6. Equivalence Class: Let R be an equivalence relation on a non-empty set A. For all $a \in A$, the equivalence class of 'a' is defined as the set of all such elements of A which are related to 'a' under R. It is denoted by [a].

i.e.,
$$[a] = \text{equivalence class of } 'a' = \{x \in A : (x, a) \in R\}$$

7. Function: Let X and Y be two non-empty sets. Then, a rule f which associates to each element $x \in X$, a unique element, denoted by f(x) of Y, is called a function from X to Y and written as $f: X \to Y$ where, f(x) is called image of x and x is called the **pre-image** of f(x) and the set Y is called the **co-domain** of f and $f(X) = \{f(x): x \in X\}$ is called the range of f.

8. Types of Function:

- (i) One-one function (injective function): A function $f: X \to Y$ is defined to be one-one if the image of distinct element of X under rule f are distinct, i.e., for every $x_1, x_2 \in X$, $f(x_1) = f(x_2)$ implies that $x_1 = x_2$.
- (*ii*) **Onto function (Surjective function):** A function $f: X \to Y$ is said to be onto function if each element of Y is the image of some element of x *i.e.*, for every $y \in Y$, there exists some $x \in X$, such that y = f(x). Thus f is onto if range of f = co-domain of f.
- (*iii*) One-one onto function (Bijective function): A function $f: X \to Y$ is said to be one-one onto, if f is both one-one and onto.
- (iv) Many-one function: A function $f: X \to Y$ is said to be a many-one function if two or more elements of set X have the same image in Y. i.e.,
 - $f: X \to Y$ is a many-one function if there exist $a, b \in X$ such that $a \neq b$ but f(a) = f(b).
- **9.** Composition of Functions: Let $f: A \to B$ and $g: B \to C$ be two functions. Then, the composition of f and g, denoted by $g \circ f$, is defined as the function.

$$gof: A \to C$$
 given by $gof(x) = g(f(x)), \forall x \in A$

Clearly, dom(gof) = dom(f)

Also, *gof* is defined only when range(f) \subseteq dom(g)

10. **Identity Function:** Let R be the set of real numbers. A function $I: R \to R$ such that

$$I(x) = x \ \forall \ x \in R$$
 is called identity function.

Obviously, identity function associates each real number to itself.

- **11. Invertible Function:** For $f: A \to B$, if there exists a function $g: B \to A$ such that $g \circ f = I_A$ and $f \circ g = I_B$, where I_A and I_B are identity functions, then f is called an invertible function, and g is called the inverse of f and it is written as $f^{-1} = g$.
- 12. Number of Functions: If X and Y are two finite sets having m and n elements respectively then the number of functions from X to Y is n^m .
- 13. Vertical Line Test: It is used to check whether a relation is a function or not. Under this test, graph of given relation is drawn assuming elements of domain along *x*-axis. If a vertical line drawn anywhere in the graph, intersects the graph at only one point then the relation is a function, otherwise it is not a function.
- 14. Horizontal Line Test: It is used to check whether a function is one-one or not. Under this test graph of given function is drawn assuming elements of domain along *x*-axis. If a horizontal line (parallel to *x*-axis) drawn anywhere in graph, intersects the graph at only one point then the function is one-one, otherwise it is many-one.

MULTIPLE CHOICE QUESTIONS

Choose and write the correct option in the following questions.

1.	The relation R in the set $A = \{1, 2, 3, 4\}$ given by $R = \{(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 3)\}$ is					
	(a) reflexive and symmetric but not transitive					
	(b) reflexive and transitive but not symmetric					
	W 49	ansitive but not reflexive				
	40 (F) (F) (F)					
•	(d) an equivalence re		V (VI A .			
2.	If $A = \{a, b, c, d\}$, then a relation $R = \{(a, b), (b, a)\}$					
	(a) symmetric only		(b) transitive only			
	(c) reflexive and transitive			(d) symmetric and transitive only		
3.		dy, define xRy if and on	$\mathbf{ily if } x - y + \sqrt{2} \mathbf{is an in}$	rrational number. Then the		
	relation R is	71N	7 . X . 1	[NCERT Exemplar]		
	(a) reflexive	(b) symmetric	(c) transitive	(d) none of these		
4.			ldren in a family and a	a relation R defined as aRb		
	if a is brother of b. Tl		77. 1 1	[NCERT Exemplar]		
	(a) symmetric but no		NAME OF THE PARTY	(b) transitive but not symmetric		
	(c) neither symmetric	c nor transitive	(d) both symmetric as	nd transitive		
5.	The maximum numb	er of equivalence relation	on on the set $A = \{1, 2, 3\}$	3} are [NCERT Exemplar]		
	(a) 1	(b) 2	(c) 3	(d) 5		
6.	Let L denotes the set	of all straight lines in a	plane. Let a relation I	R be defined by lRm if and		
	only if l is perpendic	ular to $m \forall l, m \in L$. The	n R is	[NCERT Exemplar]		
	(a) reflexive	(b) symmetric	(c) transitive	(d) none of these		
7.		Let $A = \{1, 2, 3\}$. Then number of relations containing $(1, 2)$ and $(1, 3)$ which are reflexive and symmetric but not transitive is				
	(a) 1	(b) 2	(c) 3	(d) 4		
8	10.400.000	number of equivalence	00 4 000 F 0 1000	0.00 0 00 0 00 0 00 0 0 0 0 0 0 0 0 0 0		
0.	(a) 1	(b) 2	(c) 3	(d) 4		
9				he number of relations that		
٠.	can be defined from A		rements respectively. I	ne number of relations that		
	(a) 2^{mn}	(b) 2^{m+n}	(c) mn	(d) 0		
10.	Set A has 3 elements	and the set B has 4 elem	ents. Then the number	r of injective mapping that		
	can be defined from			[NCERT Exemplar]		
	(a) 144	(b) 12	(c) 24	(d) 64		
11.	The function $f: R \rightarrow R$	R defined by $f(x) = 2^x + 2$	$2^{ x }$ is			
	(a) One-one and onto		(b) Many-one and on	ito		
	(c) One-one and into		(d) Many-one and into			
12.	3		e set B contains 6 elements, then the number of one-one			
	and onto mapping from A to B is					
	(a) 720	(b) 120	(c) 0	(d) none of these		
13.	Which of the following	ng functions from Z into	Z is bijection?	[NCERT Exemplar]		
		$(b) \ f(x) = x + 2$	•	(d) $f(x) = x^2 + 1$		
14		ne function defined by f		SE 64 T/C1 SE 75		
		January J.		[NCERT Exemplar]		
	(a) R	(b) $[1, \infty)$	(c) $[4,\infty)$	(d) $[5,\infty)$		
	50: 90	OF MESS 404M N/ 8550	We to 0005 50 \$0	58 X500 S160 G2 NGCS		

