
Chapter 4

UNIPLANAR MOTION REFERRED
TO POLAR COORDINATES
CENTRAL FORCES

48. In the present chapter we shall consider cases of motion which
are most readily solved by the use of polar coordinates. We must
first obtain the velocities and accelerations of a moving point along
and perpendicular to the radius vector drawn from a fixed pole.

49. Velocities and accelerations of a particle along and perpendicu-
lar to the radius vector to it from a fixed origin O.

Let P be the position of the particle at time t, and Q its position at
time t +4t.

O X

P
M

Q

q

Let XOP = θ , XOQ = θ +4θ , OP = r, OQ = r +4r, where OX
is a fixed line.
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Draw QM perpendicular to OP.
Let u,v be the velocities of the moving point along and perpendic-

ular to OP. Then

u = lim
4t=0




Distance of particle measured along the line OP
at time (t +4t)− the similar distance at time t

4t




= lim
4t=0

OM−OP
4t

= lim
4t=0

(r +4r)cos4θ − r
4t

= lim
4t=0

(r +4r).1− r
4t

,

[small quantities above the first order being neglected.]

=
dr
dt

...(1)

Also

v = lim
4t=0




Distance of particle measured perpendicular to the
line OP at time (t +4t)− the similar distance at time t

4t




= lim
4t=0

OM−0
4t

= lim
4t=0

(r +4r)sin4θ
4t

= lim
4t=0

(r +4r).4θ
4t

,on neglecting small quantities of the second order
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= r
dθ
dt

, in the limit ...(2)

The velocities along and perpendicular to OP being u and v, the
velocities along and perpendicular to OQ are u+4u and v+4v.

Let the perpendicular to OQ at Q be produced to meet OP at L.

Q

P
L

O X
q

n

nD+n

uu D+

u

Then the acceleration of the moving point along OP

= lim
4t=0




Its velocity along OP at time (t +4t)
− its similar velocity at time t

4t




= lim
4t=0

[
(u+4u)cosθ − (v+4v)sin4θ −u

4t

]

= lim
4t=0

[
(u+4u).1− (v+4v).4θ −u

4t

]
,

on neglecting squares and higher powers of 4θ ,

= lim
4t=0

4u− v4θ
4θ

=
du
dt
− v

dθ
dt

, in the limit,

=
d2r
dt2 −r

(
dθ
dt

)2

, by (1) and (2)

...(3)



66 Chapter 4: Uniplanar Motion Referred to Polar Coordinates Central Forces

Also the acceleration of the moving point perpendicular to OP in the
direction of θ increasing

= lim
4t=0




Its velocity perpendicular to OP at time (t +4t)
− its similar velocity at time t

4t




= lim
4t=0

[
(u+4u)sin4θ +(v+4v)cos4θ − v

4t

]

= lim
4t=0

[
(u+4u).4θ +(v+4v).1− v

4t

]
,

on neglecting squares and higher powers of 4θ ,

= u
dθ
dt

+
dv
dt

, in the limit, =
dr
dt

dθ
dt

+
d
dt

(
r
dθ
dt

)
,by (1) and (2)

= 2
dr
dt

dθ
dt

+ r
d2θ
dt2 =

1
r

d
dt

[
r2dθ

dt

]
...(4)

COR. If r = a, a constant quantity, so that the particle is describing
a circle of centre O and radius a, the quantity (3) = −aθ 2 and (4)
= a

..
θ , so that the accelerations of P along the tangent PQ and the

radius PO are a
..
θ and a

..
θ 2.

50. The results of the previous article may also be obtained by re-
solving the velocities and accelerations along the axes of x and y in
the directions of the radius vector and perpendicular to it.

For since x = r cosθ and y = r sinθ ,

∴ dx
dt

=
dr
dt

cosθ − r sinθ
dθ
dt

and
dy
dt

=
dr
dt

sinθ + r cosθ
dθ
dt





...(1)

Also
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d2x
dt2 =

d2r
dt2 cosθ −2

dr
dt

dθ
dt

sinθ − r cosθ
(

dθ
dt

)2

− r sinθ
d2θ
dt2

d2y
dt2 =

d2r
dt2 sinθ +2

dr
dt

dθ
dt

cosθ − r sinθ
(

dθ
dt

)2

+ r cosθ
d2θ
dt2





...(2)
The component velocity along OP

=
dx
dt

cosθ +
dy
dt

sinθ =
dθ
dt

, by (1),

and perpendicular to OP in the direction of θ increasing it

=
dy
dt

cosθ − dx
dt

sinθ = r
dθ
dt

, by (1).

The component acceleration along OP

=
d2x
dt2 cosθ +

d2y
dt2 sinθ =

d2r
dt2 − r

(
dθ
dt

)2

, by (2).

and perpendicular to OP it

=
d2y
dt2 cosθ − d2x

dt2 sinθ = 2
dr
dt

dθ
dt

+ r
d2θ
dt2 by (2),

=
1
r

d
dt

[
r2dθ

dt

]
.

51. By the use of Arts. 4 and 49 we can obtain the accelerations of a
moving point referred to rectangular axes Ox and Oy, which are not
fixed in space, but which revolve in any manner about the origin O
in their own plane.

Let OA be a line fixed in space, and, at time t, let θ be the incli-
nation of Ox to OA. Let P be the moving point; draw PM and PN
perpendicular to Ox and Oy.
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A
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y

y
y
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x
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By Art. 49 the velocities of the point M are
dx
dt

along OM and x
dθ
dt

along MP, and the velocities of N are
dy
dt

along ON and y
dθ
dt

along
PN produced.

[
for

d
dt

(∠AON) =
d
dt

(∠AOM) =
dθ
dt

.

]

Hence the velocity of P parallel to Ox

= the velocity of N parallel to Ox + the velocity of P relative to N.
= vel. of N parallel to Ox + the vel. of M along OM

=−y
dθ
dt

+
dx
dt

...(1)

So the velocity of P parallel to Oy

= vel. of M parallel to Oy + the vel. of P relative to M
= vel. of M parallel to Oy + the vel. of N along to ON

= x
dθ
dt

+
dy
dt

...(2)

Again, the accelerations of M are, by Art. 49,
d2x
dt2 −x

(
dθ
dt

)2

along
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OM, and
1
x

d
dt

(
x2dθ

dt

)
along MP, and the accelerations of N are

d2y
dt2 − y

(
dθ
dt

)2

along ON, and
1
y

d
dt

(
y2dθ

dt

)
along PN, produced.

