#### **CBSE Sample Question Paper Term 1**

Class – XI (Session : 2021 - 22)

#### SUBJECT - PHYSICS 042 - TEST - 02

#### **Class 11 - Physics**

**Maximum Marks: 35** 

#### Time Allowed: 1 hour and 30 minutes

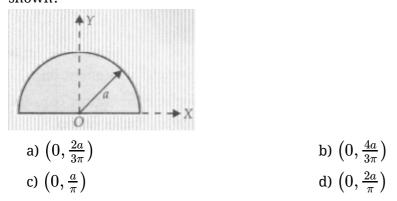
#### **General Instructions:**

- 1. The Question Paper contains three sections.
- 2. Section A has 25 questions. Attempt any 20 questions.
- 3. Section B has 24 questions. Attempt any20 questions.
- 4. Section C has 6 questions. Attempt any 5 questions.
- 5. All questions carry equal marks.
- 6. There is no negative marking.

#### Section A

#### Attempt any 20 questions

| 1. | The physicist who unified electromagnetism and optics was:                                |                                                         | <b>[0.</b> 77]         |
|----|-------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------|
|    | a) James Clerk Maxwell                                                                    | b) Abdus Salam                                          |                        |
|    | c) Issac Newton                                                                           | d) Albert Einstein                                      |                        |
| 2. | The dimension of torque is                                                                |                                                         | <b>[0.</b> 77]         |
|    | a) [ML <sup>-1</sup> T <sup>-1</sup> ]                                                    | b) [MLT <sup>-2</sup> ]                                 |                        |
|    | c) [ML <sup>2</sup> T <sup>-2</sup> ]                                                     | d) [ML <sup>3</sup> T <sup>-3</sup> ]                   |                        |
| 3. | Path length is defined as                                                                 |                                                         | <b>[0.</b> 77 <b>]</b> |
|    | a) distance from origin to origin.                                                        | b) the total length of the path traversed by an object. |                        |
|    | c) the distance from origin to maximum point.                                             | d) the distance from origin to minimum point.           |                        |
| 4. | A ball is thrown upwards with an initial velo<br>height reached above the thrower's hand. | ocity of 10 m ${ m s}^{-1}$ . Determine the maximum     | <b>[0.</b> 77 <b>]</b> |
|    | a) 5.25 m                                                                                 | b) 5.23 m                                               |                        |
|    | c) 5.43 m                                                                                 | d) 5.10 m                                               |                        |
| 5. | Which of the following pairs does not have s                                              | same dimensions?                                        | [0.77]                 |
|    | a) Angular momentum and Planck's constant                                                 | b) Moment of inertia and moment of force                |                        |
|    | c) Impulse and momentum                                                                   | d) Work and torque                                      |                        |
| 6. | A particle is orbiting in a vertical plane. Its l                                         | inear momentum will be directed:                        | <b>[0.</b> 77 <b>]</b> |


| a) Vertically | b) Tangential to the orbit |
|---------------|----------------------------|
|               |                            |

d) Horizontally

c) At  $45^\circ$  to the vertical

7.

## What will be the position of centre of mass of a half disc of uniform mass density as **[0.77]** shown?



8. Potential energy of a satellite having mass **m** and rotating at a height of  $6.4 \times 10^6$  m from **[0.77]** the earth centre is:

| a) -mgR <sub>e</sub>      | b) -0.5 mgR <sub>e</sub>  |
|---------------------------|---------------------------|
| c) -0.67 mgR <sub>e</sub> | d) -0.33 mgR <sub>e</sub> |

9. A stone thrown from the top of a building is given an initial velocity of 20.0 m/s straight [0.77] upward. Determine the maximum height it travels in meters. (Take  $g = 9.8 \text{ m/sec}^2$ )

| a) 15.4 | b) 25.4 |
|---------|---------|
| c) 30.4 | d) 20.4 |

10. The reason why cyclists bank when taking a sharp turn is:

| a) to supply the acceleration required to move fast. | b) cyclists enjoy turning to one side and so bank. |
|------------------------------------------------------|----------------------------------------------------|
| c) to decelerate at the turns as turns are           | d) to supply the sidewise (centripetal)            |
| dangerous.                                           | acceleration required to make the                  |
|                                                      | direction change.                                  |

[0.77]

A shell of mass 0.020 kg is fired by a gun of mass 100 kg. If the muzzle speed of the shell is [0.77]
 80 ms<sup>-1</sup>, what is the recoil speed of the gun?

| a) 1.7 cm/s | b) 1.6 cm/s |
|-------------|-------------|
| c) 1.9 cm/s | d) 1.8 cm/s |

A 6.0-kg box moving at 3.0 m/s on a horizontal, frictionless surface runs into a light spring [0.77] of force constant 75 N/cm Use the work–energy theorem to find the maximum compression of the spring.

| a) 7.5 cm | b) 8.5 cm |
|-----------|-----------|
| c) 9.5 cm | d) 6.5 cm |

13. The radius of gyration of a body about an axis at a distance of 6 cm from its centre of mass [0.77] is 10 cm. Then, its radius of gyration about a parallel axis through its centre of mass will be