15.	Let $f: R \to R$ be defined by $f(x) = x^2 + 1$. Then, pre-images of 17 and -3, respectively, are [NCERT Exemple				
	(a) ϕ , $\{4, -4\}$	(b) $\{3, -3\}, \phi$	(c) $\{4, -4\}, \phi$	(d) $\{4, -4\}, \{2, -2\}$	
16.	Let the function $f: F$	$R \to R$ be defined by $f(x)$	$(x) = 2x + \sin x$ for $x \in R$.	Then f is	
	(a) one-one but not o	The state of the s	be defined by $f(x) = 2x + \sin x$ for $x \in R$. Then f is (b) onto but not one-one		
	(c) neither one-one n		(d) one-one and onto		
17.				choose the correct answer.	
		(b) $(3, 8) \in R$	(c) $(6, 8) \in R$	$(d) (8,7) \in R$	
18.	85 50 VODA AS AREA	ined as $f(x) = x^4$. Choose	State 50 (250) 51 (250)		
	(a) f is one-one onto		(b) f is many one onto	0	
	(c) f is one-one but ne	ot onto	(d) f is neither one-or		
19.	8 8 2	ined as $f(x) = 3x$. Choose	21 D M		
	(a) f is one-one onto.	, and the second	(b) f is many one onto	0.	
	(c) f is one-one but n		(d) f is neither one-or		
20	Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ defi	ined by			
20.	$f(x) = 2x^3 + 2x^2 + 300.$				
		(b) one-one into	(c) many one onto	(d) many one into	
21.	W 0800	ined by $f(x) = x^2 + 1$. The	10.23 EN 1 W.S	35 35.55 a ⊌ 05	
N	and the second s	(b) $\{(3, -3), \phi\}$	(c) $\{-2, 2\}, \phi$	200 200 AC TO THE CO. TO THE CO.	
22.	N 10 0	$nction f: R \rightarrow R$ define	N 5		
		(b) (-2, 2)		$(d) (-\infty, \infty)$	
23.	Let $f: R \to R$ be defi	ned by $f(x) = \begin{cases} x^2, & \text{if } 1 < x \end{cases}$	$x \leq 3$		
	Let $f: R \to R$ be defined by $f(x) = \begin{cases} 3x, & \text{if } x > 3 \\ x^2, & \text{if } 1 < x \le 3 \\ x, & \text{if } x \le 1 \end{cases}$				
	Then $f(-2) + f(0) + f(2)$			(1) C (1	
	(a) 0		(c) - 4	(d) none of these	
24.	Let R is reflexive rela R. Then	tion on a finite set A hav	ring <i>n</i> element, and let	there be m ordered pairs in	
		(b) $m \leq n$		(d) none of these	
25.	The domain of the fu	$nction f(x) = \log_{3+x}(x^2 - 1)$	- 1) is		
(a) $(-3, -1) \cup (1, \infty)$			(b) $[-3, -1) \cup [1, \infty)$		
	(c) $(-3, -2) \cup (-2, -$	$1) \cup (1, \infty)$	(d) $[-3,-2) \cup (-2,-1) \cup [1,\infty)$		
26.	Let $f: R \to [0, \frac{\pi}{2})$ de	fined by $f(x) = \tan^{-1}(x^2)$	+x+a), then the set o	of values of a for which f is	
	onto is	1	() IO (I	(T)	
	$(a) [0, \infty)$	$(b) \ \left[\frac{1}{4}, \infty\right)$	(c) [2, 1]	(d) none of these	
27.	If the function $f:R$	$\rightarrow R$ and $g: R \rightarrow R$ are	defined as		
	$f(x) = \begin{cases} 0, & x \in \text{rational} \\ x, & x \in \text{irrational} \end{cases}$				
	and $g(x) = \begin{cases} 0, & x \in \text{irrational} \\ x, & x \in \text{rational} \end{cases}$				
	then $(f-g)$ is				
	(a) one-one onto.		(b) many-one onto		
	(c) one-one but not o	nto	(d) neither one-one n	or onto.	

28.	If a relation R on the set $\{1, 2, 3, 4\}$ is defined by $R = \{(1, 2), (3, 4)\}$. Then R is					
	(a) reflexive	(b) transitive	(c) symmetric	(d) none of these		
29.	If the set A contains 4 elements and the set B contains 5 elements, then the number of one-one and onto mappings from A to B is					
	(a) 0	(b) 4^5	$(c) 5^4$	(d) none of these		
30		$= \{a, b\}$ then the numbe		DESTRUCTION CONTRACTOR SECTION CONTRACTOR CO		
30.	(a) 0	(b) 3	(c) 6	(d) 8		
31				one-one function from A to		
31.	B is	i o elements respectively	men me number of c	one-one function from A to		
	(a) 4^6	(b) 6^4	(c) 360	(d) 240		
32.	If A and B have 4 ele	ments each then the nur	nber of one-one onto	(bijective) function from A		
	to B is					
	(a) 0	(b) 24	(c) 4^2	(d) None of these		
33.	If R is an equivalence	e relation on A , then R^{-1}	on A is			
	(a) Transitive only	(b) Symmetric only	(c) Reflexive only	(d) Equivalence relation		
34.	The relation "greater	than" denoted by > in the	he set of integers is			
	(a) Symmetric	(b) Reflexive	(c) Transitive	(d) None of these		
35.	If R_1 and R_2 are symm	netric relations in a set A	A, then $R_1 \cup R_2$ is			
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) None of these		
36.	The function $f: R \rightarrow$	R defined by $f(x) = 4^x +$	$4^{ x }$ is			
	(a) one-one and into		(b) one-one and onto			
	(c) many one and int	O	(d) many one and on	to		
37.	Identity relation R or	\mathbf{a} set A is				
	(a) Reflexive only	(b) Symmetric only	(c) Transitive only	(d) Equivalence		
38.	The relation "congru	ence modulo m" on the	set $\mathbb Z$ of all integers is	a relation of type		
	(a) Reflexive only	(b) Symmetric only	(c) Transitive only	(d) Equivalence		
39.	Let $f: \mathbb{R} \longrightarrow \left[0, \frac{\pi}{2}\right]$ defined by $f(x) = \tan^{-1}(x^2 + x + 2a)$ then the set of values of 'a' for which					
	f is onto, is					
	(a) $\left(-\frac{1}{4},\infty\right)$	(b) $[-1,\infty)$	(c) $\left[-\frac{1}{8},\infty\right)$	$(d) \left[\frac{1}{8}, \infty\right)$		
40.	If the function $f(x)$ sa	tisfying $(f(x))^2 - 4f(x)f'$	$(x) + (f'(x))^2 = 0$ then f	f(x) equals		
	(a) $\lambda e^{(2+\sqrt{5})x}$		(c) $\lambda e^{(2\pm\sqrt{3})x}$	(d) $\lambda e^{(3-\sqrt{3})x}$		
3.3		-1/2x				
41.	Let $f:(-1,1)\longrightarrow B$	where $f(x) = \tan^{-1}\left(\frac{2x}{1-x}\right)$	(x^2) is one-one and on	to, then B equals		
	E	(b) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	(c) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	(d) $\left(0,\frac{\pi}{2}\right)$		
42.	The function $y = \frac{\lambda}{1+\lambda}$	$\frac{x}{ x }, x \in \mathbb{R}, y \in \mathbb{R}$ is				
	(a) One-one onto		(b) Onto but not one-one			
	(c) One-one but not o	onto	(d) None of these			
43						
10.	. A relation R in the set of non-zero complexs number is defined by $z_1 R z_2 \Leftrightarrow \frac{z_1 - z_2}{z_1 + z_2}$ is real, then R is					
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) Equivalence		
44.	Number of onto (sub	jective) functions from	A to B if $n(A) = 6$ and n	i(B) = 3 are		
	(a) $2^6 - 2$	(b) $3^6 - 3$	(c) 340	(d) None of these		

