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Introduction  

The terms 'work', 'energy' and 'power' are frequently used in 

everyday language. A farmer clearing weeds in his field is said to be working 
hard. A woman carrying water from a well to her house is said to be 
working. In a drought affected region she may be required to carry it over 
large distances. If she can do so, she is said to have a large stamina or 
energy. Energy is thus the capacity to do work. The term power is usually 
associated with speed. In karate, a powerful punch is one delivered at great 

speed. In physics we shall define these terms very precisely. We shall find 
that there is a loose correlation between the physical definitions and the 
physiological pictures these terms generate in our minds.  

Work is said to be done when a force applied on the body displaces 
the body through a certain distance in the direction of force. 

Work Done by a Constant Force 

Let a constant force F  be applied on the body such that it makes 

an angle  with the horizontal and body is displaced through a distance s  

By resolving force F  into two components :  

(i) F cos  in the direction of displacement of the body.  

(ii) F sin  in the perpendicular direction of displacement of the body.  

 
 

 

 

 

 
Since body is being displaced in the direction of cosF , therefore 

work done by the force in displacing the body through a distance s is given 
by  

 cos)cos( FssFW   

or  sFW .   

Thus work done by a force is equal to the scalar (or dot product) of 
the force and the displacement of the body. 

If a number of forces nFFFF ......,, 321  are acting on a body and 

it shifts from position vector 
1r  to position vector 

2r  then 

).()....( 12321 rrFFFFW n   

Nature of Work Done 

Positive work 

Positive work means that force (or its component) is parallel to 
displacement  

 

 

       oo 900    

 
 

The positive work signifies that the external force favours the 
motion of the body. 

Example: (i) When a person lifts a body from the ground, the work 

done by the (upward) lifting force is positive 

 

 

 

 

 

 

(ii) When a lawn roller is pulled by applying a force along the 
handle at an acute angle, work done by the applied force is positive. 

 

 

 

(iii) When a spring is stretched, work done by the external 
(stretching) force is positive. 

 

   

Work, Energy, Power and Collision  

Chapter  

6 

F sin 

 

F cos 

s  

 

F 

Fig. 6.1 

s  

F  

Direction of motion 

 

F  

s  

Fig. 6.2 

s  

manF  

Fig. 6.3 

F  

s  

Fig. 6.4 

s  

F  

Fig. 6.5 



254 Work, Energy, Power and Collision 

 

 

Maximum work : sFW max   

When  1maximumcos    i.e. o0  

It means force does maximum work when angle between force and 
displacement is zero. 

Negative work 

Negative work means that force (or its component) is opposite to 
displacement i.e.  

 

 

      oo 18090    

 

 

The negative work signifies that the external force opposes the 
motion of the body. 

Example: (i) When a person lifts a body from the ground, the work 
done by the (downward) force of gravity is negative. 

 

 

 

 

 

 

(ii) When a body is made to slide over a rough surface, the work 

done by the frictional force is negative. 

Minimum work : sFW min   

 
 

 

When 1minimumcos   i.e o180  

It means force does minimum [maximum negative] work when 
angle between force and displacement is 180 o. 

(iii) When a positive charge is moved towards another positive 
charge. The work done by electrostatic force between them is negative. 

 

Zero work 

Under three condition, work done becomes zero 0cos  FsW  

(1) If the force is perpendicular to the displacement ][ sF  

Example:  (i)  When a coolie travels on a horizontal platform with a load on his head, work 

done against gravity by the coolie is zero. 

        (ii)  When a body moves in a circle the work done by the centripetal force is 

always zero. 

        (iii) In case of motion of a charged particle in a magnetic field as force 

)]([ BvqF   is always perpendicular to motion, work done by this force is 

always zero. 

(2) If there is no displacement [s = 0] 

Example: (i)   When a person tries to displace a wall or heavy stone by applying a force and it 

does not move, then work done is zero. 

         (ii) A weight lifter does work in lifting the weight off the ground but does not work 

in holding it up. 

(3) If there is no force acting on the body [F = 0] 

Example: Motion of an isolated body in free space. 

  

Work Done by a Variable Force 

When the magnitude and direction of a force varies with position, 
the work done by such a force for an infinitesimal displacement is given by  

sdFdW .  

 

 

 

 

 

 

The total work done in going from A to B as shown in the figure is 

 
B
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Dimension and Units of Work 

Dimension :  As work =  Force  displacement 

              [W] ][][][ 222   TMLLMLT  

Units :  The units of work are of two types 
 

Absolute units Gravitational units 

Joule [S.I.]: Work done is said to be 

one Joule, when 1 Newton force 
displaces the body through 1 metre in 
its own direction. 

From, W = F.s  

1 Joule = 1 Newton 1 m  

kg-m [S.I.]: 1 kg-m  of work is 

done when a force of 1kg-wt. 
displaces the body through 1m 
in its own direction. 

From    W = F s  

1 kg-m = 1 kg-wt  1 m 

= 9.81 N  1 metre  

= 9.81 Joule 

erg [C.G.S.] : Work done is said to 
be one erg when 1 dyne force 
displaces the body through 1 cm in 
its own direction. 

From W = F s  

       cmdyneerg 111   

Relation between Joule and erg  

1 Joule = 1 N  1 m  

= 105 dyne  102 cm  

= 107 dyne  cm = 107 erg  

gm-cm [C.G.S.] :  1 gm-cm of 
work is done when a force of 
1gm-wt displaces the body 
through 1cm in its own 
direction. 

From W = F s 

1 gm-cm = 1gm-wt  1cm. = 981 

dyne  1cm  

= 981 erg  

Work Done Calculation by Force Displacement 

Graph 

Let a body, whose initial position is ix , is acted upon by a variable 

force (whose magnitude is changing continuously) and consequently the 

body acquires its final position fx . 

 

 

 

 

 

 

 

Let F be the average value of variable force within the interval dx 
from position x to (x + dx) i.e. for small displacement dx. The work done 
will be the area of the shaded strip of width dx. The work done on the body 

in displacing it from position ix  to fx  will be equal to the sum of areas 

of all the such strips  

dxFdW   

 
f

i

f

i

x

x

x

x
dxFdWW  

 f

i

x

x
dxW )widthofstripofArea(  

fi xxW andbetweencurveunderArea   

i.e. Area under force-displacement curve with proper algebraic sign 
represents work done by the force. 

Work Done in Conservative and  

Non-conservative Field 

(1) In conservative field, work done by the force (line integral of the 

force i.e.  ldF. ) is independent of the path followed between any two 

points.  

III PathII PathI Path

BABABA WWW    

or  

III PathII PathI Path

...   ldFldFldF  

 

(2) In conservative field work done by the force (line integral of the force 

i.e.  ldF. ) over a closed path/loop is zero. 

0  ABBA WW  

or    0. ldF


 

 
 

 

Conservative force : The forces of these type of fields are known as 
conservative forces. 

Example : Electrostatic forces, gravitational forces, elastic forces, 
magnetic forces etc and all the central forces are conservative in nature.  