Hence the acceleration of P parallel to Ox

= acceleration of N parallel to Ox + acceleration of P relative to N

= acceleration of N parallel to Ox + acceleration of M along OM

=−1
y

d
dt

(
y2dθ

dt

)
+

d2x
dt2 − x

(
dθ
dt

)2

...(3)

Also the acceleration of P parallel to Oy

= acceleration of M parallel to Oy + acceleration of P relative to M

= acceleration of M parallel to Ox + acceleration of N along ON

=
1
x

d
dt

(
x2dθ

dt

)
+

d2y
dt2 − y

(
dθ
dt

)2

...(4)

COR. In the particular case when the axes are revolving with a con-

stant angular velocity ω , so that
dθ
dt

= ω , these component velocities
become

dx
dt
− yω along Ox, and

dy
dt

+ xω along Oy;

also the component accelerations are

d2x
dt2 − xω2−2ω

dy
dt

along Ox, and
d2y
dt2 − yω2 +2ω

dx
dt

along Oy.

52. EX. 1. Show that the path of a point P which possesses two con-
stant velocities u and v, the first of which is in a fixed direction and



70 Chapter 4: Uniplanar Motion Referred to Polar Coordinates Central Forces

the second of which is perpendicular to the radius OP drawn from a
fixed point O, is a conic whose focus is O and whose eccentricity is
u
v
.

With the first figure of Art. 49, let u be the constant velocity along
OX and v the constant velocity perpendicular to OP.

Then we have
dr
dt

= ucosθ , and
rdθ
dt

= v−usinθ . ∴ 1
r

dr
dθ

=
ucosθ

v−usinθ
.

∴ logr =− log(v−usinθ)+ const.,

i.e. r(v−usinθ) = const. = lv,

if the path cut the axis of x at a distance l. Therefore the path is

r =
1

1− u
v

sinθ
, i.e. a conic section whose eccentricity is

u
v
.

EX. 2. A smooth straight thin tube revolves with uniform angular
velocity ω in a vertical plane about one extremity which is fixed; if
at zero time the tube be horizontal, and a particle inside it be at a
distance a from the fixed end, and be moving with velocity V along
the tube, show that its distance at time t is

acosh(ωt)+
(

V
ω
− g

2ω2

)
sinh(ωt)+

g
2ω2 sinωt.

At any time t let the tube have revolved round its fixed end through
an angle ωt from the horizontal line OX in an upward direction; let
P, where OP = r, be the position of the particle then.

By Art. 49,
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d2r
dt2 − rω2 = acceleration of P in the direction OP

=−gsinωt, since the tube is smooth.

The solution of this equation is

r = Aeωt +Be−ωt +
1

D2−ω2(−gsinωt)

= Lcosh(ωt)+M sinh(ωt)+
g

2ω2 sinωt,

where A and B, and so L and M, are arbitrary constants.
The initial conditions are that r = a and

.
r = V when t = 0.

∴ a = L, and V = Mω +
g

2ω
.

∴ r = acoshωt +
[

V
ω
− g

2ω2

]
sinh(ωt)+

g
2ω2 sinωt.

If R be the normal reaction of the tube, then

R
m
−gcosωt = the acceleration perpendicular to OP

=
1
r

d
dt

(r2ω), by Art. 49,

= 2
.
r ω

= 2aω2 sinh(ωt)+(2V ω−g)cosh(ωt)+gcosωt.

EXAMPLES

1. A vessel steams at a constant speed v along a straight line whilst
another vessel, steaming at a constant speed V , keeps the first al-
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ways exactly abeam. Show that the path of either vessel relatively
to the other is a conic section of eccentricity

v
V

.

2. A boat, which is rowed with constant velocity u, starts from a point
A on the bank of a river which flows with a constant velocity nu; it
points always towards a point B on the other bank exactly opposite
to A; find the equation to the path of the boat.
If n be unity, show that the path is a parabola whose focus is B.

3. An insect crawls at a constant rate u along the spoke of a cartwheel,
of radius a, the cart moving with velocity v. Find the acceleration
along and perpendicular to the spoke.

4. The velocities of a particle along and perpendicular to the radius
from a fixed origin are λ r and µθ ; find the path and show that the
accelerations, along and perpendicular to the radius vector, are

λ 2r− µ2θ 2

r
and µθ

[
λ +

µ
r

]
.

5. A point starts from the origin in the direction of the initial line with

velocity
f
ω

and moves with constant angular velocity ω about the
origin and with constant negative radial acceleration − f . Show
that the rate of growth of the radial velocity is never positive, but
tends to the limit zero, and prove that the equation of the path is

ω2r = f (1− e−θ).

6. A point P describes a curve with constant velocity and its angular
velocity about a given fixed point O varies inversely as the distance
from O; show that the curve is an equiangular spiral whose pole is
O, and that the acceleration of the point is along the normal at P
and varies inversely as OP.
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7. A point P describes an equiangular spiral with constant angular
velocity about the pole; show that its acceleration varies as OP and
is in a direction making with the tangent at P the same constant
angle that OP makes.

8. A point moves in a given straight line on a plane with constant
velocity V , and the plane moves with constant angular velocity ω
about an axis perpendicular to itself through a given point O of
the plane. If the distance of O from the given straight line be a,
show that the path of the point in space is given by the equation
V θ
ω

=
√

r2−a2 +
V
ω

cos−1 a
r
, referred to O as pole.

[If θ be measured from the line to which the given line is perpen-
dicular at zero time, then r2 = a2 +V 2.t2 and θ = ωt + cos−1 a

r
.]

9. A straight smooth tube revolves with angular velocity ω in a hor-
izontal plane about one extremity which is fixed; if at zero time a
particle inside it be at a distance a from the fixed end and moving
with velocity V along the tube, show that its distance at time t is

acoshωt +
V
ω

sinhωt.

10. A thin straight smooth tube is made to revolve upwards with a
constant angular velocity ω in a vertical plane about one extremity
O; when it is in a horizontal position, a particle is at rest in it at a
distance a from the fixed end O; if ω be very small, show that it

will reach O in a time
(

6a
gω

)1/3

nearly.

11. A particle is at rest on a smooth horizontal plane which com-
mences to turn about a straight line lying in itself with constant
angular velocity ω downwards; if a be the distance of the particle
from the axis of rotation at zero time, show that the body will leave
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the plane at time t given by the equation

asinhωt +
g

2ω2 coshωt =
g

ω2 cosωt.

12. A particle falls from rest within a straight smooth tube which is
revolving with uniform angular velocity ω about a point O in its
length, being acted on by a force equal to mµ(distance) towards
O. Show that the equation to its path in space is

r = acosh

[√
ω2−µ

ω2 θ

]

or r = cos

{√
µ−ω2

ω2 θ

}
, according as µ ≶ ω2.