45.	Let $A = \{7, 8, 9, 10\}$ and	d R {(8, 8), (9, 9), (10, 10),	(7, 8)} be a relation or	n A, then R is	
	(a) Transitive	(b) Reflexive	(c) Symmetric	(d) None of these	
46.	Let f, g be a function f is correct?	rom the set {1, 2,, 12} to	o the set {1, 2, 3,, 11} t	hen which of the following	
	(a) Number of onto fu	unctions from $A to B = \frac{1}{2}$	$\frac{2\times11}{2}$		
		unctions from A to $B = 1$			
	(c) The functions whi	ch are not onto = 11^{12} –	$\frac{12 \times 11}{2}$		
	(d) All of these				
47.				e numbers and attains only	
	positive values such	that $f[x f(y)] = x^a y^b$ the	en / X 2 - 1		
		(b) $a = b$		(d) None of these	
48.	Let $f: (-1, 1) \rightarrow B$, be a when B is the interval	function defined by $f(x)$	$x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \text{ then}$	f is both one-one and onto	
	(a) $\left[0,\frac{\pi}{2}\right)$	(b) $\left(0,\frac{\pi}{2}\right)$	(c) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	(d) $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	
49.	Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ defi	ned by $f(x) = \frac{e^{x^2} - e^{-x^2}}{e^{x^2} + e^{-x^2}}$	then		
	(a) $f(x)$ is one-one but	not onto	(b) $f(x)$ is neither one	-one nor onto	
	(c) $f(x)$ is many one b	ut onto	(d) $f(x)$ is one-one and	d onto	
50.	If $A = \{7, 8, 9\}$, then th	e relation $R = \{(8, 9)\}$ in	A is		
	(a) Symmetric only	(b) Non-symmetric	(c) Reflexive only	(d) Equivalence	
51.	Let A be the finite se	et containing n distinct	elements. The numb	er of relations that can be	
	defined on A is	/* · 2	$n = n^2$	(T) = 11-1	
	(a) 2^n	(b) n^2	(c) 2^{n^2}	(d) 2^{n-1}	
52.		(b) Common atria			
53.	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) None of these ne rule $x R y$ iff $x + 2 y = 8$,	
33.	then domain of R is	defined on the set iv of	natural numbers by th	the rule $x \times y = 0$,	
	(a) $\{2,4,8\}$	(b) $\{2,4,6\}$	(c) {2,4,6,8}	(d) {1,2,3,4}	
54.	Let $A = \{a,b,c\}$ and $R =$	={(a,a), (b,b), (c,c), (b,c), ($\{a,b\}$ be a relation on A	A, then R is	
	(a) Symmetric	(b) Transitive	(c) Reflexive	(d) Equivalence	
55.		unction and every funct	tion is a relation" then	which is correct for given	
	statement?	(b) Falco	(c) Can't carr anythin	a (d) None of these	
	(a) True	(b) False	(c) Can't say anythin		
56.	W 12 10-07 GEO 1907	set {1, 2, 3} be defined by	0	NAC-NCC - ANNO 1912 - MARKETON	
	(a) Reflexive	(b) Transitive	(c) Symmetric	(d) None of these	
57.	Let us define a relatio	on R in R as $a R b$ if $a \ge b$	b. Then, R is		
	$R = \{(a, b) : a \ge a\}$	≥ b}			
	(a) An equivalence re	lation			
	(b) Reflexive, transitive but not symmetric				
	(c) Symmetric, transitive but not reflexive				
	(d) Neither transitive	nor reflexive but symme	etric		

- 58. If $A = \{1, 2, 3\}$ and consider the relation $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\}$. Then, R is
 - (a) Reflexive but not symmetric
- (b) Reflexive but not transitive
- (c) Symmetric and transitive
- (d) Neither Symmetric nor transitive
- 59. The relation R defined on the set $A = \{1, 2, 3, 4, 5\}$ by $R = \{(a, b) : |a^2 b^2| < 7\}$ is given by
 - (a) $\{(1, 1), (2, 1), (3, 1), (4, 1), (2, 3)\}$
 - (b) $\{(2, 2), (3, 2), (4, 2), (2, 4)\}$
 - (c) {(3,3),(4,3),(5,4),(3,4)}
 - (d) $\{(1,1),(2,2),(3,3),(4,4),(5,5),(1,2),(2,3)\}$

Answers

1. (b)	2. (<i>d</i>)	3. (a)	4. (b)	5. (<i>d</i>)	6. (b)
7. (a)	8. (<i>b</i>)	9. (a)	10. (c)	11. (c)	12. (c)
13. (<i>b</i>)	14. (b)	15. (<i>c</i>)	16. (<i>d</i>)	17. (c)	18. (<i>d</i>)
19. (<i>a</i>)	20. (a)	21 . (c)	22. (c)	23 . (b)	24. (a)
25. (c)	26. (b)	27. (a)	28. (b)	29. (a)	30. (<i>c</i>)
31 . (c)	32 . (b)	33 . (<i>d</i>)	34 . (c)	35 . (b)	36. (<i>a</i>)
37. (<i>d</i>)	38. (<i>d</i>)	39. (<i>d</i>)	40. (c)	41. (c)	42. (c)
43. (<i>d</i>)	44. (<i>d</i>)	45. (a)	46. (<i>d</i>)	47. (c)	48. (c)
49. (<i>b</i>)	50. (<i>b</i>)	51. (c)	52. (<i>c</i>)	53. (<i>b</i>)	54. (c)
55. (<i>b</i>)	56. (<i>b</i>)	57. (<i>b</i>)	58. (<i>a</i>)	59. (<i>d</i>)	

CASE-BASED QUESTIONS

Choose and write the correct option in the following questions.

1. Read the following and answer any four questions from (i) to (v).

A general election of Lok Sabha is a gigantic exercise. About 911 million people were eligible to vote and voter turnout was about 67%, the highest ever

> ONE - NATION ONE - ELECTION FESTIVAL OF **DEMOCRACY** GENERAL ELECTION-2019

Let I be the set of all citizens of India who were eligible to exercise their voting right in general election held in 2019. A relation 'R' is defined on I as follows:

 $R = \{(V_1, V_2) : V_1, V_2 \in I \text{ and both use their voting right in general election } - 2019\}$

[CBSE Question Bank]

Answer the questions given below.

- (i) Two neighbours X and $Y \in I$. X exercised his voting right while Y did not cast her vote in general election - 2019. Which of the following is true?
 - (a) $(X, Y) \in R$

 $(b) (Y, X) \in R$

(c) $(X, X) \notin R$

- $(d)(X,Y) \notin R$
- (ii) Mr.'X' and his wife 'W' both exercised their voting right in general election -2019, Which of the following is true?
 - (a) both (X,W) and $(W,X) \in R$ (b) $(X,W) \in R$ but $(W,X) \notin R$
- - (c) both (X,W) and $(W,X) \notin R$ $(d)(W,X) \in R$ but $(X,W) \notin R$
- (iii) Three friends F_1 , F_2 and F_3 exercised their voting right in general election- 2019, then which of the following is true?
 - (a) $(F_1, F_2) \in R$, $(F_2, F_3) \in R$ and $(F_1, F_3) \in R$
 - (b) $(F_1, F_2) \in R$, $(F_2, F_3) \in R$ and $(F_1, F_3) \notin R$
 - (c) $(F_1, F_2) \in R$, $(F_2, F_2) \in R$ but $(F_3, F_3) \notin R$
 - (d) $(F_1, F_2) \notin R$, $(F_2, F_3) \notin R$ and $(F_1, F_3) \notin R$
- (iv) The above defined relation R is
 - (a) Symmetric and transitive but not reflexive
 - (b) Universal relation
 - (c) Equivalence relation
 - (d) Reflexive but not symmetric and transitive
- (v) Mr. Shyam exercised his voting right in General Election 2019, then Mr. Shyam is related to which of the following?
 - (a) All those eligible voters who cast their votes
 - (b) Family members of Mr.Shyam
 - (c) All citizens of India
 - (d) Eligible voters of India
- **Sol.** We have a relation R' is defined on I as follows:

 $R = \{V_1, V_2\} : V_1, V_2 \in I \text{ and both use their voting right in general election } - 2019\}$

(i) Two neighbors X and $Y \in I$. Since X exercised his voting right while Y did not cast her vote in general election – 2019

Therefore, $(X, Y) \notin R$

- ∴ Option (d) is correct.
- (ii) Since Mr. 'X' and his wife 'W' both exercised their voting right in general election 2019.
 - \therefore Both (X, W) and $(W, X) \in R$.
 - \therefore Option (a) is correct.
- (iii) Since three friends F_1 , F_2 and F_3 exercised their voting right in general election 2019, therefore

 $(F_1, F_2) \in R, (F_2, F_3) \in R \text{ and } (F_1, F_3) \in R$

- \therefore Option (a) is correct.
- (iv) This relation is an equivalence relation
 - \therefore Option (c) is correct.
- (v) Mr. Shyam exercised his voting right in General election 2019, then Mr. Shyam is related to all those eligible votes who cast their votes.
 - ∴ Option (a) is correct.

2. Read the following and answer any four questions from (i) to (v).

Sherlin and Danju are playing Ludo at home during Covid-19. While rolling the dice, Sherlin's sister Raji observed and noted the possible outcomes of the throw every time belongs to set {1,2,3,4,5,6}. Let A be the set of players while B be the set of all possible outcomes.

 $A = \{S, D\}, B = \{1,2,3,4,5,6\}$

[CBSE Question Bank]

Answer the questions given below.

- (i) Let $R: B \to B$ be defined by $R = \{(x, y): y \text{ is divisible by } x\}$ is
 - (a) Reflexive and transitive but not symmetric
 - (b) Reflexive and symmetric and not transitive
 - (c) Not reflexive but symmetric and transitive
 - (d) Equivalence
- (ii) Raji wants to know the number of functions from A to B. How many number of functions are possible?

(a)
$$6^2$$

$$(b) 2^6$$

(b)
$$2^6$$
 (c) $6!$ (d) 2^{12}

(iii) Let R be a relation on B defined by $R = \{(1,2), (2,2), (1,3), (3,4), (3,1), (4,3), (5,5)\}$. Then R is

- (a) Symmetric
- (b) Reflexive
- (c) Transitive
- (d) None of these three
- (iv) Raji wants to know the number of relations possible from A to B. How many numbers of relations are possible?

(a)
$$6^2$$

(b)
$$2^6$$
 (c) $6!$

$$(d) 2^{12}$$

(v) Let $R: B \to B$ be defined by $R=\{(1,1),(1,2),(2,2),(3,3),(4,4),(5,5),(6,6)\}$, then R is

(a) Symmetric

- (b) Reflexive and Transitive
- (c) Transitive and symmetric
- (d) Equivalence
- **Sol.** (i) Given $R: B \rightarrow B$ be defined by

$$R = \{(x, y) : y \text{ is divisible by } x\}$$

Reflexive : Let $x \in B$, since x always divide x itself.

$$\therefore (x, x) \in R$$

It is reflexive.

Symmetric: Let $x, y \in B$ and let $(x, y) \in R$

$$\Rightarrow$$
 y is divisible by x

$$\Rightarrow \frac{y}{x} = k_1$$
, where k_1 is an integer.

$$\Rightarrow \frac{x}{y} = \frac{1}{k_1} \neq \text{integer.}$$

$$\therefore$$
 $(y, x) \notin R$

It is not symmetric.

Transitive : Let x, y, $z \in B$ and

Let
$$(x, y) \in R \implies \frac{y}{x} = k_1$$
, where k_1 is an integer.

and,
$$(y, z) \in R \implies \frac{z}{y} = k_2$$
, where k_2 is an integer.

$$\therefore \quad \frac{y}{x} \times \frac{z}{y} = k_1 . k_2 = k \text{ (integer)}$$

$$\Rightarrow \frac{z}{x} = k \qquad \Rightarrow (x, z) \in R$$

It is transitive.

Hence, relation is reflexive and transitive but not symmetric.

- ∴ Option (a) is correct.
- (ii) We have,

$$A = \{ S, D \} \Rightarrow n(A) = 2$$

and,
$$B = \{1, 2, 3, 4, 5, 6\} \implies n(B) = 6$$

- \therefore Number of functions from A to B is 6^2 .
- Option (a) is correct.
- (iii) Given,

R be a relation on B defined by

$$R = \{(1, 2), (2, 2), (1, 3), (3, 4), (3, 1), (4, 3), (5, 5)\}$$

R is not reflexive since (1, 1), (3, 3), $(4, 4) \notin R$

R is not symmetric as $(1, 2) \in R$ but $(2, 1) \notin R$

and, R is not transitive as $(1,3) \in R$ and $(3,1) \in R$ but $(1,1) \notin R$

- \therefore R is neither reflexive nor symmetric nor transitive.
- \therefore Option (d) is correct.
- (iv) Total number of possible relations from A to $B = 2^{12}$
 - \therefore Option (d) is correct.
- (v) Given $R: B \to B$ be defined by $R = \{(1, 1), (1, 2), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)\}$
 - \therefore R is reflexive as each elements of B is related to itself and R is also transitive as $(1, 2) \in \mathbb{R}$ and $(2, 2) \in \mathbb{R}$

$$\Rightarrow$$
 $(1,2) \in R$

- \therefore R is reflexive and transitive.
- \therefore Option (b) is correct.

3. Read the following and answer any four questions from (i) to (v).

An organization conducted bike race under 2 different categories-boys and girls. In all, there were 250 participants. Among all of them finally three from Category 1 and two from Category 2 were selected for the final race. Ravi forms two sets *B* and *G* with these participants for his college project.

Let $B = \{b_1, b_2, b_3\}$ $G = \{g_1, g_2\}$ where B represents the set of boys selected and G the set of girls who were selected for the final race.

[CBSE Question Bank]

Rav	ri decides to	explore these sets for vario	ous types of relat	ions and functions		
An	swer the que	estions given below.				
	the second secon		possible from l	3 to G. How many such relation	ons are	
	(a) 2^6	(b) 2^5	(c) 0	$(d) 2^3$		
(ii)	Let $R: B \rightarrow R$ is	B be defined by $R = \{(x, y)\}$: x and y are stu	dents of same sex}, Then this r	elation	
	(a) Equival	ence				
	(b) Reflexiv	re only				
	(c) Reflexiv	e and symmetric but not t	ransitive			
	(d) Reflexiv	e and transitive but not sy	mmetric			
iii)	ii) Ravi wants to know among those relations, how many functions can be formed from					
	B to G?					
	(a) 2^2	$(b) 2^{12}$	$(c) 3^2$	$(d) 2^3$		
iv)	Let $R: B \rightarrow$	G be defined by $R = \{ (b_1,$	g_1), (b_2, g_2) , (b_3, g_2)	$_{1})$ }, then R is		
	(a) Injective	2	(b) Surjectiv	e		
	(c) Neither	Surjective nor Injective	(d) Surjectiv	e and Injective		
(v)		to find the number of injenctions are possible?	ective functions	from B to G. How many num	bers of	
	(a) 0	(b) 2!	(c) 3!	(d) 0!		