If a body of mass m lifted to height h from the ground level by 

different path as shown in the figure  

 

 

 

 

 

 

 

 
 

Work done through different paths  

mghhmgsFWI  .  

mgh
h

mglmgsFWII 



sin

sinsin.

 4321 000 mghmghmghmghWIII   

mghhhhhmg  )( 4321   

mghsdFWIV   .   

 It is clear that mghWWWW IVIIIIII  .  

Further if the body is brought back to its initial position A, similar 
amount of work (energy) is released from the system, it means 

mghWAB   and  mghWBA  . 

Hence the net work done against gravity over a round trip is zero.  

BAABNet WWW  0)(  mghmgh  

i.e. the gravitational force is conservative in nature.  

Non-conservative forces : A force is said to be non-conservative if 
work done by or against the force in moving a body from one position to 
another, depends on the path followed between these two positions and for 

complete cycle this work done can never be zero.  
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Example:  Frictional force, Viscous force, Airdrag etc.  

If a body is moved from position A to another position B on a rough 

table, work done against frictional force shall depend on the length of the 
path between A and B and not only on the position A and B.  

  mgsWAB   

Further if the body is brought back to its initial position A, work has 

to be done against the frictional force, which opposes the motion. Hence the 
net work done against the friction over a round trip is not zero. 

 

 

 

 
 

   .mgsWBA   

.02  mgsmgsmgsWWW BAABNet   

i.e. the friction is a non-conservative force. 

Work Depends on Frame of Reference 

With change of frame of reference (inertial), force does not change 
while displacement may change. So the work done by a force will be 
different in different frames. 

Examples : (1) If a porter with a suitcase on his head moves up a 
staircase, work done by the 
upward lifting force relative 
to him will be zero (as 
displacement relative to 
him is zero) while relative 
to a person on the ground 

will be mgh.  

(2) If a person is 
pushing a box inside a 
moving train, the work 
done in the frame of train 

will sF.  while in the 

frame of earth will be )(. 0ssF   where 
0s  is the displacement of the 

train relative to the ground. 

Energy 

The energy of a body is defined as its capacity for doing work.  

(1) Since energy of a body is the total quantity of work done, 
therefore it is a scalar quantity. 

(2) Dimension: ][ 22 TML  it is same as that of work or torque. 

(3) Units : Joule [S.I.], erg [C.G.S.] 

Practical units : electron volt (eV), Kilowatt hour (KWh), Calories 
(cal) 

Relation between different units:   

1 Joule = 710  erg  

1 eV  = 19106.1   Joule  

1 kWh = 6106.3  Joule  

1 calorie = Joule18.4   

(4) Mass energy equivalence : Einstein’s special theory of relativity shows that 

material particle itself is a form of energy. 

The relation between the mass of a particle m and its equivalent 
energy is given as  

2mcE   where c = velocity of light in vacuum. 

If kgamum 271067.11    

then JouleMeVE 10105.1931  . 

If kgm 1  then JouleE 16109  

Examples : (i) Annihilation of matter when an electron )( e  and a 

positron )( e  combine with each other, they annihilate or destroy each 

other. The masses of electron and positron are converted into energy. This 

energy is released in the form of  -rays. 

   ee  

Each    photon has energy = 0.51 MeV.  

Here two   photons  are emitted instead of one   photon to 

conserve the linear momentum. 

(ii) Pair production :  This process is the reverse of annihilation of 

matter. In this case, a photon )(  having energy equal to 1.02 MeV interacts 

with a nucleus and give rise to electron )( e and positron )( e . Thus 

energy is converted into matter. 

 

 

 

(iii) Nuclear bomb : When the nucleus is split up due to mass defect 
(The difference in the mass of nucleons and the nucleus), energy is released 

in the form of  -radiations  and  heat.  

(5) Various forms of energy  

(i) Mechanical energy (Kinetic and Potential)   

(ii) Chemical energy    

(iii) Electrical energy 

(iv) Magnetic energy    

(v) Nuclear energy   

(vi) Sound energy 

(vii) Light energy     

(viii) Heat energy 

(6) Transformation of energy : Conversion of energy from one form 
to another is possible through various devices and processes. 

Table : 6.1 Various devices for energy conversion from one form to another 
 

Mechanical  electrical Light  Electrical Chemical  electrical 
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Chemical  heat Sound  Electrical Heat  electrical 
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Heat  Mechanical  Electrical  Mechanical Electrical  Heat 
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Kinetic Energy 

The energy possessed by a body by virtue of its motion, is called 

kinetic energy.  

Examples : (i) Flowing water possesses kinetic energy which is used 

to run the water mills. 

(ii) Moving vehicle possesses kinetic energy. 

(iii) Moving air (i.e. wind) possesses kinetic energy which is used to 

run wind mills. 

(iv) The hammer possesses kinetic energy which is used to drive the 

nails in wood. 

(v) A bullet fired from the gun has kinetic energy and due to this 

energy the bullet penetrates into a target. 

 

 

 

 

 

(1) Expression for kinetic energy :  

Let    m  = mass of the body,     

u = Initial velocity of the body (= 0) 

F = Force acting on the body,   

a = Acceleration of the body, 

s = Distance travelled by the body,    

v = Final velocity of the body 

From asuv 222   

  asv 202    
a

v
s

2

2

  

Since the displacement of the body is in the direction of the applied 

force, then work done by the force is  

sFW 
a

v
ma

2

2

  

 2

2

1
mvW   

This work done appears as the kinetic energy of the body 

2

2

1
mvWKE   

(2) Calculus method : Let a body is initially at rest and force F  is 

applied on the body to displace it through small displacement sd


 along its 

own direction then small work done  

        dsFsdFdW  .  

         dsamdW     [As F = ma] 

         ds
dt

dv
mdW    










dt

dv
aAs  

  
dt

ds
mdvdW .   

  dvvmdW      …(i)  
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                      







 v

dt

ds
As  

Therefore work done on the body in order to increase its velocity 
from zero to v is given by  

 













v v

v

v
mdvvmdvmvW

0 0

0

2

2
 2

2

1
mv  

This work done appears as the kinetic energy of the body 

2

2

1
mvKE  . 

In vector form ).(
2

1
vvmKE    

As m and vv .  are always positive, kinetic energy is always positive 

scalar i.e. kinetic energy can never be negative. 

(3) Kinetic energy depends on frame of reference : The kinetic 

energy of a person of mass m, sitting in a train moving with speed v, is zero 

in the frame  of train but 2

2

1
mv  in the frame of the earth. 

(4) Kinetic energy according to relativity : As we know 

2

2

1
mvE  .  

But this formula is valid only for (v << c) If v is comparable to c 

(speed of light in free space = sm /103 8 ) then according to Einstein 

theory of relativity  

2

22

2

)/(1

mc

cv

mc
E 



  

(5) Work-energy theorem: From equation (i)  dvmvdW  . 

Work done on the body in order to increase its velocity from u to v 
is given by  


v

u
dvmvW  














v

u

v

u

v
mdvvm

2

2

 

 ][
2

1 22 uvmW   

Work done = change in kinetic energy 

EW   

This is work energy theorem, it states that work done by a force 

acting on a body is equal to the change in the kinetic energy of the body. 