If µ = ω2, show that the path is a circle.
13. A particle is placed at rest in a rough tube at a distance a from one

end, and the tube starts rotating with a uniform angular velocity ω
about this end. Show that the distance of the particle at time t is

ae−ωt. tanε[cosh(ωt.secε)+ sinε sinh(ωt secε)],

where tanε is the coefficient of friction.
14. One end A of a rod is made to revolve with uniform angular ve-

locity ω in the circumference of a circle of radius a, whilst the
rod itself revolves in the opposite direction about that end with the
same angular velocity. Initially the rod coincides with a diameter
and a smooth ring capable of sliding freely along the rod is placed
at the centre of the circle. Show that the distance of the ring from
A at time t is

a
5
[4cosh(ωt)+ cos2ωt].
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[If O be the centre of the circle and P, where AP = r, is the position
of the ring at time t when both OA and AP have revolved through
an angle θ , (= ωt), in opposite directions, the acceleration of A is
aω2 along OA and the acceleration of P relative to A is

..
r−r

.
θ 2, by

Art. 49, i.e.
..
r−rω2. Hence the total acceleration of P along AP is

..
r−rω2 +aω2 cos2ωt, and this is zero since the ring is smooth.]

15. PQ is a tangent at Q to a circle of radius a; PQ is equal to ρ and
makes an angle θ with a fixed tangent to the circle; show that the
accelerations of P along and perpendicular to QP are respectively

..
ρ−ρ

.
θ 2 +a

..
θ , and

1
ρ

d
dt

(ρ2 .
θ)+a

.
θ 2.

[The accelerations of Q along and perpendicular to QP are a
..
θ and

a
.

θ 2; the accelerations of P relative to Q in these same directions

are
..
ρ−ρ

.
θ 2 and

1
ρ

d
dt

(ρ2 .
θ).]

16. Two particles, of masses m and m′, connected by an elastic string
of natural length a, are placed in a smooth tube of small bore which
is made to rotate about a fixed point in its length with angular
velocity ω. The coefficient of elasticity of the string is 2mm′aω2÷
(m+m′). Show that, if the particles are initially just at rest relative
to the tube and the string is just taut, their distance apart at time t
is

2a−acosωt.

17. A weight can slide along the spoke of a horizontal wheel, whose
mass may be neglected to the centre of the wheel by means of a
light spring ; when the wheel is fixed, the period of oscillation of
the weight is 2π/n. If the wheel is started to rotate freely with



76 Chapter 4: Uniplanar Motion Referred to Polar Coordinates Central Forces

angular velocity 6n
√

11/55, prove that the greatest extension of
the spring is one-fifth of its original length.

18. A uniform chain AB is placed in a straight tube OAB which re-
volves in a horizontal plane, about the fixed point O, with uniform
angular velocity ω. Show that the motion of the middle point of
the chain is the same as would be the motion of a particle placed at
this middle point, and that the tension of the chain at any point P

is
1
2

mω2.AP.PB, where m is the mass of a unit length of the chain.

53. A particle moves in a plane with an acceleration which is always
directed to a fixed point O in the plane; to obtain the differential
equation of its path.

Referred to O as origin and a fixed straight line OX through as
initial line, let the polar coordinates of P be (r,θ). If P be the accel-
eration of the particle directed towards O, we have, by Art. 49,

d2r
dt2 − r

(
dθ
dt

)2

=−P. ...(1)

Also, since there is no acceleration perpendicular to OP, we have,
by the same article,

1
r

d
dt

(
r2dθ

dt

)
= 0 ...(2)

(2) gives r2dθ
dt

= const. = h (say). ...(3)

∴ dθ
dt

=
h
r2 = hu2, if u be equal to

1
r
.
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Q P
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X

q

Then
dr
dt

=
d
dt

(
1
u

)
=− 1

u2
du
dt

=− 1
u2

du
dθ

.
dθ
dt

=−h
du
dθ

,

and
d2r
dt2 =

d
dt

(
−h

du
dθ

)
=−h

d
dθ

(
du
dθ

)
dθ
dt

=−h2u2 d2u
dθ 2 .

Hence equation (1) becomes

−h2u2 d2u
dθ 2 −

1
u
.h2u4 =−P, i.e.

d2u
dθ 2 +u =

P
h2u2 ...(4).

Again, if p be the perpendicular from the origin O the tangent at
P, we have

1
p2 =

1
r2 +

1
r4

(
dr
dθ

)2

= u2 +
(

du
dθ

)2

.

Hence, differentiating with respect to θ , we have

− 2
p3

d p
dθ

= 2u
du
dθ

+2
du
dθ

d2u
dθ 2 .

∴ − 1
p3

d p
dr

=
[

u+
d2u
dθ 2

]
du
dr

=
(

u+
du2

dθ 2

)(
− 1

r2

)
.

∴ 1
u2p3

d p
dr

= u+
d2u
dθ 2
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Hence (4) gives P

P =
h2

p3
d p
dr

...(5).

Equation (4) gives the path in terms of r and θ , and (5) gives the
(p,r) equation of the path.

54. In every central orbit, the sectorial area traced out by the radius
vector to the centre of force increases uniformly per unit of time,
and the linear velocity varies inversely as the perpendicular from
the centre upon the tangent to the path.

Let Q be the position of the moving particle at time t +4t, so that
∠POQ =4θ and OQ = r +4r.

The area POQ =
1
2

OP.OQ.sinPOQ =
1
2

r(r +4r)sin4θ .

Hence the rate of description of sectorial area

= lim
4t=0

1
2r(r +4r)sin4θ

4t

= lim
4t=0

[
1
2

r(r +4r).
sin4θ
4θ

.
4θ
4t

]

=
1
2

r2dθ
dt

, in the limit,

= the constant
1
2

h by equation (3) of the last article.

The constant h is thus equal to twice the sectorial area described
per unit of time.
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Again, the sectorial area POQ = in the limit
1
2
.PQ× perpendicular

from O on PQ, and

the rate of its description = lim
4t=0

1
2
.
4s
4t
× Perpendicular from O on PQ.

Now, in the limit when Q is very close to P,
4s
4t

= the velocity v,

and the perpendicular from O on PQ
= the perpendicular from O on the tangent at P = p.

∴ h = v.p, i.e. v =
h
p
.

Hence, when a particle moves under a force to a fixed centre, its
velocity at any point P of its path varies inversely as the perpendic-
ular from the centre upon the tangent to the path at P.

Since v =
h
p
, and in any curve

1
p2 =

1
r2 +

1
r4

(
dr
dθ

)2

= u2 +
(

du
dθ

)2

,

∴ v2 = h2

[
u2 +

(
du
dθ

)2
]

.

55. A particle moves in an ellipse under a force which is always
directed towards its focus; to find the law of force, and the velocity
at any point of its path.

The equation to an ellipse referred to its focus is

r =
l

1+ ecosθ
, i.e. u =

1
l
+

e
l

cosθ ...(1)

∴ d2u
dθ 2 =−e

l
cosθ .