| a) 80 cm | b) 8 cm |
|----------|---------|
|----------|---------|

|     | c) 0.8 cm                                                                                         | d) 800 cm                                                                                          |                        |
|-----|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------|
| 14. | A body of weight 72 N moves from the surface of earth at a height half of the radius of           |                                                                                                    | <b>[0.</b> 77 <b>]</b> |
|     | earth, then gravitational force exerted on it will be:                                            |                                                                                                    |                        |
|     | a) 36 N                                                                                           | b) 144 N                                                                                           |                        |
|     | c) 50 N                                                                                           | d) 32 N                                                                                            |                        |
| 15. | The law of conservation of energy is valid:                                                       |                                                                                                    | <b>[0.</b> 77 <b>]</b> |
|     | a) only for Newtonian mechanics.                                                                  | b) only for applied mechanics.                                                                     |                        |
|     | c) only for relativistic mechanics.                                                               | d) across all domains of nature.                                                                   |                        |
| 16. | The significant digits in 0.000532 are                                                            |                                                                                                    | <b>[0.</b> 77 <b>]</b> |
|     | a) 5, 3, 2                                                                                        | b) 2, 3                                                                                            |                        |
|     | c) 0,5,3,2                                                                                        | d) 5, 3                                                                                            |                        |
| 17. | For one-dimensional motion displacement is                                                        | the change in position and is given by                                                             | <b>[0.</b> 77 <b>]</b> |
|     | a) $\Delta \mathrm{x} = \mathrm{x}_2 - \mathrm{x}_1$                                              | b) $\Delta \mathrm{x} = \left(\mathrm{x}_2 + \mathrm{x}_1 ight)/2$                                 |                        |
|     | c) $\Delta \mathrm{x} = \mathrm{x}_2 + \mathrm{x}_1$                                              | d) $\Delta x=2(x_2+x_1)$                                                                           |                        |
| 18. | An arbitrary vector $ec{v}$ can be expressed as a s                                               | um of three mutually perpendicular unit                                                            | <b>[0.</b> 77 <b>]</b> |
|     | vectors each multiplied by a                                                                      |                                                                                                    |                        |
|     | a) scalar constant equal to -1                                                                    | b) some scalar constant                                                                            |                        |
|     | c) same scalar constant                                                                           | d) scalar constant equal to 1                                                                      |                        |
| 19. | Which of the following statements is true?                                                        |                                                                                                    | <b>[0.</b> 77 <b>]</b> |
|     | a) Laws of nature have identical form                                                             | b) Velocity of light in vacuum is                                                                  |                        |
|     | in all reference frames                                                                           | maximum                                                                                            |                        |
|     | c) Velocity of light is constant in all                                                           | d) Velocity of light is same in all                                                                |                        |
| 20  | media<br>The S.I unit of force is                                                                 | reference frames                                                                                   | [0 77]                 |
| 20. |                                                                                                   |                                                                                                    | [0.77]                 |
|     | a) Joule                                                                                          | b) dyne                                                                                            |                        |
| 04  | c) Newton                                                                                         | d) erg                                                                                             | [0 ==]                 |
| 21. | A planet is revolving around the sun in an ell distances of the planet from the sun are 3 $	imes$ | iptical orbit. The maximum and the minimum $10^{12}$ m and 2 $	imes$ $10^{10}$ m respectively. The | [0.77]                 |
|     | speed of the planet when it is nearest to sun                                                     |                                                                                                    |                        |
|     | planet when it is farthest from the sun?                                                          |                                                                                                    |                        |
|     | a) $1.33	imes10^{5}$ m/sec                                                                        | b) 1.5 $	imes$ $10^7$ m/sec                                                                        |                        |
|     | c) 3 $	imes$ $10^5$ m/sec                                                                         | d) 2.66 $	imes$ $10^5$ m/sec                                                                       |                        |
| 22. | At what height from the surface of the earth                                                      | the gravitational potential and the value of g                                                     | <b>[0.</b> 77]         |
|     | are -5.4 $	imes$ 10 $^7$ Jkg <sup>-2</sup> and 6.0 ms <sup>-2</sup> respectively?                 | Take the radius of earth as 6400 km.                                                               |                        |
|     | a) 1600 km                                                                                        | b) 2000 km                                                                                         |                        |

| a) 1600 km | b) 2000 km |
|------------|------------|
| c) 1400 km | d) 2600 km |

A car traveling at a constant speed of 45.0 m/s passes a trooper hidden behind a billboard. [0.77]
 One second after the speeding car passes the billboard; the trooper sets out from the
 billboard to catch it, accelerating at a constant rate of 3 m/s<sup>2</sup>. How long does it take her to overtake the car?

|   | a) 34.0 s                      | b) 36.0 s                               |                |
|---|--------------------------------|-----------------------------------------|----------------|
|   | c) 33.0 s                      | d) 31.0 s                               |                |
| • | Vectors can be added by:       |                                         | <b>[0.</b> 77] |
|   | a) Vector addition             | b) Adding the magnitudes of the vectors |                |
|   | c) Translating the two vectors | d) Adding the angles of the vectors     |                |

25. An army vehicle of mass 1000 kg is moving with a velocity of 10 m/s and is acted upon by a [0.77] forward force of 1000 N due to the engine and a retarding force of 500 N due to friction.What will be its velocity after 10 s?

| a) 10 m/s | b) 15 m/s |
|-----------|-----------|
| c) 20 m/s | d) 5 m/s  |

24.

30.

