Sample Question Paper - 3 Class- IX Session- 2021-22 **TERM 1 Subject- Mathematics**

Time Allowed: 1 hour and 30 minutes

۸

General Instructions:

- 1. The question paper contains three parts A, B and C.
- 2. Section A consists of 20 questions of 1 mark each. Attempt any 16 questions.
- 3. Section B consists of 20 questions of 1 mark each. Attempt any 16 questions.
- 4. Section C consists of 10 questions based on two Case Studies. Attempt any 8 questions.
- 5. There is no negative marking.

Section A

Attempt any 16 questions

1.	The value of $\left(\frac{81}{16}\right)^{\frac{-3}{4}}$	$ imes \left\{ \left(rac{25}{9} ight)^{rac{-3}{2}} \div \left(rac{5}{2} ight)^{-3} ight\}$ is	[1]
	a) 4	b) 2	
	c) 3	d) 1	
2.	If (2, 0) is a solution of	of the linear equation 2x + 3y = k, then the value of k is	[1]
	a) 2	b) 4	

- c) 5
- In the given figure, AOB is a straight line. If $igtriangle AOC = 4x^\circ$ and $igtriangle BOC = 5x^\circ$ then 3. [1] $\angle AOC = ?$

$$a) 60^{\circ}$$

$$b) 40^{\circ}$$

$$c) 100^{\circ}$$

$$d) 80^{\circ}$$

- The area of one triangular part of a rhombus ABCD is given as 125 cm². The area of rhombus [1] 4. ABCD is
 - a) 1250 cm^2 b) 625 cm^2
 - c) 500 cm² d) 2500 cm²
- The number obtained on rationalising the denominator of $\frac{1}{\sqrt{7}-2}$ is [1] 5. a) $\frac{\sqrt{7}+2}{45}$ b) $\frac{\sqrt{7}-2}{3}$

Maximum Marks: 40

- d) 6

c) $\frac{\sqrt{7}+2}{5}$	d) $\frac{\sqrt{7}+2}{3}$	
How many linear equations in 'x' and 'y' ca	an be satisfied by x = 1, y = 2?	[1]

d) Three

- a) Infinitely many b) Two
- c) Only one
- 7. In Fig., the value of x, is

6.

8. In the given figure, EAD \perp BCD. Ray FAC cuts ray EAD at a point A such that $\angle EAF = 30^{\circ}$. [1] Also, in $\triangle BAC$, $\angle BAC = x^{\circ}$ and $\angle ABC = (x + 10)^{\circ}$. Then, the value of x is

9. If $10^{2y} = 25$, then 10^{-y} equals

a)
$$-\frac{1}{5}$$

b) $\frac{1}{5}$
c) $\frac{1}{625}$
d) $\frac{1}{50}$

10. Vihaan has marks of 92, 85, and 78 in three mathematics tests. In order to have an average of [1] exactly 87 for the four math tests, he should obtain

- a) 93 marksb) 91 marksc) 90 marksd) 92 marks
- 11. In the adjoining figure, m \parallel n, if $\angle 1$ = 50°, then $\angle 2$ is equal to -

[1]

[1]