Hence equation (4) of Art. 53 gives
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P = h2u2
[

d2u
dθ 2 +u

]
=

h2

l
u2 ...(2).

The acceleration therefore varies inversely as the square of the dis-
tance of the moving particle from the focus and, if it be

µ
(distance)2 ,

then (2) gives

h =
√

µl =
√

µ× semi-latus-rectum ...(3).

Also

v2 = h2

[
u2 +

(
du
dθ

)2
]

= h2

[(
1
l
+

e
l

cosθ
)2

+
(e

l
sinθ

)2
]

=
µ
l
[1+2ecosθ + e2] = µ

[
2

1+ ecosθ
l

− 1− e2

l

]

= µ
[

2
r
− 1

a

]
, by (1) ...(4),

where 2a is the major axis of the ellipse.
It follows, since (4) depends only on the distance r, that the veloc-

ity at any point of the path depends only on the distance from the
focus and that it is independent of the direction of the motion.

It also follows that the velocity V of projection from any point

whose distance from the focus is ro, must be less than
2µ
r0

, and that

the a of the corresponding ellipse is given by

V 2 = µ
(

2
r0
− 1

a

)
.

Periodic time. Since h is equal to twice the area described in a unit
time, it follows, that if T be the time the particle takes to describe
the whole arc of the ellipse, then
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1
2

h×T = Area of the ellipse = πab.

Also h =
√

µ× Semi-latus-rectum =

√
µ

b2

a
.

Hence T =
2πab

h
=

2π√µ
a3/2.

56. EX. Find the law of force towards the pole under which the curve
rn = an cosnθ can be described.

Here unan cosnθ = 1.

Hence, taking the logarithmic differential, we obtain
du
dθ

=
u tannθ .

∴ d2u
dθ 2 =

du
dθ

tannθ + nu sec2 nθ = u[tan2 nθ +nsec2 nθ ].

∴ d2u
dθ 2 +u = u(n+1)sec2 nθ = (n+1)a2nu2n+1.

Hence equation (4) of Art. 53 gives P = (n+1)h2a2nu2n+3,

i.e. the curve can be described under a force to the pole varying
inversely as the (2n+3)rd power of the distance.

Particular Cases I. Let n =−1
2

, so that the equation to the curve is

r =
a

cos2 θ
2

=
2a

1+ cosθ

i.e. the curve is a parabola referred to its focus as pole.

Here P ∝
1
r2 .

II. Let n =
1
2

, so that the equation is r =
a
2
(1 + cosθ), which is a

cardioid.
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Here P ∝
1
r4 .

III. Let n = 1, so that the equation to the curve is r = acosθ , i.e. a
circle with a point on its circumference as pole.

Here P ∝
1
r5 .

IV. Let n = 2, so that the curve is r2 = a2 cos2θ , i.e. a lemniscate

of Bernouilli, and P ∝
1
r7 .

V. Let n = −2, so that the curve is the rectangular hyperbola a2 =
r2 cos2θ , the centre being pole, and P ∝−r, since in this case (n+1)
is negative. The force is therefore repulsive from the centre.

EXAMPLES

A particle describes the following curves under a force P to the
pole, show that the force is as stated:

1. Equiangular spiral; P ∝
1
r3 .

2. Lemniscate of Bernouilli; P ∝
1
r7 .

3. Circle, pole on its circumference; P ∝
1
r5 .

4.
a
r

= enθ ,nθ ,coshnθ , or sinnθ ; P ∝
1
r3 .

5. rn cosnθ = an; P ∝ r2n−3

6. rn = Acosnθ +Bsinnθ ; P ∝
1

r2n+3 .

7. r = asinnθ ; P ∝
2n2a2

r5 − n−1
r3 .

8. au = tanh
(

θ√
2

)
or cosh

(
θ√
2

)
; P ∝

1
r5
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9. au =
coshθ −2
coshθ +1

or
coshθ +2
coshθ −1

; P ∝
1
r4

10. a2u2 =
cosh2θ −1
cosh2θ +2

or
cosh2θ +1
cosh2θ −2

; P ∝
1
r7

11. Find the law of force to an internal point under which a body will
describe a circle. Show that the hodograph of such motion is an
ellipse.
[Use formula (5) of Art. 53. The hodograph of the path of a moving
point P is obtained thus: From a fixed point O draw a straight line
OQ parallel to, and proportional to, the velocity of P; the locus of
the point Q, for the different positions of P, is the hodograph of
the path of P.]

12. A particle of unit mass describes an equiangular spiral, of angle α ,
under a force which is always in a direction perpendicular to the
straight line joining the particle to the pole of the spiral; show that
the force is µr2sec2 α−3, and that the rate of description of sectorial
area about the pole is

1
2

√
µ sinα.cos .α.rsec2 α .

13. In an orbit described under a force to a centre the velocity at any
point is inversely proportional to the distance of the point from the
centre of force; show that the path is an equiangular spiral.

14. The velocity at any point of a central orbit is
1
n

th of what it would
be for a circular orbit at the same distance; show that the central

force varies as
1

r2n2+1
and that the equation to the orbit is

rn2−1 = an2−1 cos{(n2−1)θ}.
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57. Apses. An apse is a point in a central orbit at which the radius
vector drawn from the centre of force to the moving particle has a
maximum or minimum value.

By the principles of the Differential Calculus u is a maximum or

a minimum if
du
dθ

is zero, and if the first differential coefficient of u
that does not vanish is of an even order.

If p be the perpendicular from the centre of force upon the tangent
to the path at any point whose distance is r from the origin, then

1
p2 = u2 +

(
du
dθ

)2

.

When
du
dθ

is zero,
1
p2 = u2 =

1
r2 , so that the perpendicular in the case

of the apse is equal to the radius vector. Hence at an apse the particle
is moving at right angles to the radius vector.

58. When the central acceleration is a single-valued function of the
distance (i.e. when the acceleration is a function of the distance only
and is always the same at the same distance), every apse-line divides
the orbit into two equal and similar portions and thus there can only
be two apse-distances.

Let ABC be a portion of the path having three consecutive apses
A,B, and C and let O be the centre of force.

Let V be the velocity of the particle at B. Then, if the velocity
of the particle were reversed at B, it would describe the path BPA.

For, as the acceleration depends on the distance from O only, the
velocity, by equations (1) and (3) of Art. 53, would depend only on
the distance from O and not on the direction of the motion.
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C

V

B

V

P

A
O

'P

Again the original particle starting from B and the reversed par-
ticle, starting from B with equal velocity V , must describe similar
paths. For the equations (1) and (3) of Art. 53, which do not depend
on the direction of motion, show that the value of r and θ at any
time t for the first particle (i.e. OP′ and ∠BOP′) are equal to the
same quantities at the same time t for the second particle (i.e. OP
and ∠BOP).