We have sets

$$B = \{b_1, b_2, b_3\}, G = \{g_1, g_2\}$$

$$\Rightarrow$$
 $n(B) = 3$ and $n(G) = 2$

- (i) Number of all possible relations from B to $G = 2^{3 \times 2} = 2^6$
 - \therefore Option (a) is correct.
- (ii) Given relation $R = \{(x, y) : x \text{ and } y \text{ are student of same sex}\}$

On the set *B*.

Since the set is $B = \{b_1, b_2, b_3\} = \text{all boys}$

- :. It is ans equivalence relation.
- ∴ Option (*a*) is correct.

(iii) We have,

$$B = \{b_1, b_2, b_3\} \implies n(B) = 3$$

$$G = \{g_1, g_2\} \implies n(G) = 2$$

- \therefore Total no. of possible functions from B to $G = 2^3$
- ∴ Option (d) is correct.
- (iv) We have,

$$R: B \to G$$
 be defined by $R = \{(b_1, g_1), (b_2, g_2), (b_3, g_1)\}$

It is not injective because $(b_1, g_1) \in R$ and $(b_3, g_1) \in R$

So $b_1 \neq b_3 \Rightarrow \text{ same image } g_1$.

It is surjective because its Co-domain = Range.

- \therefore R is Surjective.
- \therefore Option (b) is correct.
- (v) Since R is not injective therefore number of injective functions = 0
 - \therefore Option (a) is correct.

ASSERTION-REASON QUESTIONS

In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false and R is also false.
- **1. Assertion (A):** Let L be the collection of all lines in a plane and R_1 be the relation on L as $R_1 = \{(L_1, L_2) : L_1 \perp L_2\}$ is a symmetric relation.
 - **Reason** (R): A relation R is said to be symmetric if $(a, b) \in R \Rightarrow (b, a) \in R$.
- **2. Assertion (A):** Let R be the relation on the set of integers Z given by $R = \{(a, b) : 2 \text{ divides } (a b)\}$ is an equivalence relation.
 - **Reason** (\mathbb{R}): A relation R in a set A is said to be an equivalence relation if R is reflexive, symmetric and transitive.
- **3.** Assertion (A): Let $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = x, then f is a one-one function.
 - **Reason** (R): A function $g: A \to B$ is said to be onto function if for each $b \in B$, $\exists a \in A$ such that g(a) = b.
- **4. Assertion (A):** Let function $f: \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ be an onto function. Then it must be one-one function.
 - **Reason** (R): A one-one function $g: A \rightarrow B$, where A and B are finite set and having same number of elements, then it must be onto and vice-versa.

Answers

- **1.** (a)
- **2.** (a)
- **3.** (b)
- **4.** (a)

HINTS/SOLUTIONS OF SELECTED MCQS

Since every element of A is related to itself in the given relation R, therefore R is reflexive and as $(1, 2) \in R$ and $(2, 2) \in R \Rightarrow (1, 2) \in R$ also $(1, 3) \in R$ and $(3, 2) \in R \Rightarrow (1, 2) \in R$. Again $(1, 3) \in R$ and $(3,3) \in R \Rightarrow (1,3) \in R$. Thus R is also transitive. Hence relation R is reflexive and transitive but not symmetric because, $(1,2) \in R$ but $(2,1) \notin R$, also $(1,3) \in R$ but $(3,1) \notin R$ and $(3,2) \in R$ but $(2,3) \notin R$.

Option (b) is correct.

2. On the set $A = \{a, b, c, d\}$ given relation $R = \{(a, b), (b, a), (a, a)\}$ is symmetric and transitive only.

Since, $(a, b) \in R \Rightarrow (b, a) \in R$, therefore it is symmetric

Also, $(a, b) \in R$ and $(b, a) \in R \Rightarrow (a, a) \in R$, so it is also transitive. As (b, b), (c, c) and (d, d) does not belong to *R* hence *R* is not reflexive.

Hence relation R is symmetric and transitive only.

Option (*d*) is correct.

3. For any $x \in \mathbb{R}$

$$x - x + \sqrt{2} = \sqrt{2}$$
 is an irrational number $\Rightarrow (x, x) \in R \ \forall \ x \in \mathbb{R}$

 \therefore R is reflexive

For 2, $\sqrt{2} \in \mathbb{R}$

$$\sqrt{2} - 2 + \sqrt{2} = 2\sqrt{2} - 2$$
 is an irrational number.

$$\Rightarrow (\sqrt{2}, 2) \in \mathbb{R}$$

But
$$2 - \sqrt{2} + \sqrt{2} = 2$$
 which is a rational number

$$\Rightarrow (2, \sqrt{2}) \notin R$$

 \Rightarrow R is not reflexive

R is not transitive

For 2,
$$\sqrt{3}$$
, $\sqrt{2} \in \mathbb{R}$

$$\therefore 2 - \sqrt{3} + \sqrt{2} = 2 - (\sqrt{3} - \sqrt{2})$$
 is an irrational number

$$\Rightarrow$$
 (2, $\sqrt{3}$) $\in R$

Also
$$\sqrt{3} - \sqrt{2} + \sqrt{2} = \sqrt{3}$$
 which is an irrational number

$$\Rightarrow (\sqrt{3}, \sqrt{2}) \in R$$

But
$$2 - \sqrt{2} + \sqrt{2} = 2$$
 which is a rational number.

$$\Rightarrow$$
 $(2, \sqrt{2}) \notin R$

$$\Rightarrow$$
 R is not transitive

Option (a) is correct.

4. Given, $aRb \Rightarrow a$ is brother of b

This does not mean that b is also a brother of a because b can be a sister of a.

Hence, *R* is not symmetric.

Again, $aRb \Rightarrow a$ is brother of b and $bRc \Rightarrow b$ is brother of c.

So, a is brother of c.

Hence, *R* is transitive.

Option (*b*) is correct.

5. We are given set $A = \{1, 2, 3\}$

Number of equivalance relation on $A = number of possible portion of {1, 2, 3}$

i.e., 3 = 1 + 1 + 1 Only one combination

3 = 1 + 2 3 Possible combination

3 = 3 1 possible combination

i.e., (i) $\{\{1\}, \{2\}, \{3\}\}\}$ i.e., $\{(1, 1), (2, 2), (3, 3)\}$

(ii)
$$\{\{1, 2\}, \{3\}\}$$
 i.e., $\{(1, 2), (2, 1), (3, 3)\}$

(iii)
$$\{\{1,3\},\{2\}\}$$
 i.e., $\{(1,3),(3,1),(2,2)\}$

(iv)
$$\{\{2,3\},\{1\}\}\$$
 i.e., $\{(2,3),(3,2),(1,1)\}$

(v)
$$\{\{1, 2, 3\}\}\$$
 i.e., $\{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$

i.e., Total number of equivalence relation = 5

Option (*d*) is correct.

6. For $l, m \in L$

if
$$(l, m) \in R \implies l \perp m \implies m \perp l \implies (m, l) \in R$$

 \therefore R is symmetric.

Option (b) is correct.