This theorem is valid for a system in presence of all types of forces 

(external or internal, conservative or non-conservative). 

If kinetic energy of the body increases, work is positive i.e. body 

moves in the direction of the force (or field) and if kinetic energy decreases, 
work will be negative and object will move opposite to the force (or field). 

Examples : (i) In case of vertical motion of body under gravity when 

the body is projected up, force of gravity is opposite to motion and so 
kinetic energy of the body decreases and when it falls down, force of gravity 
is in the direction of motion so kinetic energy increases.  

(ii) When a body moves on a rough horizontal surface, as force of 

friction acts opposite to motion, kinetic energy will decrease and the 
decrease in kinetic energy is equal to the work done against friction.     

(6) Relation of kinetic energy with linear momentum: As we know  

22

2

1

2

1
v

v

P
mvE 








    [As mvP  ] 

 PvE
2

1
    

or   
m

P
E

2

2

    









m

P
vAs  

So we can say that kinetic energy 
m

p
PvmvE

22

1

2

1 2
2   

and Momentum P mE
v

E
2

2
  

From above relation it is clear that a body can not have kinetic energy 

without having momentum and vice-versa.

(7) Various graphs of kinetic energy  

 

 

  E  v2  

   m = constant 

 

 

 

    2PE   

    m = constant 
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E
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  

    P = constant 

 

 

    EP   

    m = constant 

 

Stopping of Vehicle by Retarding Force 

 If a vehicle moves with some initial velocity and due to some retarding 

force it stops after covering some distance after some time. 

 (1) Stopping distance :  Let    m = Mass of vehicle,   

v  = Velocity,   P = Momentum,  E = Kinetic energy  

F = Stopping force,     x = Stopping distance,  

t = Stopping time  

E 

v 

E 

m 

v 

E 

P 

E  
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Then, in this process stopping force does work on the vehicle and 

destroy the motion. 

By the work- energy theorem 

2

2

1
mvKW   

 

 

 

 
 

  Stopping force (F)  Distance (x) = Kinetic energy (E) 

  Stopping distance (x) 
)(forceStopping

)(energyKinetic

F

E
    

  
F

mv
x

2

2

     …(i) 

(2) Stopping time : By the impulse-momentum theorem 

PtFPtF   

 
F

P
t    

or 
F

mv
t      …(ii) 

(3) Comparison of stopping distance and time for two vehicles : 
Two vehicles of masses m

1 

and m
2

 are moving with velocities v
1

 and v
2

 
respectively. When they are stopped by the same retarding force (F).  

The ratio of their stopping distances 
2
22

2
11

2

1

2

1

vm

vm

E

E

x

x
   

and the ratio of their stopping time  
22

11

2

1

2

1

vm

vm

P

P

t

t
  

 (i) If vehicles possess same velocities 

  v
1

 = v
2

 

   
2

1

2

1

m

m

x

x
   ; 

2

1

2

1

m

m

t

t
  

 (ii) If vehicle possess same kinetic momentum 

 P
1

 = P
2

 

 
1

2

2
2

2

1

2
1

2

1

2

1 2

2 m

m

P

m

m

P

E

E

x

x





























  

 1
2

1

2

1 
P

P

t

t
 

 (iii) If vehicle possess same kinetic energy 

 1
2

1

2

1 
E

E

x

x
 

 
2

1

22

11

2

1

2

1

2

2

m

m

Em

Em

P

P

t

t
  

Note :  If vehicle is stopped by friction then  

Stopping distance 
F

mv

x

2

2

1


ma

mv 2

2

1


g

v

2

2

         

          ]As[ ga   

Stopping time  
F

mv
t 

gm

mv




g

v


  

Potential Energy 

Potential energy is defined only for conservative forces. In the space 
occupied by conservative forces every point is associated with certain energy 
which is called the energy of position or potential energy. Potential energy 
generally are of three types : Elastic potential energy, Electric potential energy 
and Gravitational potential energy. 

(1) Change in potential energy : Change in potential energy between 
any two points is defined in the terms of the work done by the associated 
conservative  force in displacing the particle between these two points 
without any change in kinetic energy.    

   2

1
.12

r

r
WrdFUU


  …(i) 

We can define a unique value of potential energy only by assigning 
some arbitrary value to a fixed point called the reference point. Whenever 
and wherever possible, we take the reference point at infinity and assume 

potential energy to be zero there, i.e. if we take 1r  and rr 2  then 

from equation (i) 

  
r

WrdFU


.   

In case of conservative force (field) potential energy is equal to 
negative of work done by conservative force in shifting the body from 
reference position to given position.  

This is why, in shifting a particle in a conservative field (say 
gravitational or electric), if the particle moves opposite to the field, work 
done by the field will be negative and so change in potential energy will be 
positive i.e. potential energy will increase. When the particle moves in the 
direction of field, work will be positive and change in potential energy will 

be negative i.e. potential energy will decrease. 

(2) Three dimensional formula for potential energy: For only 

conservative fields F


 equals the negative gradient )( 


 of the potential 

energy. 

So UF 


  (


 read as Del operator or Nabla operator and 

k
z

j
y

i
x

ˆˆˆ
















) 

 





















 k

z

U
j

y

U
i

x

U
F ˆˆˆ


 

where,  

 




x

U
Partial derivative of U w.r.t. x (keeping y and z constant) 






y

U
Partial derivative of U w.r.t. y  (keeping x and z constant) 






z

U
Partial derivative of U w.r.t. z  (keeping x and y constant) 

(3) Potential energy curve : A graph plotted between the potential 
energy of a particle and its displacement from the centre of force is called 

potential energy curve.  

Initial velocity = v 

x 

Final velocity = 0 

Fig. 6.18 

U(x) 

A 

B 

C D 

O 
x 

Fig. 6.19 
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Figure shows a graph of potential energy function U(x) for one 
dimensional motion. 

As we know that negative gradient of the potential energy gives 
force. 

 F
dx

dU
  

(4) Nature of force   

(i) Attractive force : 

On increasing x, if U increases,  

positive
dx

dU
, then F is in negative direction  

i.e. force is attractive in nature. 

In graph this is represented in region BC. 

(ii) Repulsive force :  

On increasing x, if U decreases,  

negative
dx

dU
, then F is in positive direction  

i.e. force is repulsive in nature.  

In graph this is represented in region AB. 

(iii) Zero force :  

On increasing x, if U does not change,   

0
dx

dU
 then F is zero 

i.e. no force works on the particle.  

Point B, C and D represents the point of zero force or these points 
can be termed as position of equilibrium. 

(5) Types of equilibrium : If net force acting on a particle is zero, it 
is said to be in equilibrium. 

For equilibrium 0
dx

dU
, but the equilibrium of particle can be of three 

types :
 

Stable Unstable Neutral 

When a particle is displaced slightly from its 

present position, then a force acting on it 
brings it back to the initial position, it is said 
to be in stable equilibrium position. 

When a particle is displaced slightly from its 

present position, then a force acting on it tries 
to displace the particle further away from the 
equilibrium position, it is said to be in unstable 
equilibrium. 