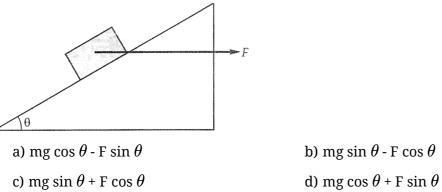
#### Section B

#### Attempt any 20 questions

- 26. A rope is wound around a hollow cylinder of mass 3 kg and radius 40 cm. What is the **[0.77]** angular acceleration of the cylinder if the rope is pulled with a force of 30 N?
  - a)  $_{25 \text{ m/s}^2}$  b)  $_{0.25 \text{ rad/s}^2}$ c)  $_{5 \text{ m/s}^2}$  d)  $_{25 \text{ rad/s}^2}$
- 27. Two bodies have their moments of inertia I and 2 I respectively about their axis of rotation. [0.77]If their kinetic energies of rotation are equal, their angular velocity will be in the ratio

| a) 1:2   | b) $\sqrt{2}:1$ |
|----------|-----------------|
| c) 2 : 1 | d) $1:\sqrt{2}$ |

28. A body is projected from earth's surface to become its satellite. Its time period of revolution **[0.77]** will not depend upon:


| a) mass of earth          | b) its own mass    |
|---------------------------|--------------------|
| c) gravitational constant | d) radius of earth |

29. Two bodies of mass m and 4 m have equal kinetic energy. What is the ratio of their [0.77] momentum?

| a) 2 : 1          | b) 1 : 1  |                         |
|-------------------|-----------|-------------------------|
| c) 1:4            | d) 1 : 2  |                         |
| Displacement is a | I         | [ <b>0.</b> 77 <b>]</b> |
| a) tensor         | b) scalar |                         |
| c) Hector         | d) Vector |                         |

| 31. | The position of a particle is given by $ec{r}=3.0t\hat{i}+2.0t^2\hat{j}+4.0\hat{k}$ . Find the magnitude and direction of the velocity of the particle at t = 2.0 s. |                                                                                               | <b>[0.</b> 77]         |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------|
|     | a) 8.84 m s $^{-1}$ , $75^{\circ}$ with x-axis                                                                                                                       | b) 6.54 m ${ m s}^{-1}$ , $74^\circ$ with x-axis                                              |                        |
|     | c) 7.54 m ${ m s}^{-1}$ , $72^\circ$ with x-axis                                                                                                                     | d) 8.54 m s $^{-1}$ , $70^\circ$ with x-axis                                                  |                        |
| 32. | The mass of a ship is $2	imes 10^7$ kg. On applying 25 m. The speed of ship is                                                                                       | g a force of 25 $	imes$ 10 $^5$ N, it is displaced through                                    | [0.77]                 |
|     | a) 2.5 m/s                                                                                                                                                           | b) 5 m/s                                                                                      |                        |
|     | c) 12.5 m/s                                                                                                                                                          | d) 3.7 m/s                                                                                    |                        |
| 33. | Two bodies, A and B initially, at rest, move to<br>attraction. At the instant when the speed of A<br>of mass of the bodies is                                        | wards each other under mutual force of<br>a is v and that of B is 2v, the speed of the centre | [0.77]                 |
|     | a) 2v                                                                                                                                                                | b) 3v                                                                                         |                        |
|     | c) zero                                                                                                                                                              | d) 1.5v                                                                                       |                        |
| 34. | An inclined plane makes an angle 30° with he inclined plane has a linear acceleration of                                                                             | orizontal. A solid sphere rolling down this                                                   | <b>[0.</b> 77]         |
|     | a) $\frac{5g}{7}$                                                                                                                                                    | b) $\frac{2g}{3}$                                                                             |                        |
|     | c) $\frac{5g}{14}$                                                                                                                                                   | d) $\frac{g}{3}$                                                                              |                        |
| 35. | 11                                                                                                                                                                   | elerates at 10.0 $ m m/s^2$ for the entire distance of                                        | <b>[0.</b> 77 <b>]</b> |
|     | a) 89.4                                                                                                                                                              | b) 87.2                                                                                       |                        |
|     | c) 86.0                                                                                                                                                              | d) 90.3                                                                                       |                        |
| 36. | Null vector or a zero vector has a magnitude                                                                                                                         |                                                                                               | <b>[0.</b> 77]         |
|     | a) greater than zero                                                                                                                                                 | b) of complex nature                                                                          |                        |
|     | c) equal to zero                                                                                                                                                     | d) less than zero                                                                             |                        |
| 37. | According to the special theory of relativity, v<br>inertial frames?                                                                                                 | which of the following has same value in all                                                  | <b>[0.</b> 77]         |
|     | a) Velocity of light                                                                                                                                                 | b) Mass of an object                                                                          |                        |
|     | c) Length of an object                                                                                                                                               | d) Velocity of sound                                                                          |                        |
| 38. | The fundamental force with the shortest rang                                                                                                                         | ge is:                                                                                        | <b>[0.</b> 77]         |
|     | a) Weak Nuclear Force                                                                                                                                                | b) Electromagnetic Force                                                                      |                        |
|     | c) Strong Nuclear Force                                                                                                                                              | d) Gravitational Force                                                                        |                        |
| 39. | The ratio of the dimensions of Planck constandimensions of                                                                                                           | nt and that of the moment of inertia is the                                                   | <b>[0.</b> 77]         |
|     | a) time                                                                                                                                                              | b) velocity                                                                                   |                        |
|     | c) frequency                                                                                                                                                         | d) angular momentum                                                                           |                        |
| 40. | The figure shows a horizontal force acting or                                                                                                                        | a block of mass m on an inclined plane                                                        | <b>[0.</b> 77]         |

making an angle heta with the horizontal. What is the normal reaction N on the block?