	a) 50°	b) 40°	
	c) 130°	d) 120°	
12.	If g = $t^{rac{2}{3}} + 4t^{rac{-1}{2}}$, what is the value of g when	t = 64?	[1]
	a) $\frac{31}{2}$	b) $\frac{257}{16}$	
	c) $\frac{33}{2}$	d) 16	
13.	If a = 7 - $4\sqrt{3}$, then the value of $\sqrt{a} + \frac{1}{\sqrt{a}}$ is		[1]
	a) 8	b) 4	
	c) 2	d) 1	
14.	In figure, lines $l_1 \parallel l_2$. The value of x is :		[1]
	a) 50°	b) 70°	
	c) 30°	d) 40°	
15.	The area of the triangle formed by the line 22	x + 5y = 10 and the co-ordinate axis is	[1]
	a) 4 sq. units	b) 3 sq. units	
	c) 5 sq. units	d) 10 sq. units	
16.	The mean of six numbers is 23. If one of the numbers is excluded, the mean of the remaining numbers becomes 20. The excluded number is		
	a) 37	b) 39	
	c) 38	d) 36	
17.	The sides of a triangle are 35 cm, 54 cm and 6 altitude	61 cm, respectively. The length of its longest	[1]
	a) $24\sqrt{5}\mathrm{cm}$	b) 28 cm	
	c) $10\sqrt{5}\mathrm{cm}$	d) $16\sqrt{5}\mathrm{cm}$	
18.	If $ar{x}$ is the mean of x_1, x_2, \ldots, x_n then for a $rac{x_1}{a}, rac{x_2}{a}, \ldots, rac{x_n}{a}$ is	$ eq$ 0, the mean of $ax_1, ax_2, \dots, ax_n,$	[1]
	a) $\frac{\left(a+\frac{1}{a}\right)\bar{x}}{2n}$	b) $\left(a + \frac{1}{a}\right) \frac{\bar{x}}{2}$	
10	U $\left(a + \frac{1}{a}\right) \frac{1}{n}$	$u_{j}\left(a+\frac{1}{a}\right)x$	[1]
19.		1 \ 5	[1]
	a) $\frac{1}{500}$	$\frac{1}{3}$	
	c) none of these	d) $\frac{1}{5}$	F 43
20.	An angle is one-fifth of its supplement. The n	neasure of the angle is :-	[1]
	a) 15°	b) 75 ^o	

c) 150⁰

d) 30⁰

Section B

Attempt any 16 questions

21.	The distance between the graph of the equation	ions $x = -3$ and $x = 2$ is	[1]
	a) 1	b) 3	
	c) 2	d) 5	
22.	Each side of an equilateral triangle measures	8 cm. The area of the triangle is	[1]
	a) $32\sqrt{3}\mathrm{cm}^2$	b) _{48 cm²}	
	c) $16\sqrt{3}\mathrm{cm}^2$	d) $8\sqrt{3}$ cm ²	
23.	A linear equation in two variables is of the fo	orm ax + by + c = 0, where	[1]
	a) a \neq 0 and b = 0	b) a = 0 and b = 0	
	c) a $ eq$ 0 and b $ eq$ 0	d) a = 0 and b \neq 0	
24.	In the given figure, straight lines AB and CD i $\angle AOD = ?$	ntersect at 0. If $igtriangle AOC + igtriangle BOD = 130^\circ$ then	[1]
	A D		
	C O B		
	a) 110°	b) 65°	
	c) 115°	d) 125°	
25.	If $\sqrt{7}=2.646$ then $rac{1}{\sqrt{7}}=?$		[1]
) Norse of these	h) 0.075	

a) None of these b) 0.375 c) 0.378 d) 0.441

26. The area of an isosceles triangle having base 2 cm and the length of one of the equal sides 4 [1] cm, is

a) $4\sqrt{15}~cm^2$	b) $\sqrt{15}~cm^2$
c) $2\sqrt{15}~cm^2$	d) $\sqrt{rac{15}{2}} \ cm^2$

27. The number of times a particular item occurs in a given data is called its.

	a) class-size	b) cumulative frequency	
	c) frequency	d) variation	
28.	$rac{5^{n+2}-6 imes 5^{n+1}}{13 imes 5^n-2 imes 5^{n+1}}$ is equal to		[1]
	a) $\frac{3}{5}$	b) $-\frac{3}{5}$	
	c) $-\frac{5}{3}$	d) $\frac{5}{3}$	
29.	In \triangle ABC, BD \perp AC, \angle CAE = 30° and \angle CE	D = 40°. Then ∠AEB =?	[1]

30. Sheila received x marks in two of her tests and y marks in three other tests. Her average score [1] in all the five tests in terms of x and y is

a)
$$\frac{2x+3y}{2}$$

b) $\frac{2x+3y}{5}$
c) $\frac{3x+2y}{3}$
d) $\frac{3x+2y}{5}$

31. The difference of semi-perimeter and the sides of $\triangle ABC$ are 8, 7 and 5 cm respectively. Its [1] semi-perimeter 's' is

a) 5 cm	b) 15 cm	
c) 10 cm	d) 20 cm	
$\sqrt{8}+2\sqrt{32}-5\sqrt{2}$ is equal to		[1]
a) none of these	b) $\sqrt{32}$	
c) $\sqrt{8}$	d) $5\sqrt{2}$	

33. In figure, what is y in terms of x?

32.