When a particle is slightly displaced from its 

position then it does not experience any force acting 
on it and continues to be in equilibrium in the 
displaced position, it is said to be in neutral 
equilibrium. 

Potential energy is minimum. Potential energy is maximum. Potential energy is constant. 

 0
dx

dU
F  0

dx

dU
F  0

dx

dU
F  

 positive
2

2


dx

Ud
  

i.e. rate of change of 
dx

dU
 is positive. 

      negative
2

2


dx

Ud
 

i.e. rate of change of 
dx

dU
 is negative. 

      0
2

2


dx

Ud
 

 i.e. rate of change of 
dx

dU
 is zero. 

Example :  

 

 

 

 

A marble placed at the bottom of a 
hemispherical bowl. 

Example : 

 

 

 

 

A marble balanced on top of a hemispherical 
bowl. 

Example : 

 

 

 

 

A marble placed on horizontal table. 

 

Elastic Potential Energy 

(1) Restoring force and spring constant : When a spring is stretched or 

compressed from its normal position (x = 0) by a small distance x, then a 

restoring force is produced in the spring to bring it to the normal position. 

According to Hooke’s law this restoring force is proportional to the 

displacement x and its direction is always opposite to the displacement. 

 

 

 

 

 

 

 

 

 

 

i.e.  xF    

or  xkF      …(i) 

where k is called spring constant. 

If x = 1, F = k (Numerically) 

or   k = F  

Hence spring constant is numerically equal to force required to 
produce unit displacement (compression or extension) in the spring. If 

required force is more, then spring is said to be more stiff and vice-versa. 

Actually k is a measure of the stiffness/softness of the spring. 

Dimension : As 
x

F
k         

m 

m 

F 

F 

Fext 

Fext 

– x 

m 

x = 0 

+x 

Fig. 6.20 
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 
L

MLT

x

F
k

][

][

][
][

2

 ][ 2 MT  

Units :  S.I. unit Newton/metre, C.G.S unit Dyne/cm. 

Note :  Dimension of force constant is similar to 

surface tension. 

(2) Expression for elastic potential energy : When a spring is 
stretched or compressed from its normal position (x = 0), work has to be 

done by external force against restoring force. xkFF restoring ext  

Let the spring is further stretched through the distance dx, then 

work done  

odxFxdFdW 0cos.. extext  dxkx  [As cos 0o = 1] 

Therefore total work done to stretch the spring through a distance x 
from its mean position is given by 

2

0

2

00 2

1

2
kx

x
kdxkxdWW

x

xx













   

This work done is stored as the potential energy in the stretched 

spring. 

 Elastic potential energy 2

2

1
kxU   

 FxU
2

1
   










x

F
k As  

 
k

F
U

2

2

    









k

F
x As  

  Elastic potential energy 
k

F
FxkxU

22

1

2

1 2
2   

Note :  If spring is stretched from initial position 

1x  to final position 2x  then work done  

= Increment in elastic potential energy 

)(
2

1 2
1

2
2 xxk   

             Work done by the spring-force on the block in various 
situation are shown in the following table 

Table : 6.2 Work done for spring 

Initial state of the spring Final state of the spring Initial position (x1) Final position (x2) Work done (W) 

Natural Compressed 0 –x –1/2 kx2 

Natural Elongated 0 x –1/2 kx2 

Elongated Natural x 0 1/2 kx2 

Compressed Natural – x 0 1/2 kx2 

Elongated Compressed x – x 0 

Compressed Elongated – x x 0 

 

(3) Energy graph for a spring : If the mass attached with spring 
performs simple harmonic motion about its mean position then its potential 
energy at any position (x) can be given by  

 

 

 

 

 

 

 

 

 

 

 2

2

1
kxU      …(i) 

So for the extreme position 

 2

2

1
kaU   [As x =  a for extreme] 

 

 

 

 

 

This is maximum potential energy or the total energy of mass. 

 Total energy 2

2

1
kaE    …(ii) 

[Because velocity of mass is zero at extreme position] 

 0
2

1 2  mvK ] 

Now kinetic energy at any position  

UEK  22

2

1

2

1
xkak   

)(
2

1 22 xakK     …(iii) 

From the above formula we can check that 

m 

x = 0 

m 

x = – a 

O 

m 

x = + a 
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B 
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2
max

2

1
kaU    [At extreme x =  a]    

and    0min U    [At mean x = 0] 

2
max

2

1
kaK    [At mean x = 0]  

and    0min K    [At extreme x =  a] 

 2

2

1
kaE  constant (at all positions) 

It means kinetic energy and potential energy changes parabolically 
w.r.t. position but total energy remain always constant irrespective to 

position of the mass 

Electrical Potential Energy 

It is the energy associated with state of separation between charged 

particles that interact via electric force. For two point charge 1q  and 2q , 

separated by distance r.  

r

qq
U 21

0

.
4

1


  

While for a point charge q at a point in an electric field where the 
potential is V  

U = qV 

As charge can be positive or negative, electric potential energy can be 
positive or negative. 

Gravitational Potential Energy 

It is the usual form of potential energy and this is the energy 

associated with the state of separation 
between two bodies that interact via 
gravitational force.  

For two particles of masses m
1

 and 
m

2

 separated by a distance r 

Gravitational potential energy 
r

mmG
U 21  

(1) If a body of mass m at height h relative to surface of earth then  

Gravitational potential energy 

R

h

mgh
U





1

 

Where R = radius of earth, g = acceleration due to gravity at the 
surface of the earth. 

(2) If h << R then above formula reduces to U = mgh. 

(3) If V is the gravitational potential at a point, the potential energy 
of a particle of mass m at that point will be  

U = mV  

(4) Energy height graph : When a body projected vertically upward 
from the ground level with some initial velocity then it possess kinetic 
energy but its initial potential energy is zero. 

As the body moves upward its potential energy increases due to 
increase in height but kinetic energy decreases (due to decrease in velocity). 

At maximum height its kinetic energy becomes zero and potential energy 

maximum but through out the complete motion, total energy remains 
constant as shown in the figure. 

 

 

 

 

 

Work Done in Pulling the Chain Against Gravity 

A chain of length L and mass M is held on a frictionless table with 
(1/n)th of its length hanging over the edge. 

Let 
L

M
m  mass per 

unit length of the chain and y is the 
length of the chain hanging over the 
edge. So the mass of the chain of 
length y will be ym and the force 
acting on it due to gravity will be 
mgy. 

The work done in pulling the 
dy length of the chain on the table.  

dW = F(– dy)  [As y is decreasing] 

i.e. dW = mgy (– dy) 

So the work done in pulling the hanging portion on the table. 

