

IONIC COMPOUNDS

DEFINITION

lonic Compound is formed due to creation of an ionic bond which is the electrostatic attraction between a cation (+ charge) and an anion (- charge) generally involving a metal and a non-metal.

NOMENCLATURE

Charges are written because ions are either positive or negative.

- Name the cation first, followed by the anion
- Anion must end in ide (drop the last few letters)
- Roman Numerals must be used for metals with more than one charge (e.g. transition metals)

Ex: NaCl = Sodium chloride

Ex: CuCl₂ = Copper (II) chloride

PROPERTIES

- High melting points
- High boiling points
- Hard and brittle
- Good insulators
- Forms crystals
- Conduct electricity when they are dissolved in water
- Ionic compounds have higher enthalpies of fusion

EXAMPLES

Some examples of Ionic compounds are Sodium Chloride, Lithium Iodide, Potassium Iodide and Sodium Fluoride.

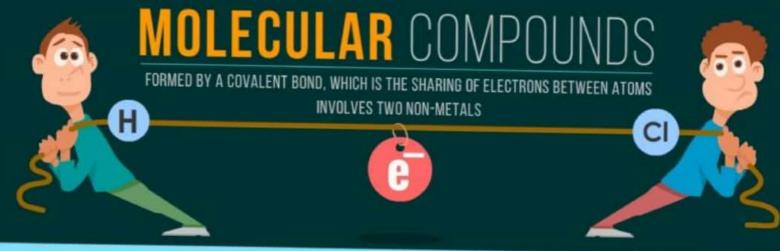
SODIUM CHLORIDE (NaCl)

Some of sodium chloride's use includes consumption, production and is naturally occurring.

LITHIUM IODIDE (Lil)

Lithium lodide is commonly used in batteries, pacemakers and solar power generator.

POTASSIUM IODIDE (KI)


Potassium iodide tablets are given to people exposed to high level of radiation.

SODIUM FLOURIDE (NaF)

Sodium fluoride is used in medical treatment, water purification and cleaning solutions.

NOMENCLATURE •

- Ionic charges cannot be written because it is composed of molecules, not ions.
- Prefix: mono, di, tri, tetra, penta, hexa, hepta, octa, nona, deca.
- Name the elements in the order listed.
- Use prefixes to indicate the number of each atom of each element (mono can only be used on the second non-metal).
- The first element includes prefix + element name.
- The second element includes the prefix + the element name + ide ending (drop the last few letters).

Eg : hydrogen chloride = HCI

Eg: phosphorus pentachloride = PCI₅

PROPERTIES

SOME EXAMPLES OF MOLECULAR COMPOUNDS

DIHYDROGEN MONOXIDE (H₂0)

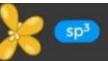
Dilydrogen monoxide or water is vital for our survival, used in our daily needs.

SILICON DIOXIDE (SiO₂)

Silicon dioxide is used for construction and is found naturally in sand and quartz.

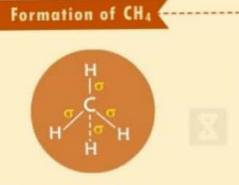
CARBON DIOXIDE (CO₂)

Some uses of carbon dioxide are carbonation of liquids and green house effect.


SULPHUR Dioxide (so₂)

Sulphur dioxide is used for food preservation and acts as a disinfectant.

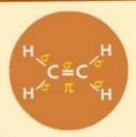
SP HYBRIDISATION

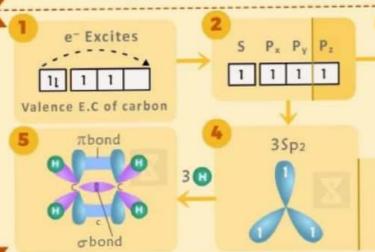


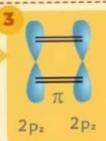
Four different sized mud balls combine to from equal shaped balls.



Similarly, orbitals of different energy combineto form equal energy orbitals.


HYBRID ORBITALS ARE USED IN FORMING SIGMA BONDS


Here carbon needs to form 4 sigma Bonds.

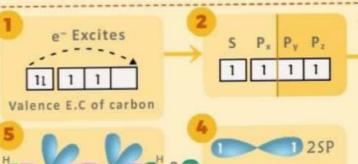


Formation of C2H4

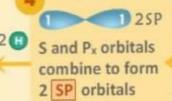
Here each carbon needs to form 3 sigma and 1 pi Bonds.