7. Required relation is reflexive and symmetric but not transitive is given by

$$R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3), (3, 1)\}$$

which is reflexive as $(a, a) \in R \ \forall \ a \in A$

which is symmetric as $(a, b) \in R \Rightarrow (b, a) \in R$ for $a, b \in A$

But
$$(2, 1), (1, 3) \in R \implies (2, 3) \in R$$

Hence *R* is not transitive.

There is only one such relation.

Option (a) is correct.

- **9.** We have n(A) = m, n(B) = n.
 - \therefore Number of relations defined from A to B
 - = number of possible subsets of $A \times B = 2^{n(A \times B)} = 2^{mn}$

Option (a) is correct.

10. The total number of injective mappings from the set containing n elements into the set containing m elements is ${}^{m}P_{m}$. So here it is ${}^{4}P_{3} = 4! = 24$.

Option (c) is correct.

11. We have $f: \mathbb{R} \to \mathbb{R}$: such that

$$f(x) = 2^{x} + 2^{|x|} = \begin{cases} 2^{x} + 2^{x} & \text{if } x \ge 0 \\ 2^{x} + 2^{-x} & \text{if } x < 0 \end{cases} = \begin{cases} 2^{x+1} & \text{if } x \ge 0 \\ 2^{x} + 2^{-x} & \text{if } x < 0 \end{cases}$$

$$\Rightarrow f'(x) = \begin{cases} 2^{x+1} \log 2 & \text{if } x \ge 0 \\ 2^{x} \log 2 + (-2^{-x} \log 2) & \text{if } x < 0 \end{cases} = \begin{cases} 2^{x+1} \log 2 & \text{if } x \ge 0 \\ \log 2 (2^{x} - 2^{-x}) & \text{if } x < 0 \end{cases}$$

$$f'(x) > 0 \ \forall \ x \ge 0 \text{ and } f'(x) < 0 \ \forall \ x < 0$$

 \Rightarrow f(x) is strictly increasing in \mathbb{R} \Rightarrow f(x) is one-one.

Also,
$$f(x) \to \infty$$
 if $x \to \pm \infty$ and $f(x) > 0 \ \forall \ x \in \mathbb{R}$

 \Rightarrow f is an into function.

 \therefore f(x) is one-one and into function.

Option (c) is correct.

- **12.** We have n(A) = 5 and n(B) = 6
 - \therefore Number of one-one mopping from A to B = 6!

As n(A) < n(B)

- \Rightarrow There is no onto function from A to B. i.e., number of onto function = 0.
- \therefore Number of one-one and onto functions from A to B=0

Option (c) is correct.

13. $f: \mathbb{Z} \to \mathbb{Z}$ given by f(x) = x + 2

One-one For
$$x_1, x_2 \in \mathbb{Z}$$
 such that $x_1 \neq x_2 \implies x_1 + 2 \neq x_2 + 2$

$$\Rightarrow f(x_1) \neq f(x_2)$$

 \Rightarrow *f* is one-one.

Onto Let $y \in \mathbb{Z}$ (co-domain) such that

$$f(x) = y \implies x + 2 = y \implies x = y - 2$$

For $y \in \mathbb{Z}$ (co-domain), $\exists x = y - 2 \in \mathbb{Z}$ (domain) such that

$$f(x) = f(y-2) = y-2+2 = y$$

 \Rightarrow f is onto

As f is one-one and onto.

 \Rightarrow *f* is a bijective function.

Option (b) is correct.

14. Given that, $f(x) = x^2 - 4x + 5$

Let
$$y = x^2 - 4x + 5$$

$$y = x^2 - 4x + 4 + 1 = (x - 2)^2 + 1$$

$$(x-2)^2 = y-1$$
 \Rightarrow $x-2 = \sqrt{y-1}$

$$x - 2 = \sqrt{y - 1}$$

$$\Rightarrow x = 2 + \sqrt{y-1}$$

$$\therefore y-1\geq 0, y\geq 1$$

Range = $[1, \infty)$

Option (b) is correct.

- **15.** Let $f(x) = 17 \Rightarrow x^2 + 1 = 17$
 - \Rightarrow $x = \pm 4 \Rightarrow$ Pre image of 17 are $\{4, -4\}$

and let $f(x) = -3 \implies x^2 + 1 = -3 \implies x^2 = -4$ which is not true and hence -3 has no pre image

: b > 6 and a = b - 2

$$\Rightarrow$$
 (6, 8) \in R as 8 > 6 and 6 = 8 - 2

Option (c) is correct.

18. f is not one-one because

$$f(-2) = (-2)^4 = 16$$

$$f(2) = (2)^4 = 16$$

i.e., -2 and $2 \in R$ (Domain) have same f-image in R (co-domain)

 \Rightarrow f is not one-one.

Also $f(x) = x^4$ never achieve negative value.

 \Rightarrow All negative real number of co-domain R have no pre-image in Domain R.

 \Rightarrow f is not onto.

Hence, f is neither one-one nor onto.

Option (*d*) is correct.

19. f is one-one because

$$f(x_1) = f(x_2) \Rightarrow 3x_1 = 3x_2$$

$$\Rightarrow x_1 = x_2 \quad \forall x_1, x_2 \in R \quad \text{(Domain)}$$

Also f is onto as

Let
$$f(x) = y \implies 3x = y \implies x = \frac{y}{3}$$

 $\forall y \in R \text{ (codomain) } \exists x = \frac{y}{3} \in R \text{ (domain)}$
such that $f(x) = f(\frac{y}{3}) = 3 \times \frac{y}{3} = y$

 $\Rightarrow f(x)$ is onto

Therefore, f is one-one onto.

Option (a) is correct.

21. Let x be the pre image of 5

$$\Rightarrow f(x) = 5$$

$$\Rightarrow x^2 + 1 = 5$$

$$\Rightarrow x^2 = 4$$

$$\Rightarrow x = \pm 2$$

i.e., pre-image of 5 is -2, +2.

Similarly if x be pre-image of -5

$$\Rightarrow f(x) = -5$$

$$\Rightarrow x^2 + 1 = -5$$

$$\Rightarrow x^2 = -6$$

$$x = \pm \sqrt{-6} \notin R$$

i.e., No real number is pre-image of -5. Hence ϕ is the primage of -5.

Option (c) is correct.

22. To find out the domain of f, we have to find out that value of x for which f(x) is real.

$$\Rightarrow x^2 - 4 \ge 0$$

$$\Rightarrow (x+2)(x-2) \ge 0$$

$$\Rightarrow (x+2) \ge 0, (x-2) \ge 0 \text{ or } (x+2) \le 0, (x-2) \le 0$$

$$\Rightarrow x \ge -2, x \ge 2 \text{ or } x \le -2, x \le 2$$

$$\Rightarrow x \ge 2 \text{ or } x \le -2$$

Domain of f is $(-\infty, -2] \cup [2, \infty)$

Option (c) is correct.

23.
$$f(-2) + f(0) + f(2) + f(5) = -2 + 0 + 4 + 15 = 17$$

Option (b) is correct.

24. As *R* is reflexive relation on *A*, and for being reflexive $(a, a) \in R, \forall a \in A$

Therefore, the minimum number of ordered pair in R is n.

$$\Rightarrow m \geq n$$
.

Option (a) is correct.

Given function is $f(x) = \log_{3+x} (x^2 - 1)$

It is obvious that f(x) is defined when $x^2 - 1 > 0$, 3 + x > 0 and $3 + x \ne 1$.