  

    

0

/

20

/ 2
nL

nL

y
mgdymgyW












  2

2

2n

Lmg
  

  
22n

MgL
W    [As m = M/L] 

Alternative method :  

If point mass m is pulled 
through a height h then work 
done   W = mgh  

Similarly for a chain we 
can consider its centre of mass at 

the middle point of the hanging 
part i.e. at a height of L/(2n) from 
the lower end and mass of the 

hanging part of chain 
n

M
  

So work done to raise the centre of mass of the chain on the table is 
given by 

n

L
g

n

M
W

2
   [As W = mgh] 

or 
22n

MgL
W   

Velocity of Chain While Leaving the Table 
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Taking surface of table as a reference level (zero potential energy) 

Potential energy of chain when 1/nth length hanging from the edge 

22n

MgL
  

Potential energy of chain when it leaves the table 
2

MgL
  

Kinetic energy of chain = loss in potential energy  

  
2

2

222

1

n

MgLMgL
Mv   

  









2

2 1
1

22

1

n

MgL
Mv  

 Velocity of chain   









2

1
1

n
gLv  

Law of Conservation of Energy 

 (1) Law of conservation of energy  

For a body or an isolated system by work-energy theorem we have 

 rdFKK


.12    …(i) 

But according to definition of potential energy in a conservative field 

 rdFUU


.12  …(ii) 

So from equation (i) and (ii) we have  

    )( 1212 UUKK    

or 1122 UKUK   

i.e.  K + U = constant. 

For an isolated system or body in presence of conservative forces, 
the sum of kinetic and potential energies at any point remains constant 
throughout the motion. It does not depend upon time. This is known as the 
law of conservation of mechanical energy. 

0)(  EUK    

[As E is constant in a conservative field] 

  0 UK  

i.e. if the kinetic energy of the body increases its potential energy will 
decrease by an equal amount and vice-versa. 

(2) Law of conservation of total energy : If some non-conservative 
force like friction is also acting on the particle, the mechanical energy is no 

more constant. It changes by the amount equal to work done by the 
frictional force. 

fWEUK  )(     

[where fW  is the work done against friction] 

The lost energy is transformed into heat and the heat energy developed is 
exactly equal to loss in mechanical energy. 

We can, therefore, write E + Q = 0   

[where Q is the heat produced] 

This shows that if the forces are conservative and non-conservative 
both, it is not the mechanical energy which is conserved, but it is the total 
energy, may be heat, light, sound or mechanical etc., which is conserved. 

In other words : ‚Energy may be transformed from one kind to 
another but it cannot be created or destroyed. The total energy in an 
isolated system remain constant". This is the law of conservation of energy. 

Power 

Power of a body is defined as the rate at which the body can do the 
work. 

Average power 
t

W

t

W
P 




)( av.  

Instantaneous power 
dt

dW
P )( inst.

dt

sdF


.
  [As sdFdW


. ] 

vFP


.inst     [As 
dt

sd
v



 ] 

i.e. power is equal to the scalar product of force with velocity. 

Important Points 

(1) Dimension : ][][][][][ 12  LTMLTvFP  

  ][][ 32  TMLP  

(2) Units : Watt or Joule/sec [S.I.] 

   Erg/sec [C.G.S.] 

Practical units :  Kilowatt (KW), Mega watt (MW) and Horse power 
(hp)  

Relations between different units : 

sec/10sec/11 7 ergJouleWatt   

Watthp 7461   

           WattMW 6101   

  WattKW 3101   

(3) If work done by the two bodies is same then power
time

1
   

i.e. the body which perform the given work in lesser time possess 

more power and vice-versa. 

(4) As power = work/time, any unit of power multiplied by a unit of 

time gives unit of work (or energy) and not power, i.e. Kilowatt-hour or 
watt-day are units of work or energy. 

 Joulesec
sec

J
KWh 63 106.3)6060(101   

(5) The slope of work time curve gives the instantaneous power. As 

P = dW/dt = tan   

 

 

 

 

 

(6) Area under power-time curve gives the work done as 
dt

dW
P   

   dtPW  

   W = Area under P-t curve 

Position and Velocity of an Automobile w.r.t Time 

An automobile of mass m accelerates, starting from rest, while the 
engine supplies constant power P, its position and velocity changes w.r.t 
time. 

(1) Velocity : As Fv = P = constant  

i.e. Pv
dt

dv
m    










dt

mdv
F As  

Work 

Time 

 

Fig. 6.28 
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or   dt
m

P
dvv  

By integrating both sides we get 1

2

2
Ct

m

Pv
  

As initially the body is at rest i.e. v = 0 at t = 0, so 01 C  

 

2/1
2











m

Pt
v  

(2) Position : From the above expression 

2/1
2


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
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
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2/1
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
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
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dt
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
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v As  

i.e.  







 dt

m

Pt
ds

2/1
2

 

By integrating both sides we get     

2
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2/1

3

2
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2
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m

P
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






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Now as at   t  = 0, s = 0, so 02 C  
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Collision 

Collision is an isolated event in which a strong force acts between 

two or more bodies for a short time as a result of which the energy and 
momentum of the interacting particle change. 

In collision particles may or may not come in real touch e.g. in 
collision between two billiard balls or a ball and bat, there is physical 

contact while in collision of alpha particle by a nucleus (i.e. Rutherford 
scattering experiment) there is no physical contact. 

(1) Stages of collision : There are three distinct identifiable stages in 
collision, namely, before, during and after. In the before and after stage the 
interaction forces are zero. Between these two stages, the interaction forces 
are very large and often the dominating forces governing the motion of 
bodies. The magnitude of the interacting force is often unknown, therefore, 
Newton’s second law cannot be used, the law of conservation of momentum 
is useful in relating the initial and final velocities. 

 

 

 

 

 

 

 

(2) Momentum and energy conservation in collision  

(i) Momentum conservation : In a collision, the effect of external 
forces such as gravity or friction are not taken into account as due to small 

duration of collision (t) average impulsive force responsible for collision is 
much larger than external force acting on the system and since this 
impulsive force is 'Internal' therefore the total momentum of system always 
remains conserved. 

(ii) Energy conservation : In a collision 'total energy' is also always 
conserved. Here total energy includes all forms of energy such as mechanical 
energy, internal energy, excitation energy, radiant energy or even mass 
energy. 

These laws are the fundamental laws of physics and applicable for 
any type of collision but this is not true for conservation of kinetic energy. 

(3) Types of collision : (i)  On the basis of conservation of kinetic 
energy. 

 

Perfectly elastic collision Inelastic collision Perfectly inelastic collision 

If in a collision, kinetic energy after collision is equal 
to kinetic energy before collision, the collision is said 
to be perfectly elastic. 

If in a collision kinetic energy after collision is 
not equal to kinetic energy before collision, the 
collision is said to inelastic. 

If in a collision two bodies stick together or 
move with same velocity after the collision, 
the collision is said to be perfectly inelastic. 

Coefficient of restitution e = 1 Coefficient of restitution 0 < e < 1 Coefficient of restitution e = 0 

 

 

(KE)
final

 = (KE)
initial

  

Here kinetic energy appears in other forms. In 
some cases (KE)

final

 < (KE)
initial

 such as  when initial 
KE is converted into internal energy of the 
product (as heat, elastic or excitation) while in 
other cases (KE)

final

 > (KE)
initial

  such as when 
internal energy stored in the colliding particles 

is released 

The term 'perfectly inelastic' does not 
necessarily mean that all the initial kinetic 
energy is lost, it implies that the loss in 
kinetic energy is as large as it can be. 
(Consistent with momentum conservation). 