41. The acceleration due to gravity at the North Pole of Neptune is approximately 10.7 m/s<sup>2</sup>. **[0.77]** Neptune has a mass  $1.0 \times 10^{26}$  kg and radius  $2.5 \times 10^4$  km and rotates once around its axis in about 16 h. What is the gravitational force on a 5.0-kg object at the north pole of Neptune?

| a) 53.5 N | b) 55.8 N |
|-----------|-----------|
| c) 54.5 N | d) 56 N   |

42. Mass of moon is  $\frac{1}{81}$  time that of earth and its radius is  $\frac{1}{4}$  the earth's radius. If escape [0.77] velocity at surface of earth is 11.2 km/s, then its value at surface of moon is:

| a) 0.5 km/s | b) 0.14 km/s |
|-------------|--------------|
| c) 2.5 km/s | d) 5 km/s    |

 $\begin{array}{ll} \mbox{43.} & \mbox{The acceleration due to gravity at a height h in terms of mass of earth $M_{\rm E}$, radius of the} & \mbox{[0.77]} \\ & \mbox{earth $R_{\rm E}$ and ${\it gravitational}$ constant $G$ is} \end{array}$ 

$$\begin{array}{ll} \text{a) } g(h) = \frac{M_E}{(R_E + h)^2} & \text{b) } g(h) = \frac{GM_E}{(R_E + 2h)^2} \\ \text{c) } g(h) = \frac{GmM_E}{(R_E + h)^2} & \text{d) } g(h) = \frac{GM_E}{(R_E + h)^2} \end{array}$$

44. The figure shows a man standing stationary with respect to a horizontal conveyor belt that [0.77] is accelerating with  $1 \text{ ms}^{-2}$ . What is the net force on the man? Mass of the man = 65 kg



45. Assertion (A): A particle thrown upward has zero velocity at its uppermost point. [0.77]
 Reason (R): The zero-velocity of a particle at any instant implies that the acceleration of the particle is also zero at that instant.

| a) Both A and R are true and R is the | b) Both A and R are true but R is not the |
|---------------------------------------|-------------------------------------------|
| correct explanation of A.             | correct explanation of A.                 |
| c) A is true but R is false.          | d) A is false but R is true.              |

46. **Assertion (A):** When a particle moves in a circle with a uniform speed, its velocity and **[0.77]** acceleration both changes.

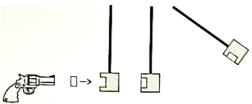
**Reason (R):** The centripetal acceleration in circular motion is dependent on angular velocity of the body.

|                                                                                                                                                                   | Attempt an                                                                                    | y 5 questions                                                         |                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------|
|                                                                                                                                                                   | Section C                                                                                     |                                                                       |                        |
|                                                                                                                                                                   | c) A is true but R is false.                                                                  | d) A is false but R is true.                                          |                        |
|                                                                                                                                                                   | a) Both A and R are true and R is the correct explanation of A.                               | b) Both A and R are true but R is not the correct explanation of A.   |                        |
| inner wheels leave the ground first.<br><b>Reason (R):</b> For a safe turn the velocity of an automobile should be less than the value of<br>safe limit velocity. |                                                                                               |                                                                       |                        |
| 49.                                                                                                                                                               | Assertion (A): When an automobile while go                                                    | ing too fast around a curve overturns, its                            | [0.77]                 |
|                                                                                                                                                                   | <ul><li>c) A is true but R is false.</li></ul>                                                | <ul><li>d) A is false but R is true.</li></ul>                        |                        |
|                                                                                                                                                                   | <b>Reason (R):</b> Point of contact of the body with<br>a) Both A and R are true and R is the | incline remains at rest.<br>b) Both A and R are true but R is not the |                        |
| 48.                                                                                                                                                               | <b>Assertion (A):</b> When a body accelerates down acts on the body.                          | n an incline rolling purely, static friction force                    | <b>[0.</b> 77 <b>]</b> |
|                                                                                                                                                                   | c) A is true but R is false.                                                                  | d) A is false but R is true.                                          |                        |
|                                                                                                                                                                   | a) Both A and R are true and R is the correct explanation of A.                               | b) Both A and R are true but R is not the correct explanation of A.   |                        |
| 47.                                                                                                                                                               | fundamental quantities.<br><b>Reason (R):</b> Length, mass and time cannot be                 |                                                                       | [0.77]                 |
| 47.                                                                                                                                                               | c) A is true but R is false.<br>Assertion (A): In mechanics, we treat length,                 | d) A is false but R is true.                                          | <b>[0.</b> 77]         |
|                                                                                                                                                                   | a) Both A and R are true and R is the correct explanation of A.                               | b) Both A and R are true but R is not the correct explanation of A.   |                        |
|                                                                                                                                                                   |                                                                                               |                                                                       |                        |

50. A lift is coming from 8<sup>th</sup> floor and is just about to reach 4<sup>th</sup> floor. Taking ground floor as **[0.77]** origin and positive direction upwards for all quantities, which one of the following is correct?

| a) x > 0, v < 0, a < 0 | b) x < 0, v < 0, a > 0 |
|------------------------|------------------------|
| c) x > 0, v < 0, a > 0 | d) x > 0, v > 0, a < 0 |

51. A body of mass 0.40 kg moving initially with a constant speed of 10 ms<sup>-1</sup> to the north is subject to a constant force of 8.0 N directed towards the south for 30 s. Take the instant the force is applied to be t = 0, the position of the body at that time to be x = 0, and predict its position at t = -100 s


| a) -67 km | b) -60 km |
|-----------|-----------|
| c) -50 km | d) -55 km |

#### Question No. 52 to 55 are based on the given text. Read the text carefully and answer the

#### questions:

The ballistic pendulum was invented in 1742 by English mathematician Benjamin Robins.

A Ballistic Pendulum is a device for measuring a bullet's momentum and speed by employing perfectly inelastic collision.



A large wooden block suspended by two cords serves as the pendulum bob. When a bullet is fired into the bob, it gets embedded in the bob and its momentum is transferred to the bob.

The bullet's momentum and velocity can be determined from the amplitude of the pendulum swing. The velocity of the bullet, in turn, can be derived from its calculated momentum.