Now,
$$x^2 - 1 > 0 \Rightarrow x^2 > 1$$

$$\Rightarrow x < -1 \text{ or } x > 1$$

$$3 + x > 0 \Rightarrow x > -3$$

$$3 + x \neq 1 \Rightarrow x \neq -2$$

Therefore, domain of the function $f(x) = (-3, -2) \cup (-2, -1) \cup (1, \infty)$

Option (*c*) is correct.

From definition of onto function,

Range of function = Codomain of function = $[0, \frac{\pi}{2})$

$$\Rightarrow 0 \le \tan^{-1}(x^2 + x + a) < \frac{\pi}{2}$$

$$\Rightarrow 0 \le (x^2 + x + a) < \infty$$

$$\Rightarrow x^2 + x + a > 0 \ \forall x \in R$$

Hence $D \le 0$

$$\Rightarrow$$
 $1^2 - 4a \le 0$

$$\Rightarrow$$
 $4a \ge 1$

$$\Rightarrow a \ge \frac{1}{4}$$

$$\Rightarrow a \ge \frac{1}{4}$$
$$\Rightarrow a \in [\frac{1}{4}, \infty)$$

Option (*b*) is correct.

We have,

 $f: R \to R$ and $g: R \to R$ are such that

$$f(x) = \begin{cases} 0, & x \in \text{rational} \\ x, & x \in \text{irrational} \end{cases}$$

and
$$g(x) = \begin{cases} 0, & x \in \text{irrational} \\ x, & x \in \text{rational} \end{cases}$$

$$\therefore$$
 $(f-g): R \to R$ such that,

$$(f - g)(x) = \begin{cases} -x, & x \in \text{rational} \\ x, & x \in \text{irrational} \end{cases}$$

From definition of $(f-g): R \to R$, it is obvious that, each rational number of domain of (f-g)(x), associate to its negative rational number in codomain/range and each irrational number of domain of (f - g)(x), associate to same irrational number in codomain/range.

 \Rightarrow For each $x \in Domain of <math>(f - g)(x)$, there is only one value in codomain/range of (f - g)(x).

Hence, (f - g)(x) is one-one onto.

Option (a) is correct.

We have set $A = \{1, 2, 3, 4\} \& \text{ relation}$

$$R = \{(1, 2), (3, 4)\} \text{ on } A$$

As for $(a, b) \in R, \mathbb{Z}(b, c) \in R$ such that

$$(a,c) \oplus R$$
.

Hence R is transitive.

So (b) is correct option.

Option (*b*) is correct.

29. |A| = 4, |B| = 5 so there does not exist.

one-one and onto |B| > |A| so it is not onto.

So (a) is correct option.

Option (a) is correct.

30. Number of onto functions are given by

$$2^{3} - {}^{2}C_{1}(2-1)^{3} + {}^{2}C_{2}(2-2)^{3}$$

= $8 - 2 \times 1 + 0 = 8 - 2 = 6$

Option (c) is correct.

31. Number of one-one function = 6P_4

$$=\frac{6}{2}=\frac{720}{2}=360$$

Option (c) is correct.

32. Number of one-one and onto function from A to B where |A| = m is |m|.

 \therefore Number of one-one onto function = 4 = 24

Option (b) is correct.

[**Note:** One-one onto function (bijective) from *A* to *B* is possible if *A* and *B* have same number of elements.]

34. Let R be a relation on the set of all intergers \mathbb{Z} , defined by

$$aRb \Leftrightarrow a > b \ \forall \ a,b \in \mathbb{Z}$$

(i) **Reflexive:** For $1 \in \mathbb{Z}$

1 R 1 as $1 \ge 1$ so $(1,1) \notin R \Rightarrow R$ is not reflexive on \mathbb{Z}

(*ii*) **Symmetric**: $(3, 2) \subset R \text{ as } 3 > 2$

But
$$(2,3) \notin R$$
 as $2 \not \geqslant 3$

Hence R is not symmetric on \mathbb{Z}

(iii) **Transitive:** Let $(a, b) \in R$ and $(b, c) \in R$ a > b and b > c

Now
$$a > b > c \Rightarrow a > c \Rightarrow (a, c) \in R$$

Hence R is a transitive relation on \mathbb{Z}

Option (c) is correct.

36. $f(x) = 4^x + 4^{|x|}$

One-one

Let $x_1, x_2 \in R$ (domain) such that

$$x_1 \neq x_2$$

 $\Rightarrow 4^{x_1} + 4^{|x_1|} \neq 4^{x_2} + 4^{|x_2|}$

$$\Rightarrow f(x_1) \neq f(x_2)$$

f is one-one

Onto

For $0 \in R$ (Co-domain) there is no $x \in R$ (domain) such that f(x) = 0.

 \therefore f is not onto

Range of $f = R - \{0\} \subseteq R$

Hence *f* is one-one into function.

Option (a) is correct.

39. Here co-domain =
$$\left[0, \frac{\pi}{2}\right)$$

For onto function, we have

Co-domain = Range =
$$0 \le x < \frac{\pi}{2}$$

This is valid if $x^2 + x + 2a \ge 0$

[:
$$f(x) \ge 0$$
 i.e. $Ax^2 + Bx + C \ge 0$ then $D \le 0$ if $A > 0$.]

i.e.,
$$x^2 + x + 2a \ge 0 \Rightarrow 1^2 - 4 \times 1 \times 2a \le 0$$

$$\rightarrow 1 - 8a \le 0 \Rightarrow 1 \le 8a \Rightarrow 8a \ge 1 \Rightarrow a \ge \frac{1}{8}$$

$$\therefore a \in \left[\frac{1}{8}, \infty\right)$$

Option (*d*) is correct.

We are given that

$$(f(x))^2 - 4f(x)f'(x) + (f'(x))^2 = 0$$

$$\Rightarrow f'(x) = \frac{4f(x) \pm \sqrt{16(f(x))^2 - 4(f(x))^2}}{2}$$

$$\therefore f'(x) = \frac{4f(x) \pm 2f(x)\sqrt{4-1}}{2} = \frac{4f(x) \pm 2\sqrt{3}f(x)}{2}$$

$$= f(x)(2 \pm \sqrt{3})$$

$$\Rightarrow \frac{f'(x)}{f(x)} = (2 \pm \sqrt{3})$$

Integrating, we get

$$\Rightarrow \log f(x) = (2 \pm \sqrt{3})x + C$$

$$\Rightarrow f(x) = e^{(2\pm\sqrt{3})x + C} = e^C e^{(2\pm\sqrt{3})x} = \lambda e^{(2\pm\sqrt{3})x}$$

where
$$\lambda = e^{C}$$

$$\Rightarrow f(x) = \lambda e^{(2 \pm \sqrt{3})x} = \lambda e^{(2 + \sqrt{3})x}, \lambda e^{(2 - \sqrt{3})x}$$

Option (c) is correct.

41.
$$f(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right) = 2 \tan^{-1} x$$

f(x) is one-one and onto

i.e.,
$$f'(x) > 0$$
 or $f'(x) < 0$ and co-domain = range of $f(x)$

$$B = f(-1, 1) = (2 \tan^{-1}(-1), 2 \tan^{-1}(1))$$

$$=\left(2\times\left(-\frac{\pi}{4}\right),2\times\frac{\pi}{4}\right)=\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$$

Option (c) is correct.

42. Let
$$f(x) = y = \frac{x}{1 + |x|} \forall x \in \mathbb{R}, y \in \mathbb{R}$$

$$\therefore f(x) = \frac{x}{1+x} \text{ or } \frac{x}{1-x} \text{ is one-one}$$

Here range of f(x) is $R - \{-1, 1\}$

But y can not have any of the values -1, 1 for some x.