34. The mean of n observations is \overline{X} . If k is added to each observation, then the new mean is: [1]

- a) \overline{X} + k b) k \overline{X} c) \overline{X} - k d) \overline{X}
- 35. When two straight lines intersect:
 - i. Adjacent angles are complementary
 - ii. Adjacent angles are supplementary.
 - iii. Opposite angles are equal.
 - iv. Opposite angles are supplementary.

Of these statements

a) (ii) and (iv) are correct b) (i) and (iv) are correct

[1]

c) (ii) and (iii) are correct

d) (i) and (iii) are correct

- 36. The taxi fare in a city is as follows: For the first kilometer, the fare is ₹8 and for the subsequent distance it is ₹5 per kilometer. Taking the distance covered as x km and total fare as ₹y, write a linear equation for this information.
 - a) y = 5x + 3b) y = 5x - 3c) x = 5y - 3d) x = 5y + 3
- 37. In figure, x + y =

- 39. Let \bar{X} be the mean of $x_1, x_2, ..., x_n$ and \bar{Y} the mean of $y_1, y_2, ..., y_n$. If \bar{Z} is the mean of $x_1, x_2, ...,$ [1] $x_n, y_1, y_2, ..., y_n$, then \bar{Z} is equal to:
 - a) $\frac{\bar{x}+\bar{y}}{n}$ b) $\frac{\bar{x}+\bar{y}}{2}$ c) $\bar{x}+\bar{y}$ d) $\frac{\bar{x}+\bar{y}}{2n}$ If the mean of x and $\frac{1}{x}$ is M, then the mean of x^2 and $\frac{1}{x^2}$ is [1] a) 2M + 1 b) $2M^2 + 1$
 - c) 2M-1 d) $2M^2 1$

Section C

Attempt any 8 questions

Question No. 41 to 45 are based on the given text. Read the text carefully and answer the questions:

40.

Hareesh and Deep were trying to prove a theorem. For this they did the following;

- i. Draw a triangle ABC
- ii. D and E are found as the mid points of AB and AC
- iii. DE was joined and DE was extended to F so DE = EF

[1]

[1]

41.	. $ riangle ADE$ and $ riangle EFC$ are congruent by which criteria?		[1]
	a) SAS	b) SSS	
	c) ASA	d) RHS	
42.	\angle EFC is equal to which angle?		[1]
	a) ∠B	b) ∠DAE	
	c) ∠AED	d) ∠ADE	
43.	\angle ECF is equal to which angle?		[1]
	a) ∠AED	b) ∠ADE	
	c) ∠DAE	d) ∠B	
44.	CF is equal to which of the following?		[1]
	a) BD	b) AE	
	c) EF	d) CE	
45.	CF is parallel to which of the following?		[1]
	a) AE	b) BD	
	c) CE	d) EF	

Question No. 46 to 50 are based on the given text. Read the text carefully and answer the questions:

There is a square park ABCD in the middle of Saket colony in Delhi. Four children Deepak, Ashok, Arjun and Deepa went to play with their balls. The colour of the ball of Ashok, Deepak, Arjun and Deepa are red, blue, yellow and green respectively.

All four children roll their ball from centre point O in the direction of **XOY**, **X'OY**, **X'OY' and XOY'**. Their balls stopped as shown in the above image.