Hence the curves BP′C and BPA are exactly the same; either, by
being rotated about the line OB, would give the other. Hence, since
A and C are the points where the radius vector is perpendicular to
the tangent, we have OA = OC.

Similarly, if D were the next apse after C, we should have OB and
OD equal, and so on.

Thus there are only two different apse-distances.
The angle between any two consecutive apsidal distances is called

the apsidal angle.

59. When the central acceleration varies as some integral power of
the distance, say µun, it is easily seen analytically that there are at
most two apsidal distances.



86 Chapter 4: Uniplanar Motion Referred to Polar Coordinates Central Forces

For the equation of motion is

d2u
dθ 2 +u =

P
h2u2 =

µ
h2un−2.

∴ h2

2

[(
du
dθ

)2

+u2

]
=

µ
n−1

un−1 + Const.

The particle is at an apse when
du
dθ

= 0 then this equation gives

un−1− n−1
2

h2

µ
u2 +C = 0.

Whatever be the values of n or C this equation cannot have more
than two changes of sign, and hence, by Descartes’ Rule, it cannot
have more than two positive roots.

60. A particle moves with a central acceleration
µ

(distance) 3 ; to find

the path and to distinguish the cases.
The equation (4) of Art. 53 becomes

d2u
dθ 2 +u =

µ
h2u, i.e.

d2u
dθ 2 =

( µ
h2 −1

)
u ...(1).

Case I. Let h2 < µ, so that
µ
h2 −1 is positive and equal to n2, say.

The equation (1) is
d2u
dθ 2 = n2u, the general solution of which is, as

in Art. 29,

u = Aenθ +Be−nθ = Lcoshnθ +M sinhnθ ,

where A,B or L,M are arbitrary constants.
This is a spiral curve with an infinite number of convolutions about

the pole. In the particular case when A or B vanishes, it is an equian-
gular spiral.
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Case II. Let h2 = µ, so that the equation (1) becomes
d2u
dθ 2 = 0 ∴ u = Aθ +B = A(θ −α), where A and

α are arbitrary constants.
This represents a reciprocal spiral in general. In the particular case

when A is zero, it is a circle.

Case III. Let h2 > µ so that
µ
h2 −1 is negative and equal to−n2, say.

The equation (1) is therefore
d2u
dθ 2 = −n2u, the solution of which

is

u = Acos(nθ +B) = Acosn(θ −α),

where A and α are arbitrary constants.
The apse is given θ = α,u = A.

61. The equations (4) or (5) of Art. 53 will give the path when P is
given and also the initial conditions of projection.

EX. 1. A particle moves with a central acceleration which varies
inversely as the cube of the distance; if it be projected from an apse
at a distance a from the origin with a velocity which is

√
2 times the

velocity for a circle of radius a, show that the equation to its path is

r cos
θ√
2

= a.

Let the acceleration be µu3.

If V1 be the velocity in a circle of radius a with the same accelera-
tion, then

V 2
1
a

= normal acceleration =
µ
a3 . ∴ V 2

1 =
µ
a2 .

Hence, if V be the velocity of projection in the required path,
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V =
√

2V1 =
√

2µ
a

.

The differential equation of the path is, from equation (4) of Art.
53,

d2u
dθ 2 +u =

µu3

h2u2 =
µ
h2u

Hence, multiplying by
du
dθ

and integrating, we have

1
2

v2 =
1
2

h2

[(
du
dθ

)2

+u2

]
=

µ
2

u2 +C ...(1).

The initial conditions give that when u =
1
a
, then

du
dθ

= 0, and

v =
√

2µ
a

.

Hence (1) gives

1
2
.
2µ
a2 =

1
2

h2
[

1
a2

]
=

µ
2a2 +C ∴ h2 = 2µ and C =

µ
2a2

∴ from equation (1) we have
(

du
dθ

)2

+u2 =
u2

2
+

1
2a2 . ∴ du

dθ
=

√
1
2

(
1
a2 −u2

)
...(2).

∴ θ√
2

=
a du√

1−a2u2
= sin−1 au+ γ.

If θ be measured from the initial radius vector, then θ = 0 when

u =
1
a
, and therefore

γ =−sin−1(1) =−π
2
.

∴ au = sin
[

π
2

+
θ√
2

]
= cos

θ√
2
.
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Hence the path is the curve r cos
θ√
2

= a.

If we take the negative sign on the right hand side of (2), we obtain
the same result.

EX. 2. A particle, subject to a force producing an acceleration

µ
r +2a

r5 towards the origin, is projected from the point (a,0) with a

velocity equal to the velocity from infinity at an angle cot−1 2 with the
initial line. Show that the equation to the path is r = a(1 + 2sinθ),
and find the apsidal angle and distances.

The “velocity from infinity” means the velocity that would be ac-
quired by the particle in falling with the given acceleration from
infinity to the point under consideration. Hence if this velocity be V
we have, as in Art. 22,

1
2

V 2 =
∫ a

∞
−µ

[
x+2a

x5

]
dx = µ

[
1
3

1
x3 +

1
2

a
x4

]a

∞
= µ

[
1

3a3 +
1

2a3

]
,

so that V 2 =
5µ
3a3 ...(1).

The equation of motion of the particle is

d2u
dθ 2 +u =

µ
h2u2 [u4 +2au5] =

µ
h2 [u2 +2au3],

∴ 1
2

v2 =
h2

2

[
u2 +

(
du
dθ

)2
]

= µ
[

u3

3
+

1
2

au4
]
+C ...(2).

If p0 be the perpendicular from the origin upon the initial direction
of projection, we have p0 = sinα , where cotα = 2, i.e. p0 =

a√
5
.

Hence, initially, we have
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u2 +
(

du
dθ

)2

=
1
p2

0
=

5
a2 ...(3).

Hence (2) gives, initially, from (1) and (3)

5µ
6a3 =

h2

2
× 5

a2 = µ
[

1
3a3 +

1
2a3

]
+C, so that C = 0 and h2 =

µ
3a

From (2) we then have

µ
6a

[
u2 +

(
du
dθ

)2
]

= µ
[

u3

3
+

1
2

au4
]
,

i.e.
(

du
dθ

)2

= u2[2au+3a2u2−1] = u2[au+1][3au−1].

On putting u =
1
r

, this equation gives

(
dr
dθ

)2

= (a+ r)(3a− r), and hence θ =
∫ dr√

(a+ r)(3a− r)
.

Putting r = a+ y, we have θ =
∫ dy√

4a2− y2
= sin−1 y

2a
+ γ .

∴ sin(θ − γ) =
y

2a
=

r−a
2a

.

If we measure θ from the initial radius vector, then θ = 0 when
r = a, and hence γ = 0

Therefore the path is r = a(1+2sinθ).