Examples : (1) Collision between atomic particles 

(2) Bouncing of ball with same velocity after the 
collision with earth. 

Examples : (1) Collision between two billiard 
balls. 

(2) Collision between two automobile on a 
road. 

In fact all majority of collision belong to this 
category. 

Example : Collision between a bullet and a 
block of wood into which it is fired. When 
the bullet remains embedded in the block. 

(ii) On the basis of the direction of colliding bodies 

Head on or one dimensional collision Oblique collision 

In a collision if the motion of colliding particles before and after the collision 

is along the same line, the collision is said to be head on or one dimensional. 

If two particle collision is ‘glancing’ i.e. such that their directions of 

motion after collision are not along the initial line of motion, the collision 
is called oblique. 

If in oblique collision the particles before and after collision are in same 

plane, the collision is called 2-dimensional otherwise 3-dimensional. 

Impact parameter b is zero for this type of collision. 

 

Impact parameter b lies between 0 and )( 21 rr   i.e. 

0 < b < )( 21 rr   where 1r  and 2r  are radii of colliding bodies. 
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Example : collision of two gliders on an air track. Example : Collision of billiard balls. 

 

Perfectly elastic head on collision 

Let two bodies of masses 1m  and 2m  moving with initial velocities 

1u  and 2u  in the same direction and they collide such that after collision 

their final velocities are 1v  and 2v  respectively. 

 

 

 

 

According to law of conservation of momentum  

   22112211 vmvmumum    … (i) 

  )()( 222111 uvmvum     …(ii) 

According to law of conservation of kinetic energy 

2
22

2
11

2
22

2
11

2

1

2

1

2

1

2

1
vmvmumum    …(iii) 

 )()( 2
2

2
22

2
1

2
11 uvmvum     …(iv) 

Dividing equation (iv) by equation (ii) 

 2211 uvuv      …(v) 

 1221 vvuu      …(vi) 

Relative velocity of separation is equal to relative velocity of 

approach.  

Note :  The ratio of relative velocity of separation and 

relative velocity of approach is defined as coefficient of restitution.  

21

12

uu

vv
e




     

 or   )( 2112 uuevv   

 For perfectly elastic collision, e = 1 

 2112 uuvv   [As shown in eq. (vi)] 

 For perfectly inelastic collision,  e = 0 

 012  vv  or 12 vv   

 It means that two body stick together and move with same velocity.  

   For inelastic collision,  0 < e < 1      

       )( 2112 uuevv   

 In short we can say that e is the degree of elasticity of collision and 

it is dimensionless quantity. 

 Further from equation (v) we get  

              2112 uuvv   

 Substituting this value of 2v  in equation (i) and rearranging  

 we get,  
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Similarly we get,  
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(1) Special cases of head on elastic collision 

(i) If projectile and target are of same mass i.e. m
1

 = m
2

  

Since 2
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Substituting 21 mm   we get   

21 uv     and   12 uv    

It means when two bodies of equal masses undergo head on elastic collision, their velocities get interchanged. 

Example : Collision of two billiard balls 

 

 

 

 

(ii) If massive projectile collides with a light target i.e. m
1

 >> m
2

 

Sub case : 02 u  i.e. target is at rest 

01 v  and 12 uv   

u1 = 50m/s 

10 kg 

Before collision 

u2 = 20m/s 

10 kg 

After collision 

v1 = 20 m/s 

10 kg 

v2 = 50 m/s 

10 kg 

Before collision After collision 

m1 

u1 u2 
m2 m1 

v1 v2 
m2 

Fig. 6.30 
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Since 
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Substituting 02 m , we get 

11 uv   and 212 2 uuv   

Example : Collision of a truck with a cyclist 

 

 

 

 

 

 Before collision       

 

 

 

 

 

 After collision 

(iii) If light projectile collides with a very heavy target i.e. m
1

 << m
2

  

Since 
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Substituting 01 m , we get  

211 2uuv   and 22 uv   

Example : Collision of a ball with a massive wall. 

 

 

 

 

 

 

 

 

 

(2) Kinetic energy transfer during head on elastic collision 

Kinetic energy of projectile before collision 2
11

2

1
umKi   

Kinetic energy of projectile after collision 2
11

2

1
vmK f   

Kinetic energy transferred from projectile to target K = decrease in 

kinetic energy in projectile   

 2
11

2
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1 2
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11 vum   

Fractional decrease in kinetic energy  

2
11

2
1

2
11

2

1

)(
2

1

um

vum

K

K





2

1

11 













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We can substitute the value of 1v  from the equation  
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If the target is at rest i.e. u
2

 = 0 then 1
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From equation (i) 
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2
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K
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  …(iv) 

Note :  Greater the difference in masses, 

lesser will be transfer of kinetic energy and vice versa 

Sub case : 02 u  i.e. target is at rest 

v
1

 = u
1

 and v
2

 = 2u
1

  

v1 = 120 km/hr 

v2 = 230 km/hr 

m1 = 10
3 kg m2 = 60 kg 

u1 = 120 km/hr 

u2 = 10 km/hr 

Sub case : 02 u  i.e. target is at rest 

v
1

 = – u
1

 and v
2

 = 0 

i.e. the ball rebounds with same speed in opposite 
direction when it collide with stationary and very massive 

wall. 
m1 = 50gm 

u1 = 30 m/s 

Before collision 

v2 = 2 m/s u2 = 2 m/s 

m2 = 100 kg 

v1 = – 26 m/s 

After collision 
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  Transfer of kinetic energy will be maximum when the 

difference in masses is minimum 

 i.e. 021 mm  or 21 mm  then   

 %1001 


K

K
 

 So the transfer of kinetic energy in head on elastic collision 

(when target is at rest) is maximum when the masses of particles are equal 

i.e. mass ratio is 1 and the transfer of kinetic energy is 100%. 

  If 12 mnm   then from equation (iii) we get   
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  Kinetic energy retained by the projectile  
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(3) Velocity, momentum and kinetic energy of stationary target after head on 

elastic collision 

(i) Velocity of target : We know  
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(ii) Momentum of target : 222 vmP 
n

unm




1

2 11          

               











n

u
vnmm

1

2
 and  As 1

212  

 
)/1(1

2 11
2

n

um
P


  

(iii) Kinetic energy of target :  
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(iv) Relation between masses for maximum velocity, momentum and 

kinetic energy 

 

 

Velocity 

n

u
v




1

2 1
2  

For 2v  to be maximum n must be minimum 

i.e.  0
1

2 
m

m
n  12 mm   

 

Target should be very light. 

Momentum 

)/11(
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n
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
  

For 2P  to be maximum, (1/n) must be minimum or n must be 

maximum. 

i.e.  
1

2

m

m
n  12 mm   

 

Target should be massive. 

Kinetic energy 

nn

nK
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4
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  

For 2K  to be maximum 2)1( n  must be minimum. 

i.e.  
1

2101
m

m
nn   12 mm   

 

Target and projectile should 
be of equal mass. 

 

Perfectly Elastic Oblique Collision 

Let two bodies moving as shown in figure. 