46. What are the coordinates of the ball of Deepa?

a) (2, 2)	b) (2, 3)
-----------	-----------

47. What the line XOX' is called?

[1]

	a) x-axis	b) ordinate	
	c) y-axis	d) origin	
48.	What the point O (0,0) is called?		[1]
	a) x-axis	b) y-axis	
	c) ordinate	d) origin	
49.	What is the ordinate of the ball of Arjun?		[1]
	a) 2	b) 3	
	c) 4	d) -3	
50.	What are the coordinates of the ball of Ashol	k?	[1]
	a) (4, 3)	b) (4, 4)	
	c) (3, 4)	d) (3, 3)	

Solution

Section A

1. **(d)** 1

$$\begin{split} \left(\frac{81}{16}\right)^{\frac{-3}{4}} \times \left\{ \left(\frac{25}{9}\right)^{\frac{-3}{2}} \div \left(\frac{5}{2}\right)^{-3} \right\} \\ \Rightarrow \left(\frac{3}{2}\right)^{4 \times \frac{-3}{4}} \times \left\{ \left(\frac{5}{3}\right)^{2 \times \frac{-3}{2}} \div \left(\frac{5}{2}\right)^{-3} \right\} \\ \Rightarrow \left(\frac{3}{2}\right)^{-3} \times \left\{ \left(\frac{5}{3}\right)^{-3} \div \left(\frac{5}{2}\right)^{-3} \right\} \\ \Rightarrow \left(\frac{3}{2}\right)^{-3} \times \left(\frac{5}{3} \times \frac{2}{5}\right)^{-3} \\ \Rightarrow \left(\frac{3}{2}\right)^{-3} \times \left(\frac{2}{3}\right)^{-3} \\ \Rightarrow \left(\frac{3}{2} \times \frac{2}{3}\right)^{-3} \\ \Rightarrow \left(1\right)^{-3} = 1 \end{split}$$

2. **(b)** 4

Explanation: (2, 0) is a solution of the linear equation 2x + 3y = k $\Rightarrow 4 = k$

3. **(d)** 80°

Explanation: We have : $\angle AOC + \angle BOC = 180^{\circ}$ [Since AOB is a straight line] $\Rightarrow 4x + 5x = 180^{\circ}$ $\Rightarrow 9x = 180^{\circ}$ $\Rightarrow x = 20^{\circ}$ $\therefore \angle AOC = 4 \times 20^{\circ} = 80^{\circ}$

4. **(c)** 500 cm²

Explanation: Since diagonals of a rhombus divide it into 4 triangles of equal area. Therefore, Area of rhombus = $4 \times$ Area of triangle

= 4 \times 125 = 500 sq. cm

5. **(d)**
$$\frac{\sqrt{7+2}}{3}$$

Explanation: After rationalising:

$$\frac{1}{\sqrt{7}-2} = \frac{1}{\sqrt{7}-2} \times \frac{\sqrt{7}+2}{\sqrt{7}+2} \\ = \frac{\sqrt{7}+2}{(\sqrt{7})^2 - (2)^2} \\ = \frac{\sqrt{7}+2}{\frac{7-4}{7-4}} \\ = \frac{\sqrt{7}+2}{3}$$

6. **(a)** Infinitely many

Explanation: There are many linear equations in 'x' and 'y' can be satisfied by x = 1, y = 2 for example

x + y = 3 x - y =-1 2x + y =4

and so on there are infinte number of examples

7. **(b)** 20°

Explanation: Let, AB, CD and EF intersect at O $\angle COB = \angle AOD \text{ (Vertically opposite angle)}$ $\angle AOD = 3x + 10 \dots \text{(i)}$ $\angle AOE + \angle AOD + \angle DOF = 180^{\circ} \text{ (Linear pair)}$ $x + 3x + 10^{\circ} + 90^{\circ} = 180^{\circ}$ $4x + 100^{\circ} = 180^{\circ}$ $4x = 80^{\circ}$ $x = 20^{\circ}$ (c) 25

8. **(c)** 25

Explanation: In the given figure $\angle CAD = \angle EAF$ (Vertically opposite angels) $\therefore \angle CAD = 30^{\circ}$ In $\triangle ABD$, $\angle ABD + \angle BAD + \angle ADB = 180^{\circ}$ (Angle sum property) $\Rightarrow (x + 10)^{\circ} + (x^{\circ} + 30^{\circ}) + 90^{\circ} = 180^{\circ}$ $\Rightarrow 2x + 130^{\circ} = 180^{\circ}$ $\Rightarrow 2x = 180^{\circ} - 130^{\circ} = 50^{\circ}$ $\Rightarrow x = 25$

Thus, the value of x is 25. Hence, the correct answer is 25.