After collision, if the pendulum reaches a height h, then from principle of conservation of mechanical energy

$$rac{1}{2}(m+M)v_p^2$$
 = (m + M)gh

where, m= mass of bullet, M = mass of the bob  $v_P$  = velocity of the bob-bullet combination

$$\therefore v_p = \sqrt{2gh}$$

Now, Momentum before collision = Momentum after collision

 $mv_B = (m+M)v_p$ 

where,  $v_B$  = velocity of bullet  $v_B = rac{m+M}{m} \sqrt{2gh}$ 

the ballistic pendulum used to be a common tool for the determination of the muzzle velocity of bullets as a measure of the performance of firearms and ammunition (Nowadays, the ballistics pendulum has been replaced by the ballistic chronograph, an electronic device).

| 52. | In ballistic pendulum the collision is               |                                                                                               | <b>[0.</b> 77 <b>]</b> |
|-----|------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------|
|     | a) Perfectly inelastic                               | b) Partly elastic, partly inelastic                                                           |                        |
|     | c) Elastic                                           | d) Inelastic                                                                                  |                        |
| 53. | Which two principles of Physics are applied t        | o find the velocity of the bullet?                                                            | <b>[0.</b> 77 <b>]</b> |
|     | a) conservation of mass and conservation of momentum | b) conservation of mechanical energy,<br>conservation of momentum and<br>conservation of mass |                        |
|     | c) conservation of mechanical energy                 | d) conservation of mechanical energy                                                          |                        |
|     | and conservation of momentum                         | and conservation of mass                                                                      |                        |
| 54. | The ballistic pendulum was invented by a             |                                                                                               | <b>[0.</b> 77]         |
|     | a) Chemist                                           | b) Warrior                                                                                    |                        |
|     | c) Mathematician                                     | d) Physicist                                                                                  |                        |
| 55. | Ballistic pendulum has been replaced by              |                                                                                               | <b>[0.</b> 77 <b>]</b> |
|     | a) Gyrograph                                         | b) Seismograph                                                                                |                        |

c) Tachograph

d) Chronograph

#### Solution

#### SUBJECT - PHYSICS 042 - TEST - 02

#### **Class 11 - Physics**

#### Section A

1. (a) James Clerk Maxwell

**Explanation:** The unification of light and electrical phenomena led to his prediction of the existence of radio waves. **Maxwell** is also regarded as a founder of the modern field of electrical engineering.

2. (c)  $[ML^2T^{-2}]$ 

**Explanation:** [Torque] = [ML<sup>2</sup>T<sup>-2</sup>]

(b) the total length of the path traversed by an object.
 Explanation: The path length is defined as the total length of the path traversed by an object. Unlike displacement, which is the shortest distance between two points, the path length is the total distance travelled, regardless of where it travelled.

4. **(d)** 5.10 m

**Explanation:** Initial velocity is given by ,u = 10m/s

As at the maximum height ball will stop, so final velocity is given by v = 0 m/s

Only acceleration working on it is the acceleration due to gravity  $g = -9.8 \text{m/s}^2$ 

Let height = h

We know that,  $v^2 - u^2 = 2as$   $\Rightarrow (0)^2 - (10)^2 = 2 \times (-9.8)h$  $\Rightarrow h = \frac{-100}{-19.6} = 5.10 \text{ m}$ 

5. **(b)** Moment of inertia and moment of force **Explanation:** Moment of inertia,

```
[I] = Mass × distance<sup>2</sup> = [ML<sup>2</sup>]
Moment of force,
[\tau] = Force × distance
= MLT<sup>-2</sup> · L = [ML<sup>2</sup>T<sup>-2</sup>]
\therefore [I] \neq [\tau]
```

6. **(b)** Tangential to the orbit

**Explanation:** As the direction of velocity at any point moving in a circular orbit is tangent at that point, thus momentum would be tangential to the orbit.

- 7. **(b)**  $\left(0, \frac{4a}{3\pi}\right)$  **Explanation:**  $x_{CM} = 0$  $y_{CM} = \frac{4a}{3\pi}$
- 8. **(b)** -0.5 mgR<sub>e</sub>

**Explanation:** Height h =  $6.4 \times 10^6$  m is the radius R<sub>e</sub> of the earth.

$$U = -rac{GMm}{R_e + R_e}$$
  
=  $-rac{gR_r^2m}{2R_e}$  = -0.5 mgR<sub>e</sub>

9. (d) 20.4

**Explanation:** Initial velocity, u = 20.0 m/s

At maximum height stone will be stopped, So final velocity, v = 0 m/s

Acceleration due to gravity, a = g = -9.8 m/s<sup>2</sup> (-ve sign show the opposite direction of motion) Let maximum height = s We know,  $v^2 - u^2 = 2as$  $\Rightarrow 0^2 - (20)^2 = 2 \times (-9.8)s$ 

$$\Rightarrow -400 = -19.6s$$
  
 $\Rightarrow s = rac{-400}{-19.6} = 20.4 \ m$ 

10. (d) to supply the sidewise (centripetal) acceleration required to make the direction change. Explanation: In order to make a safe turn, the cyclist has to bend a little from his vertical position. In this case, a component of the reaction provides the required centripetal force.

If  $\theta$  is an angle made by the cyclist with the vertical then

 $N \cos\theta = mg \dots (1)$ N sin $\theta = \frac{mv^2}{r}$ ....(2) Dividing (2) by (1), we get  $\tan \theta = \frac{v^2}{rg}$  $ightarrow heta = tan^{-1}(rac{v^2}{rg})$ 

In actual practice, the value of  $\theta$  is slightly less because the force of friction also contributes towards the centripetal force.

(b) 1.6 cm/s 11.