By law of conservation of momentum 

 

 

 

 

 

 
 

Along x-axis,  coscos 22112211 vmvmumum     ...(i) 

Along y-axis,  sinsin0 2211 vmvm            ...(ii) 

Before collision After collision 

m1 

u1 u2=0 
m2 m1 

v1 v2 
m2 

Fig. 6.31 

Before collision After collision 

m2 

m1 

u1 

 

v1 

v2 

u2  

m2 

m1 

Fig. 6.32 
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By law of conservation of kinetic energy  

2
22

2
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2
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2
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1
vmvmumum                     ...(iii) 

In case of oblique collision it becomes difficult to solve problem 

unless some experimental data is provided, as in these situations more 

unknown variables are involved than equations formed. 

Special condition : If 21 mm   and 02 u  substituting these 

values in equation (i), (ii) and (iii) we get 

 coscos 211 vvu                        ...(iv) 

 sinsin0 21 vv              ...(v) 

and 2
2

2
1

2
1 vvu   …(vi) 

Squaring (iv) and (v) and adding we get  

)cos(2 21
2
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2
1

2
1   vvvvu             …(vii) 

Using (vi) and (vii) we get 0)cos(   

  2/   

i.e. after perfectly elastic oblique collision of two bodies of equal masses (if 

the second body is at rest), the scattering angle    would be o90 . 

Head on Inelastic Collision 

(1) Velocity after collision : Let two bodies A and B collide 
inelastically and coefficient of restitution is e. 

Where  

 
approachof   velocityRelative

separationof   velocityRelative
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 )( 2112 uuevv    

  )( 2112 uuevv     …(i) 

From the law of conservation of linear momentum 

 22112211 vmvmumum    …(ii) 

By solving (i) and (ii) we get 
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By substituting e = 1, we get the value of 1v  and 2v  for perfectly 

elastic head on collision. 

(2) Ratio of velocities after inelastic collision : A sphere of mass m 
moving with velocity u hits inelastically with another stationary sphere of 
same mass. 
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      euvv  12     …(i) 

By conservation of momentum : 

Momentum before collision = Momentum after collision 

21 mvmvmu   

 uvv  21     …(ii) 

Solving equation (i) and (ii) we get )1(
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(3) Loss in kinetic energy  

 Loss in K.E. (K) = Total initial kinetic energy  

       – Total final kinetic energy 

= 
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Substituting the value of 1v  and 2v  from the above expressions  

Loss (K) = 2
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By substituting e = 1 we get K = 0 i.e. for perfectly elastic collision, 

loss of kinetic energy will be zero or kinetic energy remains same before 

and after the collision. 

Rebounding of Ball After Collision With Ground 

If a ball is dropped from a height h on a horizontal floor, then it 
strikes with the floor with a speed. 

 00 2ghv    [From ]222 ghuv   

and it rebounds from the floor with a speed 

 

 

 

 

 

 

 01 vev  02ghe      











collision  beforevelocity

collisionafter  velocity
 Ase  

(1) First height of rebound : 0
2
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g

v
h   

  h
1

 = e2h
0

  

(2) Height of the ball after n th rebound : Obviously, the velocity of 
ball after nth rebound will be 

Before collision After collision 

m 

u1 = u u2 = 0 
m 

v1 v2 
m m 

Fig. 6.33 

v0 v1 v2 

h0 

h1 h2 

t0 t1 t2 

Fig. 6.34 
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   0vev n
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Therefore the height after nth rebound will be  
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(3) Total distance travelled by the ball before it stops bouncing 
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(4) Total time taken  by the ball to stop bouncing 
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Perfectly Inelastic Collision 

In such types of collisions, the bodies move independently before 

collision but after collision as a one single body. 

(1) When the colliding bodies are moving in the same direction   

By the law of conservation of momentum  

comb212211 )( vmmumum   
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Loss in kinetic energy  
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[By substituting the value of v
comb

] 

(2) When the colliding bodies are moving in the opposite direction  

By the law of conservation of momentum 

comb212211 )()( vmmumum    

(Taking left to right as positive) 
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when 2211 umum   then 0comb v  (positive)  

i.e. the combined body will move along the direction of motion of 

mass 1m . 

when 2211 umum   then 0comb v  (negative)  

i.e. the combined body will move in a direction opposite to the 

motion of mass 1m . 

(3) Loss in kinetic energy  

K = Initial kinetic energy – Final kinetic energy 
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Collision Between Bullet and Vertically 

Suspended Block 

A bullet of mass m is fired horizontally with velocity u in block of 
mass M suspended by vertical thread. 

After the collision bullet gets embedded in block. Let the combined 

system raised upto height h and the string makes an angle  with the 

vertical.  

(1) Velocity of system 

Let v be the velocity of the system (block + bullet) just after the 

collision. 

 

 

 

 

 

 

Momentum
bullet

 + Momentum
block

 = Momentum
bullet and block system

 

vMmmu )(0   
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)( Mm
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v


     …(i) 

(2) Velocity of bullet : Due to energy which remains in the bullet-
block system, just after the collision, the system (bullet + block) rises upto 
height h. 

By the conservation of mechanical energy 

ghMmvMm )()(
2

1 2    ghv 2  

Before collision After collision 

m1 

u1 u2 
m2 m2 m1 

vcomb 

Fig. 6.35 

Before collision 

m1 

u1 
m2 

u2 

Fig. 3.36 

 L 
L – h 

h m u 
M 

M 

Fig. 3.37 
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Now substituting this value in the equation (i) we get 
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(3) Loss in kinetic energy : We know that the formula for loss of 

kinetic energy in perfectly inelastic collision 
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[As uu 1 , 02 u , mm 1  and Mm 2 ] 

(4) Angle of string from the vertical  

From the expression of velocity of bullet 
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 The area under the force-displacement graph is equal to the work 

done. 

 Work done by gravitation or electric force does not depend on the 

path followed. It depends on the initial and final positions of the body. 

Such forces are called conservative. When a body returns to the starting 

point under the action of conservative force, the net work done is zero 

that is 0 dW . 

 Work done against friction depends on the path followed. Viscosity 

and friction are not conservative forces. For non conservative forces, the 

work done on a closed path is not zero. That is 0 dW . 

 Work done is path independent only for a conservative field. 

 Work done depends on the frame of reference. 

 Work done by a centripetal force is always zero.  

 Energy is a promise of work to be done in future. It is the stored 

ability to do work. 

 Energy of a body is equal to the work done by the body and it has 

nothing to do with the time taken to perform the work. On the other 
hand, the power of the body depends on the time in which the work is 

done.  

 When work is done on a body, its kinetic or potential energy 

increases.  

 When the work is done by the body, its potential or kinetic energy 

decreases. 

 According to the work energy theorem, the work done is equal to 

the change in energy. That is EW  . 

 Work energy theorem is particularly useful in calculation of 

minimum stopping force or minimum stopping distance. If a body is 
brought to a halt, the work done to do so is equal to the kinetic energy 
lost. 

 Potential energy of a system increases when a conservative force 

does work on it. 

 The kinetic energy of a body is always positive. 