9. **(b)** $\frac{1}{5}$

Explanation: $10^{2y} = 25$ $10^{2y} = 5^2$

 $(10^{y})^{2} = (5)^{2}$ $\Rightarrow 10^{y} = 5$ Now 10^{-y} $= \frac{1}{10^{y}}$ $= \frac{1}{5}$

10. (a) 93 marks

Explanation: Let, Vihaan obtains x marks in the fourth test.

So, $\frac{92+85+78+x}{4} = 87$ $\frac{255+x}{4} = 87$ 255 + x = 348 x = 348 - 255 x = 93 marks

11. **(c)** 130°

Explanation: $\angle 2 = 180^{\circ} - \angle 1$ $\angle 2 = 180^{\circ} - 50^{\circ} = 130^{\circ}$

12. (c)
$$\frac{33}{2}$$

Explanation:
$$g = t^{\frac{2}{3}} + 4t^{\frac{-1}{2}}$$

= $t^{\frac{2}{3}} + 4 \times \frac{1}{t^{\frac{1}{2}}}$
= $(64)^{\frac{2}{3}} + 4 \times \frac{1}{64^{\frac{1}{2}}}$
= $(4^3)^{\frac{2}{3}} + 4 \times \frac{1}{(8^2)^{\frac{1}{2}}}$
= $4^{\frac{2}{3} \times 3} + 4 \times \frac{1}{8^{2 \times \frac{1}{2}}}$
= $4^2 + \frac{4}{8}$

$$= 16 + \frac{1}{2}$$

 $= \frac{33}{2}$

Explanation: Let $\sqrt{a} + \frac{1}{\sqrt{a}} = x$

Then, squaring both side, we get

$$a + \frac{1}{a} + 2 = x^{2}$$

$$\Rightarrow \frac{a^{2}+1}{a} + 2 = x^{2}$$
Now, put the value of a,
$$\frac{(7-4\sqrt{3})^{2}+1}{7-4\sqrt{3}} + 2 = x^{2}$$

$$\Rightarrow \frac{49+48-56\sqrt{3}+1}{7-4\sqrt{3}} + 2 = x^{2}$$

$$\Rightarrow \frac{98-56\sqrt{3}}{7-4\sqrt{3}} + 2 = x^{2}$$

$$\Rightarrow 14\left(\frac{7-4\sqrt{3}}{7-4\sqrt{3}}\right) + 2 = x^{2}$$

$$\Rightarrow 16 = x^{2}$$

$$\Rightarrow x = 4$$
So, $x = \sqrt{a} + \frac{1}{\sqrt{a}} = 4$

14. **(c)** 30°

Explanation: $40^{\circ} + x = 70^{\circ}$ (exterior angle) $\angle x = 70^{\circ} - 40^{\circ}$ $\angle x = 30^{\circ}$

15. **(c)** 5 sq. units

Explanation: To find the area of the triangle formed by the line 2x + 5y = 10 and co-ordinate axis We put x = 0 in given equation at x = 0, we get y = 2at y = 0 we get x = 5

So the line cut y-axis at 2 and x-axis at 5

So the height of the triangle is 2 unit and the base is 5 unit

Area of triangle = $\frac{1}{2}$ base \times height

$$= \frac{1}{2} \times 2 \times 5$$
$$= 5 \text{ sq. units}$$

16. **(c)** 38

Explanation: The mean of the six numbers is 23. So the sum of six numbers is $23 \times 6 = 138$ After excluding one number, the mean of the remaining numbers is 20. So the sum of five numbers is $20 \times 5 = 100$ The difference between them is 138 - 100 = 38

