
प्रयोग सं. 7 (B)

उद्देश्य – उत्तल लैंस एवं समतल दर्पण की सहायता से पानी का अपवर्तनांक ज्ञात करना।
उपकरण एवं सामग्री – लगभग 20 cm फोकस दूरी वाला उभयोत्तल (double convex) लैंस, लैंस
के आकार से बड़े आकार का समतल दर्पण, लम्बा, भारी आधार वाला क्लेम्प लगा
स्टेन्ड, साहुल सूत्र, मीटर स्केल एवं ड्रॉपर।

सिद्धांत — फोकस बिन्दु से चलने वाली प्रकाश की किरणें लैंस से अपवर्तन के बाद मुख्य अक्ष के समान्तर हो जाती है। सामने रखे समतल दर्पण पर ये किरणें लम्बवत गिरती है। ∠i = 0; ∠r = 0 । दर्पण से परावर्तन के बाद ये किरणें पुनः उत्तल लैंस पर समान्तर गिरती है। तथा लैंस से पुनः अपवर्तन के बाद फोकस पर मिलती है। इस प्रकार की चित्रानुसार (चित्र—7.2)प्रायोगिक व्यवस्था में, फोकस पर रखी पिन एवं उसके प्रतिबिम्ब की स्थिति एक ही होगी अर्थात् पिन एवं उसके प्रतिबिम्ब के मध्य विस्थापनाभास दूर होने पर पिन की लैंस से दूरी, उस लैंस की फोकस दूरी होगी।

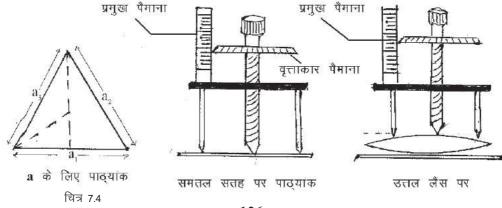
चित्र 7.3 के अनुसार यदि दर्पण एवं लैंस के बीच पानी हो, तो यह व्यवस्था दो लैंसों के संयोजन के समान होगी (काँच का उत्तल लैंस एवं पानी का समतलावतल लैंस)। यह संयोजन भी उत्तल लैंस की भाँति कार्य करता है। तथा अब पिन एवं उसके प्रतिबिम्ब के मध्य विस्थापनाभास दूर होने पर यह दूरी संयुक्त लैंस की फोकस दूरी f' होगी।

पानी का अवर्तनांक $n_{wa} = \left(1 + \frac{R}{f_w}\right)$ जहाँ $R = \mbox{जता लेंस की वक्रता त्रिज्या}$ $f_w = \mbox{पानी के लेंस की फोकस दूरी}$

R का मान स्फेरोमीटर तथा f_{w} का मान $f_{w} = \frac{f \ f^{'}}{f - f^{'}}$ से ज्ञात किया जा सकता है।

जहां f = उत्तल लैंस की फोकस दूरी तथा f' = संयुक्त लैंस की फोकस दूरी।

विधि -


- 1. समतल दर्पण को स्टेन्ड के आधार पर इस प्रकार रखें कि उसकी परावर्तक सतह ऊपर की ओर रहे।
- 2. उत्तल लैंस को दर्पण के ऊपर रखें।
- 3. क्लेम्प में लगी पिन / सुई को इस प्रकार समंजित करो कि नोंक लैंस के केन्द्र पर रहे।
- 4. क्लेम्प को ऊपर / नीचे करते हुए ऐसी स्थिति प्राप्त करो कि पिन एवं उसके प्रतिबिम्ब की नोंक के मध्य विस्थापनाभास दूर हो जाए।
- 5. विस्थापनाभास दूर होने के बाद पिन एवं लैंस की दूरी \mathbf{h}_1 तथा लैंस को हटाकर पिन एवं दर्पण के मध्य दूरी \mathbf{h}_2 साहुल सूत्र एवं मीटर स्केल से ज्ञात करें। इन दूरियों का माध्य ही फोकस दूरी होगी।