 When the momentum of a body increases by a factor n, then its 
kinetic energy is increased by factor n2. 

 If the speed of a vehicle is made n times, then its stopping distance 

becomes n2 times. 

 The total energy (including mass energy) of the universe remains 

constant. 

 One form of energy can be changed into other form according to 
the law of conservation of energy. That is amount of energy lost of one 
form should be equal to energy or energies produced of other forms. 

 Kinetic energy can change into potential energy and vice versa. 

When a body falls, potential energy is converted into kinetic energy. 

 Pendulum oscillates due to conversion of kinetic energy into 

potential energy and vice versa. Same is true for the oscillations of mass 
attached to the spring. 

 Conservation laws can be used to describe the behaviour of a 

mechanical system even when the exact nature of the forces involved is 
not known. 

 Although the exact nature of the nuclear forces is not known, yet 
we can solve problems regarding the nuclear forces with the help of the 

conservation laws. 

 Violation of the laws of conservation indicates that the event cannot 
take place. 

 The gravitational potential energy of a mass m at a height h above 

the surface of the earth (radius R) is given by
Rh

mgh
U

/1 
 . When h << 

R, we find U=mgh. 

 Electrostatic energy in capacitor - 
2

2

1
CVU  , where C is 

capacitance, V = potential difference between the plates. 

 Electric potential energy of a test charge q
0

 at a place where electric 

potential is V, is given by : U
P

=q
0

V. 

 Electric potential energy between two charges (q
1

 and q
2

) separated 

by a distance r is given by 
r

qq
U 21

04

1


 . Here 0  is permittivity of 

vacuum and 
229

0 1094/1  CNm . 

 Magnetic energy stored in an inductor – 

2

2

1
LIU  , where L = inductance, I = current. 
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 Energy gained by a body of mass m, specific heat C, when its 

temperature changes by   is given by :  mCQ .  

 The Potential energy associated with a spring of constant k when 

extended or compressed by distance x is given by 
2

2

1
kxU  . 

 Kinetic energy of a particle executing SHM is given by : 

)(
2

1 222 yamK   where m = mass,  = angular frequency, a= 

amplitude, y = displacement. 

 Potential energy of a particle executing SHM is given by : 

22

2

1
ymU  . 

 Total energy of a particle executing SHM is given by : 

22

2

1
amUKE  . 

 Energy density associated with a wave 
22

2

1
a  where 

 =density of medium,  = angular frequency, a = amplitude of the of 

the wave. 

 Energy associated with a photon : 

 /hchE  , where h = planck’s constant,  = frequency of the 

light wave, c = velocity of light,  = wave length. 

 Mass and energy are interconvertible. That is mass can be 

converted into energy and energy can be converted into mass. 

 A mass m (in kg) is equivalent to energy (in J) which is equal to 

mc2 where c = speed of light. 

 A stout spring has a large value of force constant, while for a 

delicate spring, the value of spring constant is low. 

 The term energy is different from power. Whereas energy refers to 

the capacity to perform the work, power determines the rate of 
performing the work. Thus, in determining power, time taken to perform 
the work is significant but it is of no importance for measuring energy 
of a body. 

 Collision is the phenomenon in which two bodies exert mutual 

force on each other. 

 The collision generally occurs for very small interval of time. 

 Physical contact between the colliding bodies is not essential for the 
collision. 

 The mutual forces between the colliding bodies are action and 
reaction pair. In accordance with the Newton’s third law of motion, they 
are equal and opposite to each other. 

 The collision is said to be elastic when the kinetic energy is 

conserved. 

 In the elastic collisions the forces involved are conservative. 

 In the elastic collisions, the kinetic or mechanical energy is not 
converted into any other form of energy. 

 Elastic collisions produce no sound or heat. 

 There is no difference between the elastic and perfectly elastic 
collisions. 

 In the elastic collisions, the relative velocity before collision is equal 

to the relative velocity after the collision. That is 1221 vvuu


  

where 1u


 and 2u


 are initial velocities and 1v


 and 2v


 are the velocities 

of the colliding bodies after the collision. This is called Newton's law of 
impact. 

 The collision is said to be inelastic when the kinetic energy is not 
conserved. 

 In the perfectly inelastic collision, the colliding bodies stick 
together. That is the relative velocity of the bodies after the collision is 
zero. 

 In an elastic collision of two equal masses, their kinetic energies are 
exchanged. 

 If a body of mass m moving with velocity v, collides elastically with 
a rigid wall, then the change in the momentum of the body is 2mv. 

 
21

12

uu

vv
e 






  is called coefficient of restitution. Its value is 1 for 

elastic collisions. It is less than 1 for inelastic collisions and zero for 
perfectly inelastic collision. 

 During collision, velocity of the colliding bodies changes.  

 Linear momentum is conserved in all types of collisions. 

 Perfectly elastic collision is a rare physical phenomenon. 

 Collisions between two ivory or steel or glass balls are nearly 
elastic.  

 The force of interaction in an inelastic collision is non-conservative 
in nature. 

 In inelastic collision, the kinetic energy is converted into heat 
energy, sound energy, light energy etc. 

 In head on collisions, the colliding bodies move along the same 

straight line before and after collision. 

 Head on collisions are also called one dimensional collisions. 

 In the oblique collisions the colliding bodies move at certain angles 
before and/or after the collisions.  

 The oblique collisions are two dimensional collisions.  

 When a heavy body collides head-on elastically with a lighter body, 
then the lighter body begins to move with a velocity nearly  double the 
velocity of the heavier body.   

 When a light body collides with a heavy body, the lighter body 
returns almost with the same speed.  

 If a light and a heavy body have equal momenta, then lighter body 
has greater kinetic energy. 

 Suppose, a body is dropped form a height h
0

 and it strikes the 
ground with velocity v

0

. After the (inelastic) collision let it rise to a 
height h

1

. If v
1

 be the velocity with which the body rebounds, then  
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 If after n collisions with the ground, the velocity is v
n

 and the height 
to which it rises be h

n

, then  
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 cos. vFvFP 


 where v


 is the velocity of the body and 

  is the angle between F


 and v


. 
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 Area under the vF   graph is equal to the power dissipated. 

 Power dissipated by a conservative force (gravitation, electric force 

etc.) does not depend on the path followed. It depends on the initial and 

final positions of the body. That is 0 dP . 

 Power dissipated against friction depends on the path followed. 

That is 0 dP . 

 Power is also measured in horse power (hp). It is the fps unit of 

power. 1 hp = 746 W. 

 An engine pulls a train of mass m with constant velocity. If the rails 
are on a plane surface and there is no friction, the power dissipated by 
the engine is zero. 

 In the above case if the coefficient of friction for the rail is  , the 

power of the engine is mgvP  . 

 In the above case if the engine pulls on a smooth track on an 

inclined plane (inclination  ), then its power vmgP )sin(  . 

 In the above case if the engine pulls upwards on a rough inclined 

plane having coefficient of friction  , then power of the engine is  

vmgP )sincos(   . 

 If the engine pulls down on the inclined plane then power of the 
engine is 

vmgP )sincos(   . 

 