17. **(a)** $24\sqrt{5}$ cm

Explanation: Let ABC be a triangle in which sides AB = 35cm, BC = 54 cm and CA = 61 cm

Now, semi-perimeter of a triangle, $s = \frac{a+b+c}{2} = \frac{35+54+61}{2} = \frac{150}{2} = 75$ cm [:: semiperimeter, s = $\frac{a+b+c}{2}$]

 \therefore Area of $riangle ABC = \sqrt{s(s-a)(s-b)(s-c)}$ [by Heron's formula]

 $=\sqrt{75(75-35)(75-54)(75-61)}$ $=\sqrt{75 imes40 imes21 imes14}$ $1=\sqrt{25 imes 3 imes 4 imes 2 imes 5 imes 7 imes 3 imes 7 imes 2)}$ $=5 imes 2 imes 2 imes 3 imes 7\sqrt{5}$ $=420\sqrt{5}\mathrm{cm}^2$ Also, Area of $\triangle ABC = \frac{1}{2} \times AB \times$ Altitude $\Rightarrow rac{1}{2} imes 35 imes CD$ $\Rightarrow CD = \frac{420 \times 2\sqrt{5}}{35}$ \therefore CD = $24\sqrt{5}$ Hence, the length of altitude is $24\sqrt{5}$ cm. **(b)** $\left(a + \frac{1}{a}\right) \frac{\bar{x}}{2}$ 18. **Explanation:** mean of ax_1, ax_2, \dots, ax_n , is $a\overline{x}$ mean of $\frac{x_1}{a}, \frac{x_2}{a}, \dots, \frac{x_n}{a}$ is $\frac{1}{a}\overline{x}$ so the their mean is $\left(a + \frac{1}{a}\right)\frac{\overline{x}}{2}$ **(b)** $\frac{5}{3}$ 19. Explanation: Let x=1.666...--(i) multiply eq. (i) by 10, we get 10 x = 16.666...--(i) subtract eq(i) from (ii) we get 9 x = 15 $\mathbf{X} = \frac{5}{3}$ (**d**) 30⁰ 20. **Explanation:** Let one angle be x^o Its supplementary angle will be $180^{\circ} - x^{\circ}$ According to question $x = \frac{1}{5}(180^{\circ} - x)$ $5x + x = 180^{\circ}$ $6x = 180^{\circ}$ $\mathbf{x} = \frac{180}{6}$ x = 30⁰ Section **B** 21. (d) 5 **Explanation:** Distance between the graph of the equations x = -3 and x = 2 is = 2 - (-3) = 5 units (c) $16\sqrt{3}$ cm² 22. **Explanation:** Area of equilateral triangle $=\frac{\sqrt{3}}{4} \times ($ Side $)^2$ $\sqrt{3}$

$$= \frac{\sqrt{3}}{4} \times (8)^2$$
$$= \frac{\sqrt{3}}{4} \times 64$$
$$= 16\sqrt{3} \text{cm}^2$$

23. **(c)** a \neq 0 and b \neq 0

Explanation: A linear equation in two variables is of the form ax + by + c = 0 as a and b are cofficient of x and y

so if a = 0 and b = 0 or either of one is zero in that case the equation will be one variable or their will be no equation respectively.

therefore when a eq 0 and b eq 0 then only the equation will be in two variable

24. **(c)** 115°

Explanation: We have:

 $\angle AOC = \angle BOD$ [Vertically-Opposite Angles]

```
\therefore \angle AOC + \angle BOD = 130^{\circ}
\Rightarrow \angle AOC + \angle AOC = 130^{\circ} [\because \angle AOC = \angle BOD]
\Rightarrow 2\angle AOC = 130^{\circ}
\Rightarrow \angle AOC = 65^{\circ}
Now,
\angle AOC + \angle AOD = 180^{\circ} [\because \text{COD is a straight line}]
\Rightarrow 65^{\circ} + \angle AOD = 180^{\circ}
\Rightarrow \angle AOC = 115^{\circ}
(c) 0.378
```