 \therefore f(x) is not an onto function.

Option (c) is correct.

44. Number of onto function

$$= 3^{6} - {}^{3}C_{1} (3 - 1)^{6} + {}^{3}C_{2} (3 - 2)^{6} - {}^{3}C_{3} (3 - 3)^{6}$$

$$= 3^{6} - 3 \times 2^{6} + 3 \times 1 = 3^{6} - 3 \times 2^{6} + 3$$

$$= 3 \times (3^{5} - 2^{6} + 1) = 3(243 - 64 + 1)$$

$$= 3 \times (244 - 64) = 3 \times 180 = 540$$

Option (*d*) is correct.

45. As $(7,7) \notin R$, so R can not be reflexive

Again $(7, 8) \in R$ but $(8, 7) \notin R$, so R is not symmetric.

As
$$(7,8), (8,8) \in R \Rightarrow (7,8) \in R \Rightarrow R$$
 is transitive.

Option (a) is correct.

46. Let $A = \{1, 2, 3,, 12\}, n(A) = 12 \text{ (say } m)$

$$B = \{1, 2, 3, ..., 11\}, n(B) = 11 \text{ (say } n)$$

... Total number of function from A to $B = 11^{12}$

... Number of onto functions from A to
$$B = \sum_{r=1}^{n} (-1)^{n-r} {}^{n}C_{r}r^{m}$$

= coefficient of
$$x^m$$
 in $m! (e^x - 1)^n ...(i)$

Putting m = 12, n = 11 and r = 1, 2, 3, ..., 11. The number of onto functions is given by

$$= (-1)^{11-1} {}^{11}C_1 1^{12} + (-1)^{11-2} {}^{11}C_2 2^{12} + (-1)^{11-3} {}^{11}C_3 3^{12}$$

$$+ ... + (-1)^{1} {}^{11}C_{10} 10^{12} + (-1)^{0} {}^{11}C_{11} 11^{12}$$

$$= {}^{11}C_{11} 11^{12} - {}^{11}C_{10} 10^{12} + {}^{11}C_{9} 9^{12} + \dots + {}^{11}C_{3} 3^{12} - {}^{11}C_{2} 2^{12} + {}^{11}C_{1} 1^{12}$$

$$= {}^{11}C_0 11^{12} - {}^{11}C_1 10^{12} + {}^{11}C_2 9^{12} + \dots + {}^{11}C_8 3^{12} - {}^{11}C_9 2^{12} + {}^{11}C_{10} 1^{12}$$

Also, coefficient x^{12} in 12! $(e^x - 1)^{11}$

= coefficient of
$$x^{12}$$
 in $12! \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \infty - 1\right)^{11}$

= coefficient of
$$x^{12}$$
 in $12! \left(\frac{x}{1!} + \frac{x^2}{2!} + + \infty \right)^{11}$

= coefficient of
$$x^{12}$$
 in $12! x^{11} \left(\frac{1}{1!} + \frac{x}{2!} + \frac{x^2}{3!} + \dots + \infty \right)^{11}$

= coefficient of
$$x$$
 in $12! \times \left[1 + \left(\frac{x}{2!} + \frac{x^2}{3!} + \dots + \infty\right)\right]^{11}$

$$= \text{coefficient of } x \text{ in } 12! \left[{}^{11}C_0 \, 1 + {}^{11}C_1 \left(\frac{x}{2!} + \frac{x^2}{3!} + \dots + \infty \right) + {}^{11}C_2 \left(\frac{x}{2!} + \frac{x^2}{3!} + \dots + \infty \right) + \dots \right]$$

$$= \text{coefficient of } x \text{ in } 12! \left[{}^{11}C_1 \left(\frac{1}{2!} \right) \right] = \frac{12! \times 11}{2!}$$

Total number of functions which are not onto = $11^{12} - \frac{12! \times 11}{2}$ Option (*d*) is correct.

Replacing x by $\frac{1}{f(y)}$, we have from (i)

$$f(x \times f(y)) = f\left(x \times \frac{1}{x}\right) = \left(\frac{1}{f(y)}\right)^a y^b$$

$$f(1) = \frac{y^b}{(f(y))^a} \Longrightarrow (f(y))^a = \frac{y^b}{f(1)}$$

:. Put
$$y = 1$$
, $(f(1))^a = \frac{1^b}{f(1)} = \frac{1}{f(1)}$

$$\Rightarrow (f(1))^{a+1} - 1$$

$$\Rightarrow f(1) = 1^{\left(\frac{1}{a+1}\right)} = 1$$

$$\Rightarrow f(1) = \frac{y^b}{(f(y))^a} = 1 \Rightarrow (f(y))^a = y^b$$

$$\Rightarrow f(y) = y^{b/a}$$

Replacing y as x, we have

$$\therefore f(x \cdot y^{b/a}) = x^a y^b$$

Let
$$y^{b/a} = t \Rightarrow y = t^{a/b}$$

$$f(x \cdot t) = x^a t^a \Rightarrow f(x) = x^a \qquad \dots (iii)$$

Now from (ii) and (iii), we get

$$x^{b/a} = x^a \Longrightarrow \frac{a}{b} = \frac{1}{a} \Longrightarrow b = a^2$$

Option (c) is correct.

- Number of relations that can be defined on $A = 2^{n^2}$ Option (c) is correct.
- We have $R = \{(a, a), (b, b), (c, c), (b, c), (a, b)\}$

For $(b, c) \in R$, but $(c, b) \notin R$.

Hence *R* is not symmetric.

Also for (a, b), $(b, c) \in R$ but $(a, c) \notin R$.

R is not transitive.

As
$$(a, a) \in R \ \forall \ a \in A$$

Hence *R* is reflexive.

Option (c) is correct.

55. Let
$$A = \{1, 2\}, B = \{a, b\}$$

Let
$$R = \{(1, a), (1, b), (2, a), (2, b)\}$$

Clearly *R* is a relation from *A* to *B*

But R is not a function.

As
$$(1, a)$$
, $(1, b) \in R$ and $(2, a)$, $(2, b) \in R$

Option (b) is correct.

56.
$$R = \{(1, 2)\}, A = \{1, 2, 3\}$$

Clearly *R* is neither reflexive nor symmetric.

As
$$(1,2) \in R$$
 but $\not\equiv (2,b) \in R$ for $b \in A$ such that $(1,b) \notin R$.

Hence *R* is a transitive relation on *A*.

Option (b) is correct.

57.
$$R = \{(a, b) : a \ge b\}$$

Reflexive

Clearly
$$(a, a) \in R \ \forall a \in R$$
.

Hence *R* is reflexive.

Symmetric

$$\therefore (2,1) \in R \text{ but } (1,2) \notin R$$

Hence *R* is not symmetric.

Transitive

Let
$$(a, b)$$
 and $(b, c) \in R$

$$\Rightarrow$$
 $a \ge b$ and $b \ge c$

$$\Rightarrow a \ge c$$

Hence
$$(a, b)$$
 and $(b, c) \in R \Rightarrow (a, c) \in R$

 \Rightarrow R is a transitive relation on R.

Option (b) is correct.

59.
$$R = \{(x, y) : |x^2 - y^2| < 7\}$$

$$R = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 2), (2,3)\}$$

Option (*d*) is correct.