Clearly
dr
dθ

= 0, i.e. we have an apse, when θ =
π
2
,
3π
2

,
5π
2

, etc.
Hence the apsidal angle is π and the apsidal distances are equal to

3a and a, and the apses are both on the positive directions of the axis
of y at distances 3a and a from the origin. The path is a traced from
its equation.
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EXAMPLES

1. A particle moves under a central repulsive force
{

=
mµ

( distance )3

}
,

and is projected from an apse at a distance a with velocity V . Show
that the equation to the path is r cos pθ = a, and that the angle θ
described in time t is

1
p

tan−1
[

pV
a

t
]
, where p2 =

µ +a2V 2

a2V 2 .

2. A particle moves with a central acceleration,
µ

( distance )5 , and is

projected from an apse at a distance a with a velocity equal to n
times that which would be acquired in falling from infinity; show
that the other apsidal distance is

a√
n2−1

.

If n = 1, and the particle be projected in any direction, show that
the path is a circle passing through the centre of force.

3. A particle, moving with a central acceleration
µ

( distance )3 is pro-

jected from an apse at a distance a with a velocity V ; show that the
path is

r cosh

[√
µ−a2V 2

aV
θ

]
= a, or r cos

[√
a2V 2−µ

aV
θ

]
= a,

according as V is ≶ the velocity from infinity.
4. A particle moving under a constant force from a centre is projected

in a direction perpendicular to the radius vector with the velocity
acquired in falling to the point of projection from the centre. Show

that its path is
(a

r

)3
= cos2 3

2
θ , and that the particle will ultimately
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move in a straight line through the origin in the same way as if its
path had always been this line.
If the velocity of projection be double that in the previous case,
show that the path is

θ
2

= tan−1

√
r−a

a
− 1√

3
tan−1

√
r−a
3a

5. A particle moves with a central acceleration µ
(

r +
2a3

r2

)
, being

projected from an apse at a distance a with twice the velocity for
a circle at that distance; find the other apsidal distance, and show
that the equation to the path is

θ
2

= tan−1(t
√

3)− 1√
5

tan−1

(√
5
3

t

)
, where t2 =

r−a
3a− r

.

6. A particle moves with a central acceleration µ
(

r +
a4

r3

)
being

projected from an apse at distance a with a velocity 2
√µa; show

that it describes the curve r2[2+ cos
√

3θ ] = 3a2.

7. A particle moves with a central acceleration µ(r5− c4r), being

projected from an apse at distance c with a velocity

√
2µ
3

c3, show

that x4 + y4 = c4.

8. A particle moves under a central force mλ [3a3u4 +8au2]; it is pro-
jected from an apse at a distance a from the centre of force with
velocity

√
10λ ; show that the second apsidal distance is half the

first, and that the equation to the path is 2r = a
[

1+ sech
θ√
5

]
.

9. A particle describes an orbit with a central acceleration µu3−λ µ5,

being projected from an apse at distance a with a velocity equal to
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that from infinity; show that its path is

r = acosh
θ
n
, where n2 +1 =

2µa2

λ
.

Prove also that it will be at distance r at the end of time√
a2

2λ

[
a2 log

r +
√

r2−a2

a
+ r

√
r2−a2

]
.

10. In a central orbit the force is µu3(3 + 2a2u2); if the particle be

projected at a distance a with a velocity

√
5µ
a2 in a direction mak-

ing tan−1 1
2

with the radius, show that the equation to the path is
r = a tanθ .

11. A particle moves under a force mµ[3au4− 2(a2− b2)u5],a > b,

and is projected from an apse at a distance a + b with velocity√µ÷ (a+b); show that its orbit is

r = a+bcosθ .

12. A particle moves with a central acceleration λ 2(8au2 +a4u5); it is
projected with velocity 9λ from an apse at a distance

a
3

from the
origin; show that the equation to its path is

1√
3

√
au+5
au−3

= cot
θ√
6

13. A particle, subject to a central force per unit of mass equal to
µ{2(a2 + b2)u5− 3a2b2u7}, is projected at the distance a with a

velocity
√µ

a
in a direction at right angles to the initial distance;

show that the path is the curve r2 = a2 cos2 θ +b2 sin2 θ .
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14. A particle moves with a central acceleration µ
(

u5− a2

8
u7

)
; it is

projected at a distance a with a velocity

√
25
7

times the velocity for

a circle at that distance and at an inclination tan−1 4
3

to the radius

vector. Show that its path is the curve 4r2−a2 =
3a2

(1−θ)2 .

15. A particle is acted on by a central repulsive force which varies as
the nth power of the distance; if the velocity at any point of the
path be equal to that which would be acquired in falling from the
centre to the point, show that the equation to the path is of the form

r
n+3

2 cos
n+3

2
θ = const.

16. An elastic string, of natural length l, is tied to a particle at one end
and is fixed at its other end to a point in a smooth horizontal table.
The particle can move on the table and initially is at rest with the
string straight and unstretched. A blow (which, if directed along
the string would make the particle oscillate to a maximum distance
2l from the fixed end) is given to the particle in a direction inclined
at an angle α to the string. Prove that the maximum length of the
string during the ensuing motion is given by the greatest root of
the equation

x4−2lx3 + l4 sin2 α = 0.

17. A particle of mass m is attached to a fixed point by an elastic string
of natural length a, the coefficient of elasticity being nmg; it is
projected from an apse at a distance a with velocity

√
2pgh; show

that the other apsidal distance is given by the equation

nr2(r−a)−2pha(r +a) = 0.
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18. A particle acted on by a repulsive central force µr÷ (r2−9c2)2 is

projected from an apse at a distance c with velocity
√

µ
8c2 show

that it will describe a three-cusped hypocycloid and that the time

to the cusp is
4
3

πc2

√
2
µ

.

[Use equation (5) of Art. 53, and we have 8p2 = 9c2− r2. Also

hdt = p.ds = pdr.
r√

r2− p2
, giving ht =

∫ 3c

c

rdr
3

√
9c2− r2

r2− c2 . To

integrate, put r2 = c2 +8c2 cos2 φ ]
19. Find the path described about a fixed centre of force by a particle,

when the acceleration toward the centre is of the form
µ
r2 +

µ ′

r3 , in
terms of the velocity V at an apse whose distance is a from the
centre of force.

20. Show that the only law for a central attraction, for which the ve-
locity in a circle at any distance is equal to the velocity acquired in
falling from infinity to that distance, is that of the inverse cube.

21. A particle moves in a curve under a central attraction so that its
velocity at any point is equal to that in a circle at the same distance
and under the same attraction; show that the law of force is that of
the inverse cube, and that the path is an equiangular spiral.