25. **(c)** 0.378
Explanation:
$$\frac{1}{\sqrt{7}} = \frac{1}{\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}}$$

$$= \frac{\sqrt{7}}{7}$$

$$= \frac{1}{7} \times \sqrt{7}$$

$$= \frac{1}{7} \times 2.646$$

$$= 0.378$$

26. **(b)** $\sqrt{15} \ cm^2$ **Explanation:** $s = \frac{4+4+2}{2} = 5 \ cm$ Area of triangle $= \sqrt{s(s-a)(s-b)(s-c)}$ $= \sqrt{5(5-4)(5-4)(5-2)}$ $= \sqrt{5 \times 1 \times 1 \times 3}$ $= \sqrt{15} \ sq. \ cm$

27. **(c)** frequency

Explanation: The number of times a particular item occurs in a given data is called its Frequency.

28. (c)
$$-\frac{5}{3}$$

$$\frac{5^{3}}{\text{Explanation:}} \frac{5^{n+2}-6\times5^{n+1}}{13\times5^{n}-2\times5^{n+1}} \\
= \frac{5^{n}(5^{2}-6\times5^{1})}{5^{n}(13-2\times5^{1})} \\
= \frac{5^{2}-6\times5}{13-2\times5} \\
= \frac{25-30}{13-10} \\
= \frac{-5}{3}$$

Explanation: In BDC $\angle BDC + \angle BCD + \angle DBC = 180^{\circ}$ BD $\perp AC$ $\angle BCD = 90^{\circ}, \angle DBC = 40^{\circ}$ $90^{\circ} + \angle BCD + 40^{\circ} = 180^{\circ}$ $\angle BCD + 130^{\circ} = 180^{\circ}$ $\angle BCD = 180^{\circ} - 130^{\circ}$ $\angle BCD = 50^{\circ}$ $\angle AEB = \angle CAE + \angle C \dots (exterior angle)$ $\angle CAE = 30^{\circ}$ $\angle AEB = 30^{\circ} + 50^{\circ}$ $\angle AEB = 80^{\circ}$

30. **(b)** $\frac{2x+3y}{5}$

Explanation: Average is equal to the sum of all the values in the data set divided by the number of values in the data set.

Average = $\frac{x+x+y+y+y}{5}$ Average = $\frac{2x+3y}{5}$ 31. (d) 20 cm **Explanation:** Given: s - a = 8 cm, s - b = 7 cm and s - c = 5 cm Adding all equations, s - a + s - b + s - c = 8 + 7 + 5 \Rightarrow 3s - (a + b + c) = 20 [s = $\frac{a+b+c}{2}$] \Rightarrow 3s - 2s = 20 \Rightarrow s = 20 cm (d) $5\sqrt{2}$ 32. Explanation: $\sqrt{8} + 2\sqrt{32} - 5\sqrt{2}$ $\Rightarrow 2\sqrt{2} + 2 imes 4\sqrt{2} - 5\sqrt{2}$ $\Rightarrow 10\sqrt{2} - 5\sqrt{2}$ $\Rightarrow 5\sqrt{2}$ (a) $\frac{3}{2}x$ 33. **Explanation:** From Figure, \angle DOC = 180° - \angle AOD (Both are Supplementary) \Rightarrow \angle DOC = $180^{\circ} - 3y^{\circ}$ Also, $\angle ACB = 180^{\circ} - \angle A - \angle B$ \Rightarrow \angle ACB = 180° - x° - $2x^\circ$ = 180° - $3x^\circ$ And \angle ACD = 180° - \angle ACB = 180° - (180° - $3x^\circ$) $\Rightarrow \angle ACD = 3x^{\circ}$ Now, in riangle OCD \angle DOC + \angle OCD + \angle D = 180° $180^\circ - 3y^\circ + 3x^\circ + y^\circ = 180^\circ$ [\angle OCD = \angle ACD] $\Rightarrow 2y^\circ = 3x^\circ$ \Rightarrow y = $\frac{3}{2}$ x