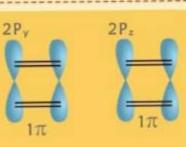


S, P_x P_y orbitals combine and form 3 equal sp₂ hybrid


P₂ orbitals of two carbons combine and

form π bond


Formation of C2H2

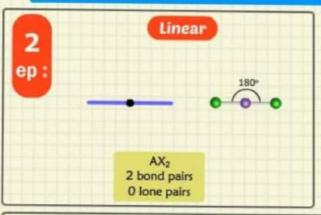


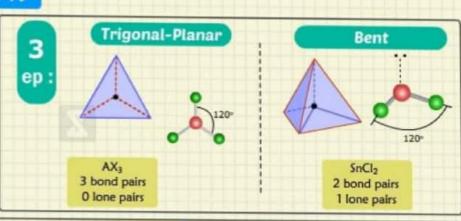
Each carbon needs to form 2 sigma and 2pi Bonds.

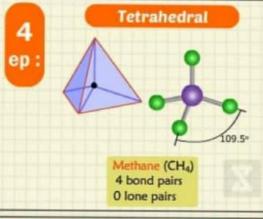
πbond

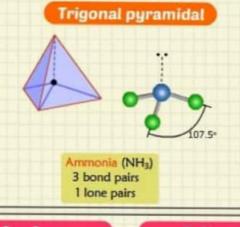
orbitals

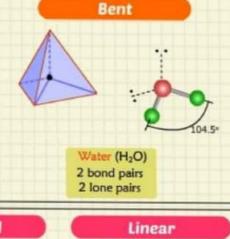
 P_y and P_z orbitals of two carbons combine and form 2π bonds

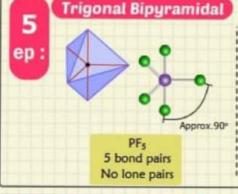

VSEPR & SHAPES OF MOLECULES

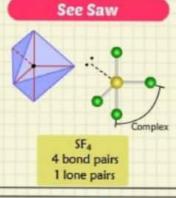

Bonding Pairs & Lone Pairs

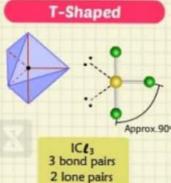

Lone pairs in a molecule lie closer to the central atom, hence they repel more than a bonded pair. The order of strengths of repulsion is:


LONE PAIR/LONE PAIR > BONDED PAIR/LONE PAIR > BONDED PAIR/BONDED PAIR

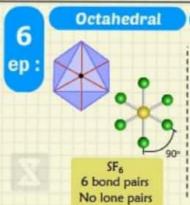

Shapes with different electron Pair: (ep)

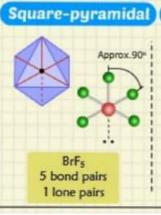


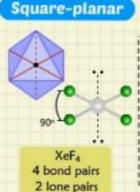


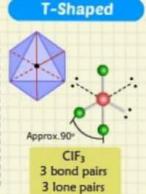


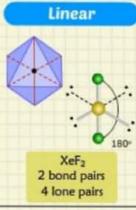


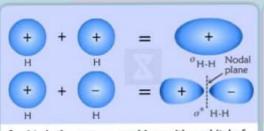


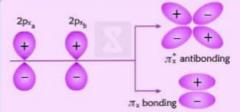




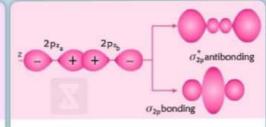




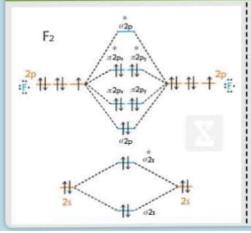


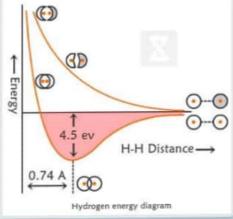


MOLECULAR ORBITAL THEORY


MOT explains the bonding and stability of Molecules by forming Molecular orbits

S-orbital of one atom combines with s-orbital of another atom constructively and destructively to form σ and σ molecular orbitals.




 p_x orbital of one atoms combines with p_x of another atom to form σ and σ orbitals.

 p_y and p_z orbitals combine and forms π and π orbitals.

Energy Diagram of Molecular Orbitals

Bond Order

Bond order = $\frac{1}{2}$ $\begin{bmatrix}
Number of \\
Bond of \\
electron in \\
bonding \\
orbitals
\end{bmatrix}$ Number of Bond of electrons in anti-bonding orbitals

Bond	H ₂ ⁺	H ₂	He ₂ ⁺	He ₂
Bond Order	1/2	1	1/2	0

The bond order must be positive non-zero for a bond to be stable. He₂ has a bond order of zero and that is why the He₂ molecule is not observed.