Explanation: Mass of shell, m = 0.02kg

Mass of gun, M = 100kg

Speed of shell,  $v = 80 m s^{-1}$ 

Let V be the recoil speed of the gun. According to the law of conservation of momentum,

Initial momentum = Final momentum

0 = mv + MV

 $\mathrm{V}=-\frac{mv}{M}=-\frac{0.02\times80}{100}$ 

recoil speed of the gun is  $V = -0.016 \text{ms}^{-1} = -1.6 \text{cms}^{-1}$ 

A negative sign indicates that the gun moves backward as the bullet moves forward.

#### 12. (b) 8.5 cm

Explanation: For maximum compression of spring, kinetic energy will be converted into the potential energy of spring.

$$egin{aligned} rac{1}{2}kx^2 &= rac{1}{2}mv^2\ x^2 &= rac{mv^2}{k} &= rac{6 imes 3 imes 3}{75 imes 10^2}\ x &= \sqrt{rac{6 imes 3 imes 3}{75 imes 10^2}} = 0.085 \mathrm{m} = 8.5 \mathrm{cm} \end{aligned}$$

(b) 8 cm 13.

**Explanation:** 

$$I_{CD} = I_{AB} + M^2$$

$$Mk_{CD}^{2} = Mk_{CM}^{2} + Md^{2}$$

$$k_{CM}^{2} = k_{CD}^{2} - d^{2} = (10)^{2} - 6^{2} = 64$$

$$\therefore k_{CM} = 8 \text{ Cm}$$

#### 14. **(d)** 32 N

**Explanation:**  $F_{surface} = G \frac{Mm}{D^2}$ 

$$F_{rac{R_e}{2}} = G rac{Mm}{\left(rac{R_e + R_e}{2}
ight)^2}$$
 =  $rac{4}{9} imes F_{
m surface}$  =  $rac{4}{9} imes 72$  = 32 N

15. (d) across all domains of nature.

**Explanation:** The law of conservation of energy is thought to be valid across all domains of nature, from the microscopic to the macroscopic. It is routinely applied in the analysis of atomic, nuclear, and elementary particle processes. At the other end. all kinds of violent phenomena occur in the universe all the time. Yet the total energy of the universe (the most ideal isolated system possible!) is believed to remain unchanged.

16. **(a)** 5, 3, 2

#### Explanation: There are three rules on determining how many significant figures are in a number:

- Non-zero digits are always significant.
- Any zeros between two significant digits are significant.
- A final zero or trailing zeros in the decimal portion ONLY are significant.

Keeping these rules in mind, we can say that only 5,3,2 are significant digits.

#### 17. (a) $\Delta \mathbf{x} = \mathbf{x}_2 - \mathbf{x}_1$

**Explanation:** Displacement is defined to be the change in position of an object. It can be defined mathematically with the following equation:

 $Displacement = \Delta x = x_2 - x_1$ 

where  $x_2$  refers to the value of the final position,  $x_1$  refers to the value of the initial position and  $\Delta x$  is the symbol used to represent displacement.

#### 18. **(c)** same scalar constant

**Explanation:** Set of elements (vectors) in a vector space is called a basis, or a set of basis vectors, if the vectors are linearly independent and every vector in the vector space is a linear combination of this set.In more general terms, a basis is a linearly independent spanning set.

Given a basis of a vector space, every element of vector space can be expressed uniquely as a linear combination of basis vectors, whose coefficients are referred to as vector coordinates or components. We can represent vector v as

$$ec{v} = x \hat{i} + y \hat{j} + z \hat{k}$$

(b) Velocity of light in vacuum is maximum
 Explanation: Velocity of light is maximum in vacuum.

#### 20. (c) Newton

**Explanation:** In the International System of Units (SI) the newton is the unit for force. It is equal to the amount of net force required to accelerate a mass of one kilogram at a rate of 1 m/sec<sup>2</sup> in direction of the applied force. It is named after Isaac Newton in recognition of his work on classical mechanics, specifically Newton's second law of motion.

21. (a)  $1.33 \times 10^5$  m/sec

**Explanation:** Perihelion is the nearest distance of planet from focus. aphelion is the farthest distance of planet from focus.

$$\begin{split} \mathbf{v}_{p} &= 2 \times 10^{7} \text{m/s} \\ \mathbf{v}_{a} &= ? \\ \mathbf{r}_{p} &= 2 \times 10^{10} \text{m} \\ \mathbf{r}_{a} &= 3 \times 10^{12} \text{m} \\ \frac{v_{p}}{v_{a}} &= \frac{r_{a}}{r_{p}} \\ \frac{2 \times 10^{7}}{v_{a}} &= \frac{3 \times 10^{12}}{2 \times 10^{10}} \\ \mathbf{v}_{a} &= 1.33 \times 10^{5} \text{m/s} \end{split}$$

22. **(d)** 2600 km **Explanation:**  $V = \frac{GM}{R+h}$  and  $g_h = \frac{GM}{(R+h)^2}$   $\therefore \frac{|V|}{g_h} = R + h$   $\Rightarrow R + h = \frac{5.4 \times 10^7}{6.0} = 9 \times 10^6 \text{ m} = 9000 \text{ km}$  $\therefore h = (9000 - 6400) \text{ km}$ 

= 2600 km

#### 23. **(d)** 31.0 s

**Explanation:** The initial speed of the car u = 45 m/s Let t = 0 s when the car passes the trooper. The trooper starts from rest 1 s after the car passes the billboard. In this 1 s the car would have covered a distance of 45 m. Let y be the time at which the trooper overtakes the car. Distance covered by car at time y S = 45 + uy = 45 + 45y.....(1)

(The distance is measured from the billboard)

The same distance is covered by the trooper also.

 $S = 0 + \frac{1}{2} \times 3 \times (y)^2....(2)$ 

(Initial speed of trooper = 0).