$$f = \frac{h_1 + h_2}{2}$$

- 6. ड्रापर की सहायता से लैंस एवं दर्पण के मध्य पानी डालें पुनः पिन एवं उसके प्रतिबिम्ब के मध्य विस्थापनाभास दूर करें। पिन की नई स्थिति एवं लैंस के बीच की दूरी \mathbf{h}_3 तथा पिन एवं दर्पण के मध्य दूरी \mathbf{h}_4 का मापन साहुल सूत्र एवं मीटर स्केल की सहायता से करें। इन दूरियों का औसत (माध्य) ही संयुक्त लैंस की फोकस दूरी \mathbf{f}^1 होगी।
- 7. स्फेरोमीटर की सहायता से लैंस की वक्रता त्रिज्या R का मापन करें। कक्षा XI में आप यह प्रयोग कर चुके हैं।

स्फेरोमीटर के तीनों पायों के बीच की माध्य दूरी चित्रानुसार ज्ञात करें।

$$a = \frac{a_1 + a_2 + a_3}{3}$$

प्रेक्षण-

- लैंस की वक्रता त्रिज्या **R** का मापन।
- स्फेरोमीटर के दो पायों के बीच औसत दूरी a = cm
- स्फेरो मीटर द्वारा, लैंस के उभरे भाग की ऊँचाई h =cm
- (iii) माध्य $(R = \frac{a^2}{6h} + \frac{h}{2})$ से प्राप्त) $R = \dots$ cm

प्रेक्षण सारिणी-

क्र.र	ਸ਼ਂ.	लैंस के प्रकाशीय केन्द्र से पिन की दूरी						
		केवल उत्तल लैंस के लिए			संयुक्त लैंस के लिए			$f_{w} = \frac{ff'}{f - f'}$
		ऊपरी तल की	नीचे के तल	माध्य	ऊपरी सतह	निचली सतह	माध्य	
		दूरी h ₁	की दूरी $\mathbf{h}_{_{\! 2}}$	$f = \frac{h_1 + h_2}{2}$	की दूरी h ₃	की दूरी $\mathbf{h}_{\!\scriptscriptstyle 4}$	$f' = \frac{h_3 + h_4}{2}$	
1		cm	cm.	cm	cm	cm	cm	
2	2	cm	cm.	cm	cm	cm	cm	cm
3	3	cm	cm.	cm	cm	cm	cm	

- 1. सूत्र $R = \frac{a^2}{6h} + \frac{h}{2}$ से उत्तल लैंस की वक्रता त्रिज्या की गणना करें।
- 2. सूत्र $f_w = \frac{ff'}{f f'}$ की सहायता से पानी के लैंस की फोकस दूरी ज्ञात करें।
- 3. सूत्र $n_{wa} = \left(1 + \frac{R}{f_w}\right)$ की सहायता से पानी के अपवर्तनांक की गणना करें।

परिणाम -उत्तल लैंस एवं समतल दर्पण की सहायता से पानी का अपवर्तनांक $\mathbf{n}_{_{\mathbf{w}a}}$ =..... (मात्रकहीन) प्राप्त हुआ।

- सावधानियां 1. समतल दर्पण क्षेतिज रहना चाहिए।
 - 2. पिन पूर्णतः क्षेतिज हों तथा नोंक लैंस के मध्य रहे।
 - 3. लैंस एवं दर्पण के मध्य पानी डालने पर वायु के बुलबुले नहीं होने चाहिए।
 - 4. साहल सूत्र के प्रयोग के समय व्यवस्था परिवर्तित नहीं होनी चाहिए।
 - 5. पिन की नोंक एवं उसके प्रतिबिम्ब के मध्य विस्थापनाभास दूर करते समय सावधानी रखनी चाहिए।