22. A particle moves under a central force mµ÷ (distance)n (where
n > 1 but not = 3). If it be projected at a distance R in a direction
making an angle β with the initial radius vector with a velocity
equal to that due to a fall from infinity, show that the equation to
the path is

r
n−3

2 sinβ = R
n−3

2 sin
(

n−3
2

θ +β
)

.
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If n > 3 show that the maximum distance from the centre is
Rcosec

2
n−3 β , and if n<̄3 then the particle goes to infinity.

23. A particle moves with central acceleration µu2 + vu3 and the ve-
locity of projection at distance R is V ; show that the particle will

ultimately go off to infinity if V 2 >
2µ
R

+
v

R2 .

24. A particle is projected from an apse at a distance a with a ve-

locity

√
µ +λ
a

and moves with a central attraction equal to
µ
2

(n−
1)an−3r−n +λ r−3, where n > 3, per unit of mass; show that it will

arrive at the centre of force in time
a2

2

√
π
µ

Γ
(

n+1
2n−6

)
/Γ

(
2

n−3

)
.

25. In a central orbit if P = µu2(cu + cosθ)−3, show that the path is
one of the conics (cu+ cosθ)2 = a+bcos(2θ +a).

26. A particle, of mass m, moves under an attractive force to the

pole equal to
mµ
r2 sin2 θ . It is projected with velocity

√
2µ
3a

from

an apse at a distance a. Show that the equation to the orbit is
r(1 + cos2 θ) = 2a, and that the time of a complete revolution is
(3a)3/2× π√µ

.

27. If a particle move with a central acceleration
µ
r2(1+k2 sin2 θ)−3/2,

find the orbit and interpret the result geometrically.
[Multiplying the equation of motion,
h2(

..
u+u) = µ(1+ k2 sin2 θ)−3/2, by cosθ and sinθ

in succession and integrating, we have
h2(

.
ucosθ +usinθ)

= µ sinθ(1+ k2 sin2 θ)−1/2 +A,
and
h2(

.
usinθ −ucosθ) =−µ cosθ(1+ k2 sin2 θ)−1/2÷ (1+ k2)+B.
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Eliminating
.
u, we have

h2u = µ(1+ k2 sin2 θ)1/2÷ (1+ k2)+Asinθ −Bcosθ .]
28. A particle moves in a field of force whose potential is µr−2 cosθ

and it is projected at distance a perpendicular to the initial line

with velocity
2
a
√

µ; show that the orbit described is

r = asec
[√

2logtan
π +θ

4

]
.

29. A particle is describing a circle of radius a under the action of a
constant force λ to the centre when suddenly the force is altered to
λ + µ sinnt, where µ is small compared with λ and t is reckoned
from the instant of change. Show that at any subsequent time t the
distance of the particle from the centre of force is

a+
µa

3λ −an2

[
n
√

a
3λ

sin

(
t

√
3λ
a

)
− sinnt

]
.

What is the character of the motion if 3λ = an?
[Use equations (1) and (2) of Art. 53; the second gives r2 .

θ =√
λa3, and the first then becomes

..
r−λa3

r3 = −λ − µ sinnt. Put r = a + ξ where ξ is small, and ne-
glect squares of ξ .]

62. A particle describes a path which is nearly a circle about a centre
of force (= µun) at its centre; find the condition that this may be a
stable motion.

The equation of motion is

d2u
dθ 2 +u =

µ
h2un−2 ...(1).
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If the path is a circle of radius
1
c
, then h2 = µcn−3 ...(2).

Suppose the particle to be slightly displaced from the circular path
in such a way that h remains unaltered (for example, suppose it is
given a small additional velocity in a direction away from the cen-
tre of force by means of a blow, the perpendicular velocity being
unaltered).

In (1) put u = c+ x, where x is small; then it gives

d2x
dθ 2 + c+ x =

(c+ x)n−2

cn−3 = c+(n−2)x+ · · · ...(3).

Neglecting squares and higher powers of x, i.e. assuming that x is
always small, we have

d2x
dθ 2 =−(3−n)x.

If n be < 3, so that 3−n is positive, this gives

x = Acos[
√

3−nθ +B].

If n be > 3, so that n−3 is positive, the solution is

x = A1e
√

n−3θ +B1e−
√

n−3θ ,

so that x continually increases as θ increases ; hence x is not always
small and the orbit does not continue to be nearly circular.

If n < 3, the approximation to the path is
u = c+Acos[

√
3−nθ +B] ...(4).

The apsidal distances are given by the equation
du
dθ

= 0, i.e. by

0 = sin[
√

3−nθ +B].
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The solutions of this equation are a series of angles, the difference
between their successive values being

π√
3−n

. This is therefore the

apsidal angle of the path.
If n = 3, this apsidal angle is infinite. In this case it would be found

that the motion is unstable, the particle departing from the circular
path altogether and describing a spiral curve.

The maximum and minimum values of u, in the case n < 3, are
c+A and c−A, so that the motion is included between these values.

63. The general case may be considered in the same manner. Let the
central acceleration be φ(u).

The equations (1) and (2) then become

d2u
dθ 2 +u =

µ
h2 .

φ(u)
u2 ...(5),

and h2c3 = µφ(c) ...(6).

Also (3) is now

d2x
dθ 2 + c+ x =

c3

φ(c)
.
φ(c+ x)
(c+ x)2

=
c

φ(c)
[φ(c)+ xφ ′(c)+ · · ·]

[
1− 2x

c
+ · · ·

]

= c−2x+ x
cφ ′(c)
φ(c)

, neglecting squares of x.

∴ d2x
dθ 2 =−

{
3− cφ ′(c)

φ(c)

}
x,

and the motion is stable only if
cφ ′(c)
φ(c)

< 3.

In this case the apsidal angle is π÷
{

3− cφ ′(c)
φ(c)

}1/2
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64. If, in addition to the central acceleration P, we have an accelera-
tion T perpendicular to P, the equations of motion are

d2r
dt2 − r

(
dθ
dt

)2

=−P ...(1),

and
1
r

d
dt

(
r2dθ

dt

)
= T ...(2).

Let r2dθ
dt

= h. In this case h is not a constant.

Then (2) gives T = u
dh
dt

= u
dh
dθ

.
dθ
dt

= hu3 dh
dθ

...(3),

∴ dr
dt

=
dr
dθ

dθ
dt
− 1

u2
du
dθ

.hu2 =−h
du
dθ

and
d2r
dt2 =− d

dθ

(
h

du
dθ

)
dθ
dt

=−hu2
[

h
d2u
dθ 2 +

dh
dθ

du
dθ

]

=−h2u2 d2u
dθ 2−

T
u

du
dθ

, by equation (3).
Therefore (1) gives

−h2u2 d2u
dθ 2 −

T
u

du
dθ
−h2u3 =−P,

i.e.
d2u
dθ 2 +u =

P− T
u

du
dθ

h2u2 ...(4).