Equating (1) and (2)

 $45 + 45y = \frac{3}{2}(y)^2$ 

 $\Rightarrow$  3y<sup>2</sup> - 90y - 90 = 0

 $\Rightarrow$  y<sup>2</sup> - 30y - 30 = 0

Using quadratic formula, we get:  $\Rightarrow \frac{30 \pm \sqrt{900 + 120}}{2} = \frac{30 \pm 31.93}{2} = 30.97 \text{ s} \approx 31 \text{ s}$ neglected negative value of y.

24. **(a)** Vector addition

**Explanation:** Vector addition is the operation of adding two or more vectors together into a vector sum. The so-called parallelogram law gives the rule for vector addition of two or more vectors. For two vectors, the vector sum is obtained by placing them head to tail and drawing the vector from the free tail to the free head.

25. **(b)** 15 m/s

Explanation: Net forward force = 1000 - 500 = 500 N  $a = \frac{F}{m} = \frac{500}{1000} = \frac{1}{2} \text{ ms}^{-2}$  $v = u + at = 10 + \frac{1}{2} \times 10 = 15 \text{ ms}^{-1}$ 

Section **B** 

26. **(d)** 25 rad/s<sup>2</sup>

Explanation:  

$$\tau = l\alpha$$
  
 $F \times R = MR^2 \alpha$   
 $\alpha = \frac{F}{MR} = \frac{30}{3 \times 0.40} = 25 \text{ rad/s}^2$ 

- 27. **(b)**  $\sqrt{2}$  : 1 **Explanation:**  $\omega = \sqrt{\frac{2 \times \text{Rotational } K.E.}{I}}$ For same rotational K.E.,  $\omega \propto \frac{1}{\sqrt{I}}$  $\frac{\omega_1}{\omega_2} = \sqrt{\frac{I_2}{I_1}} = \sqrt{\frac{2I}{I}} = \sqrt{2} : 1$
- 28. **(b)** its own mass

**Explanation:** T =  $2\pi \sqrt{\frac{(R+h)^3}{GM}}$ , Clearly, T does not depend on the mass m of the satellite.

29. **(d)** 1 : 2

Explanation:  $p = \sqrt{2mK}$ For same K,  $p \propto \sqrt{m}$  $\therefore \frac{p_1}{p_2} = \sqrt{\frac{m_1}{m_2}} = \sqrt{\frac{m}{4m}} = \frac{1}{2} = 1:2$ 

30. (d) Vector

**Explanation:** Displacement vector is a vector which gives the position of a point with reference to a point other than the origin of the coordinate system.

#### 31. **(d)** 8.54 m s $^{-1}$ , 70° with x-axis

**Explanation:** Position vector is given by,  $\vec{r} = 3.0t\hat{i} + 2.0t^2\hat{j} + 4.0\hat{k}$ We know velocity is given by:-  $\vec{v} = \frac{dr}{dt}$ So,  $\vec{v} = 3.0\hat{i} + 4t\hat{j}$ Velocity after 2 seconds is:  $\vec{v} = 3\hat{i} + 8\hat{j}$ Magnitude of velocity =  $\sqrt{(3)^2 + (8)^2} = \sqrt{73} = 8.54 \text{ ms}^{-1}$ Direction is given by  $\theta = tan^{-1}(\frac{8}{3}) = 69.5 \approx 70^\circ$  with x-axis

32. (a) 2.5 m/s

Explanation:  $a = \frac{F}{m} = \frac{25 \times 10^5}{2 \times 10^7} = \frac{1}{8} \text{ ms}^{-2}$   $v^2 - u^2 = 2as$   $v^2 - 0^2 = 2 \times \frac{1}{8} \times 25 = \frac{25}{4}$  $v = \frac{5}{2} = 2.5 \text{ ms}^{-1}$ 

33. (c) zero

**Explanation:** As there is no external force and the two bodies move due to mutual force of attraction, so  $v_{CM} = 0$ .

34. (c)  $\frac{5g}{14}$ 

Explanation:  $a = rac{5}{7}g\sin 30^\circ = rac{5g}{14}$ 

35. **(a)** 89.4

**Explanation:** Initial velocity, u = 0Acceleration,  $a = 10.0 \text{ m/s}^2$ Distance covered, s = 400 mFinal velocity, v = ?We know that,  $v^2 - u^2 = 2as$  $\Rightarrow v^2 - 0 = 2 \times 10 \times 400$  $\Rightarrow 8000 = v^2$  $\Rightarrow v = \sqrt{8000} = 89.4 \text{ m/s}$ 

#### 36. (c) equal to zero

**Explanation:** A null vector is a vector having a magnitude equal to zero. It is represented by  $\vec{0}$ . A null vector has no direction or it may have any direction. Generally a null vector is either equal to resultant of two equal vectors acting in opposite directions or multiple vectors in different directions.

 $ec{0} = ec{A} + (-ec{A})$ 

37. (a) Velocity of light

Explanation: Velocity of light is same in all inertial frames.

38. (a) Weak Nuclear Force

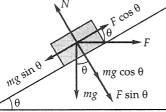
**Explanation:** There are four fundamental forces in nature which are Gravitational force, Strong force, Weak force, and Electromagnetic force.

Gravitational Force: This force is the weakest but has an infinite range.

**Strong Nuclear force:** This force holds the nucleus of an atom together. It is the strongest of the forces. It acts over a range of about 10<sup>-15</sup> m.

**Weak Nuclear Force:** This force is weak compared to the strong force as the name implies and has the shortest range of 10<sup>-18</sup>m.