34. **(a)** \overline{X} + k

Explanation: Let us take n observations X₁, ... X_n

If X be the mean of the n observations, then we have

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$
$$\Rightarrow \sum_{i=1}^{n} X_{i} = n\overline{X}$$

Add a constant k to each of the observations. Then the observations becomes X_i + k, ..., X_n + k

If \overline{Y} be the mean of the new observations, then we have

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} (X_i + k)$$
$$= \frac{1}{n} \sum_{i=1}^{n} X_i + \frac{1}{n} \sum_{i=1}^{n} k$$
$$= \overline{X} + \frac{1}{n} \cdot nk$$
$$= \overline{X} + k$$

35. **(c)** (ii) and (iii) are correct

Explanation: When two straight lines intersect them, Adjacent angles are supplementary and opposite angles are equal.

36. **(a)** y = 5x + 3

Explanation: Taxi fare for first kilometer = $\exists 8$ Taxi fare for subsequent distance = $\exists 5$ Total distance covered = x Total fare = y Since the fare for first kilometer = $\exists 8$ According to problem, Fare for (x - 1) kilometer = 5(x - 1) So, the total fare y = 5(x - 1) + 8 $\Rightarrow y = 5(x - 1) + 8$ $\Rightarrow y = 5x - 5 + 8$ $\Rightarrow y = 5x + 3$ Hence, y = 5x + 3 is the required linear equation.

37. **(d)** 230°

Explanation: In \triangle ACO \angle ACO + \angle COA + \angle OAC = 180° Now, \angle OAC = 180° $\Rightarrow 80^{\circ} + 40^{\circ} + 180^{\circ} - x^{\circ} = 180^{\circ}$ $\Rightarrow x^{\circ} = 120^{\circ}$ \angle BOD = \angle COA = 40° (Opposite angles) \angle BDO = 70° In \triangle OBD \angle OBD = 180° - 40° - 70° = 70° Also, y° = 180° - \angle OBD = 180° - 700° = 110° $\Rightarrow x^{\circ} + y^{\circ} = 120^{\circ} + 110^{\circ} = 230^{\circ}$

38. **(a)** 1

Explanation:
$$\frac{x^{a(b-c)}}{x^{b(a-c)}} \div \left(\frac{x^b}{x^a}\right)^c$$

 $\Rightarrow \frac{x^{ab-ac}}{x^{ba-be}} \div \left(\frac{x^{bc}}{x^{ac}}\right)$
 $\Rightarrow x^{ab-ac-ab+bc} \div x^{bc-ac}$
 $\Rightarrow x^{bc-ac} \div x^{bc-ac}$
 $\Rightarrow 1$

39. **(b)** $\frac{\bar{x}+\bar{y}}{2}$

Explanation: Since \bar{x} and \bar{y} are two numbers, though being means, their arithmetic mean is given by: $\bar{z} = \frac{\bar{x} \text{ and } \bar{y}}{2}$

Explanation: Given, $\frac{x+\frac{1}{x}}{2} = M$ Taking square on both sides $\left(\frac{x+\frac{1}{x}}{2}\right)^2 = (M)^2$ $\left(x+\frac{1}{x}\right)^2 = (2M)^2$ $\left(x^2+2+\frac{1}{x^2}\right) = (2M)^2$ $\left(x^2+\frac{1}{x^2}\right) = 4M^2 - 2$ Divide by 2 on both sides to get mean $\frac{\left(x^2+\frac{1}{x^2}\right)}{2} = 2M^2 - 1$

Section C

- 41. (a) SAS Explanation: SAS
- 42. (d) ∠ADE Explanation: ∠ADE
- 43. (c) ∠DAE Explanation: ∠DAE
- 44. (a) BD Explanation: BD

- 45. **(b)** BD **Explanation:** BD
- 46. **(d)** (2, -3) **Explanation:** (2, -3)
- 47. (a) x-axis Explanation: x-axis
- 48. **(d)** origin **Explanation:** origin
- 49. (d) -3 Explanation: -3
- 50. **(c)** (3, 4) **Explanation:** (3, 4)