This may also be written in the form

d
dθ




P
u2 −

T
u3

du
dθ

d2u
dθ 2 +u


 =

d
dθ

(h2) = 2h
dh
dθ

=
2T
u3 ,

from equation (3).
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EXAMPLES

1. One end of an elastic string, of unstretched length a, is tied to a
point on the top of a smooth table, and a particle attached to the
other end can move freely on the table. If the path be nearly a circle
of radius b, show that its apsidal angle is approximately

π
√

b−a
4b−3a

.

2. If the nearly circular orbit of a particle be p2(am−2− rm−2) = bm,

show that the apsidal angle is
π√
m

nearly.

[Using equation (5) of Art. 53 we see that P varies as rm−3; the
result then follows from Art. 62.]

3. A particle moves with a central acceleration
µ
r2 −

λ
r3 ; show that

the apsidal angle is π ÷
√

1+
λ
h2 , where

h
2

is the constant areal

velocity.
4. Find the apsidal angle in a nearly circular orbit under the central

force arm +brn.

5. Assuming that the moon is acted on by a force
µ

(distance)2 to the

earth and that the effect of the sun’s disturbing force is to cause a
force m2× distance from the earth to the moon, show that, the orbit

being nearly circular, the apsidal angle is π
(

1+
3
2

m2

n2

)
nearly,

where
2π
n

is a mean lunar month, and cubes of m are neglected.
6. A particle is moving in an approximately circular orbit under the

action of a central force
µ
r2 and a small constant tangential retarda-
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tion f ; show that, if the mean distance be a, then θ = nt +
3
2

f
a

t2,

where µ = a3n2 and the squares of f are neglected.
7. Two particles of masses M and m are attached to the ends of an

inextensible string which passes through a smooth fixed ring, the
whole resting on a horizontal table. The particle m being projected
at right angles to the string, show that its path is

a = r cos
[√

m
m+M

θ
]

The tension of the string being T , the equations of motion are

d2r
dt2 − r

(
dθ
dt

)2

=− T
M

...(1),

1
r

d
dt

(
r2dθ

dt

)
= 0 ...(2),

and
d2

dt2(l− r) =− T
M

...(3).

(2) gives r2 .
θ = h ...(4),

and then (1) and (3) give
(

1+
M
m

)
..
r =

h2

r3 .

∴
(

1+
M
m

)
.
r2 =−h2

r2 +A = h2
(

1
a2 −

1
r2

)
,

since
.
r is zero initially, when r = a.

This equation and (4) gives
(

1+
M
m

)(
dr
dθ

)2

=
(

1+
M
m

)
.
r2÷ .

θ 2 =
r2−a2

a2 r2.

∴ θ ×
√

M
m

=
∫ adr

r
√

r2−a2
= cos−1 a

r
+C,
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and C vanishes if θ be measured from the initial radius vector.

∴ a = r cos
[√

m
m+M

θ
]

is the path

8. Two masses M,m are connected by a string which passes through
a hole in a smooth horizontal plane, the mass m hanging vertically.
Show that M describes on the plane a curve whose differential

equation is
(

1+
M
m

)
d2u
dθ 2 +u =

mg
M

1
h2u2 .

Prove also that the tension of the string is
Mm

M +m
(g+h2u3).

9. In the previous question if m = M, and the latter be projected on

the plane with velocity

√
8ag
3

from an apse at a distance a, show

that the former will rise through a distance a.
10. Two particles, of masses M and m, are connected by a light string;

the string passes through a small hole in the table, m hangs verti-
cally, and M describes a curve on the table which is very nearly a
circle whose centre is the hole; show that the apsidal angle of the

orbit of M is π
√

M +m
3M

.

11. A particle of mass m can move on a smooth horizontal table. It
is attached to a string which passes through a smooth hole in the
table, goes under a small smooth pulley of mass M and is attached
to a point in the under side of the table so that the parts of the string
hang vertically. If the motion be slightly disturbed, when the mass
m is describing a circle uniformly, so that the angular momentum

is unchanged, show that the apsidal angle is π
√

M +4m
12m

.

12. Two particles on a smooth horizontal table are attached by an elas-
tic string, of natural length a, and are initially at rest at a distance a
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apart. One particle is projected at right angles to the string. Show
that if the greatest length of the string during the subsequent mo-

tion be 2a, then the velocity of projection is

√
8aλ
3m

, where m is

the harmonic mean between the masses of the particles and λ is
the modulus of elasticity of the string.
[Let the two particles be A and B of masses M and M′, of which B
is the one that is projected. When the connecting string is of length

r and therefore of tension T , such that T = λ
r−a

a
, the acceleration

of A is
T
M

along AB, and that of B is
T
M

, along BA. To get the
relative motion we give to both B and A an acceleration equal and
opposite to that of A. The latter is then “reduced to rest” and the
acceleration of B relative to A is along BA and

=
T
M

+
T
M′ =

2
m

λ
r−a

a
=

2λ
ma

1−au
u

.

The equation to the relative path of B is now
d2u
dθ 2 +u =

2λ
mah2

1−au
u3 .

Integrate and introduce the conditions that the particle is projected
from an apse at a distance a with velocity V . The fact that there is
another apse at a distance 2a determines V ].

13. A particle is moving in a circular orbit, of radius a, under a force
of intensity µu3(2a2u2−1) towards the centre. Show that the orbit
is unstable and that if a slight disturbance takes place, inward or
outward, the path may be represented by either r = a tanhθ or r =
acothθ .

14. Einstein’s discussion of planetary motion suggests the following
problem:
A particle moves in one place subject to an acceleration to a fixed
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centre of magnitude µ
(

1
r2 +

3h2

c2r4

)
, h being the moment of the

velocity of the particle about the centre of acceleration, and c the
velocity of light. Show that the angle between successive apse-

lines is π
(

1+
3h2

c2l2

)
,

h
cl

begin small, and l being the latus rectum

of ellipse which the particle would describe with the same moment
of momentum, if the law were

µ
r2 .

Supposing the planet Mercury to be subject to an acceleration of
this type directed towards the Sun, show that its apse-line pro-
gresses at the rate of 42.9′′ per century, given that l = 5.55× 107

kilometres, and
µ
c2 = 1.47 kilometres, and that the periodic time of

Mercury is 87.97 days.

ANSWERS WITH HINTS

Art. 52 EXAMPLES.

2. The path is r cosθ
{

tan
(

π
4

+
θ
2

)}1/n

= const. When n = 1

curve is r =
a

1+ sinθ

3. −r
v2

a2 ,
2uv
a

,

4. Path:
1
r

+
λ
µ

logθ = const.

Art. 56 EXAMPLES.
11. A conic section of focus at the internal point.
Art. 61 EXAMPLES.

5. v2 = h2(u2 +
.
u2) = 2µ

∫ (
1
u3 +2a3

)
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