**Electromagnetic Force**: This is the second strongest force after the strong force and it acts on electrically charged particles. It has a strength of  $\frac{1}{137}$  relative to the strong force but has an infinite range. Hence, the weakest force is the weak nuclear force.


39. (c) frequency

Explanation: 
$$\left[\frac{h}{I}\right] = \frac{E}{vI} = \frac{\left[\mathrm{ML}^2 \mathrm{T}^{-2}\right]}{[\mathrm{T}^{-1}][\mathrm{ML}^2]}$$

= [T<sup>-1</sup>] = [Frequency]

40. **(d)** mg cos  $\theta$  + F sin  $\theta$ 





Clearly, N = mg cos  $\theta$  + F sin  $\theta$ 

- 41. (a) 53.5 N Explanation: Gravitational Force F = mg $\Rightarrow F = 5 \times 10.7 = 53.5 N$
- 42. (c) 2.5 km/s

Explanation: 
$$v_e(earth) = \sqrt{\frac{2GM}{R}} = 11.2 \text{ km s}^{-1}$$
  
 $v_e(moon) = \sqrt{\frac{2G(\frac{M}{81})}{\frac{R}{4}}}$   
 $= \frac{2}{9}\sqrt{\frac{2GM}{R}} = \frac{2}{9} \times 11.2 \text{ ms}^{-1}$   
 $= 2.45 \text{ km/s}$ 

43. **(d)**  $g(h) = \frac{GM_E}{(R_E+h)^2}$ 

**Explanation:** We know by Newton's law of gravitation, the force on the body of mass m, situated at height h to the surface of the earth of mass  $M_E$  is given by:

$$F=Grac{M_em}{\left(r+h
ight)^2}$$
.....(1)

We also know F = mass  $\times$  acceleration(here acceleration is the acceleration due to gravity)  $\Rightarrow$  F = mg .....(2)

Equating (i) & (ii), we get 
$$g=Grac{M_e}{(r+h)^2}$$

44. **(c)** 65 N

**Explanation:** Net force on the man = ma =  $65 \times 1 = 65$  N

45. **(c)** A is true but R is false.

**Explanation:** When the velocity of a particle thrown upward becomes zero then it cannot move further which means it has reached its uppermost point. So, the assertion is true.

But, then also acceleration due to gravity is acting on it in the downward direction. Hence the reason is false.

- 46. **(b)** Both A and R are true but R is not the correct explanation of A. **Explanation:** Both A and R are true but R is not the correct explanation of A. In uniform circular motion, the magnitude of velocity and acceleration remains same, but due to change in direction of motion, the direction of velocity and acceleration changes. Also the centripetal acceleration is given by  $a = \omega^2 r$ .
- 47. (a) Both A and R are true and R is the correct explanation of A.
   Explanation: As length, mass and time represent our basic scientific quantities, therefore they are called fundamental quantities as they cannot be obtained from each other.
- 48. (a) Both A and R are true and R is the correct explanation of A.Explanation: Both A and R are true and R is the correct explanation of A.
- 49. **(b)** Both A and R are true but R is not the correct explanation of A. **Explanation:** If  $\mu_s$ , is the coefficient of static friction between the tyres and the road, the magnitude of frictional force F cannot exceed  $\mu_s$  mg, so that  $F \le \mu_s$  mgjjj

Thus for a safe turn:  $\frac{mv^2}{r} \leq \mu_s mg$ 

or  $\mu_s \geq rac{v^2}{rg}$  , or  $v \leq \sqrt{\mu_s rg}$ 

Therefore when the speed of car exceeds the value  $\sqrt{\mu_s rg}$  then the car overturns. Since the inner wheels are moving in a circle of smaller radius, the maximum permissible velocity for them is less. Hence the inner wheels leave the ground first and the car will overturn on the outside.

#### Section C

50. **(b)** x < 0, v < 0, a > 0

#### **Explanation**:

As the lift is coming from 8th to 4th then, the value of x becomes less (negative) Let x < 0. Velocity is downwards(i.e., negative). So, v < 0. Before reaching 4th-floor lift is retarded i.e acceleration is upwards. Hence a > 0



From 8<sup>th</sup> floor to 4<sup>th</sup> floor

51. **(c)** -50 km

**Explanation:**  $a = \frac{F}{m} = \frac{8}{0.4} = 20 \text{ms}^{-2}$  towards the south position at t = 30 sec  $s = ut + \frac{1}{2}at^2$  $s_1 = (10 \times 30) - \frac{1}{2} \times 20 \times 30 \times 30 = -8700 \text{ m}$ velocity at t = 30 sec v = u + at $v = 10 - (20 \times 30) = -590 \text{m/sec}$ for motion between 30 sec to 100 sec (for 70 sec)  $s_2 = (-590 \times 70) + 0 = -41300 \text{m}$  total distance

 $s = s_1 + s_2 = -(8700 + 41300) = -50000m = -50Km$ 

#### 52. (a) Perfectly inelastic

**Explanation:** A large wooden block suspended by two cords serves as the pendulum bob. When a bullet is fired into the bob, it gets embedded in the bob and its momentum is transferred to the bob. Hence the collision is perfectly inelastic.

# 53. (c) conservation of mechanical energy and conservation of momentum Explanation: Principle of conservation of mechanical energy, an expression for the bob-bullet combination after collision is derived. Then the principle of conservation of momentum is applied to find the velocity of the bullet before collision.

### 54. **(c)** Mathematician **Evaluation:** The ballistic pendulum was invented in 1742 by English mathematician Peniamin Pehir

Explanation: The ballistic pendulum was invented in 1742 by English mathematician Benjamin Robins.

#### 55. (d) Chronograph

**Explanation:** The ballistic pendulum. has now been replaced by the ballistic chronograph, an electronic device.