MODERN PHYSICS

- Work function is minimum for cesium (1.9 eV)
- * work function W = $hv_0 = \frac{hc}{\lambda_0}$
- * Photoelectric current is directly proportional to intensity of incident radiation. (v constant)
- Photoelectrons ejected from metal have kinetic energies ranging from 0 to KE_{max}

Here $KE_{max} = eV_s$ V_s - stopping potential

Stopping potential is independent of intensity of light used (v-constant)

Intensity in the terms of electric field is

$$I = \frac{1}{2} \in_0 E^2.c$$

- * Momentum of one photon is $\frac{h}{\lambda}$.
- Einstein equation for photoelectric effect is

$$hv = w_0 + k_{max} \implies \frac{hc}{\lambda} = \frac{hc}{\lambda_0} + eV_s$$

- * Energy $\Delta E = \frac{12400}{\lambda(A^0)} \text{ eV}$
- * Force due to radiation (Photon) (no transmission)

When light is incident perpendicularly

(a)
$$a = 1 r = 0$$

$$F = \frac{IA}{c}$$
, Pressure = $\frac{I}{c}$

(b)
$$r = 1$$
, $a = 0$

$$F = \frac{2IA}{c}$$
, $P = \frac{2I}{c}$

(c) when 0 < r < 1 and a + r = 1

$$F = \frac{IA}{c} (1 + r), P = \frac{I}{c} (1 + r)$$

When light is incident at an angle θ with vertical.

(a)
$$a = 1, r = 0$$

$$F = \frac{IA\cos\theta}{c}$$
, $P = \frac{F\cos\theta}{A} = \frac{I}{c}\cos 2\theta$

(b)
$$r = 1, a = 0$$

$$F = \frac{2IA\cos^2\theta}{c}, \qquad P = \frac{2I\cos^2\theta}{c}$$

(c)
$$0 < r < 1$$
, $a + r = 1$

$$P = \frac{I\cos^2\theta}{c} (1 + r)$$

De Broglie wavelength sk:

$$\lambda = \frac{h}{mv} = \frac{h}{P} = \frac{h}{\sqrt{2mKE}}$$

Radius and speed of electron in hydrogen like atoms.

$$r_n = \frac{n^2}{Z} a_0$$
 $a_0 = 0.529 \text{ Å}$

$$v_n = \frac{Z}{p} v_0$$
 $v_0 = 2.19 \times 10^6 \text{ m/s}$

Energy in nth orbit

$$E_n = E_1 \cdot \frac{Z^2}{p^2}$$
 $E_1 = -13.6 \text{ eV}$

Wavelength corresponding to spectral lines

$$\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

n₂ = 2, 3, 4..... n₂ = 3, 4, 5..... for Lyman series $n_1 = 1$ $n_1 = 2$ Balmer

 $n_1 = 3$ $n_2 = 4, 5, 6...$ Paschen

The lyman series is an ultraviolet and Paschen, Brackett and Pfund series are in the infrared region.

Total number of possible transitions, is $\frac{n(n-1)}{2}$, (from nth state)

If effect of nucleus motion is considered,

$$r_n = (0.529 \text{ Å}) \frac{n^2}{Z} \cdot \frac{m}{\mu}$$

$$E_n = (-13.6 \text{ eV}) \frac{Z^2}{n^2} \cdot \frac{\mu}{m}$$

Here µ - reduced mass

$$\mu = \frac{Mm}{(M+m)}, \ M - mass of nucleus$$

Minimum wavelength for x-rays

$$\lambda_{min} = \frac{hc}{eV_0} = \frac{12400}{V_0(volt)} \mathring{A}$$

Moseley's Law

*

$$\sqrt{V} = a(z - b)$$

a and b are positive constants for one type of x-rays (independent of Z)

Average radius of nucleus may be written as

$$R = R_0 A^{1/3}$$
, $R_0 = 1.1 \times 10^{-15} M$

A - mass number

Binding energy of nucleus of mass M, is given by B = $(ZM_p + NM_N - M)C^2$

Alpha - decay process

$$_{z}^{A}X \rightarrow_{z-2}^{A-4}Y +_{2}^{4}He$$

Q-value is

$$Q = \left[m \begin{pmatrix} A \\ Z \end{pmatrix} - m \begin{pmatrix} A-4 \\ z-2 \end{pmatrix} - m \begin{pmatrix} 4 \\ 2 \end{pmatrix} He \right] C^2$$

Beta- minus decay

$${}^{A}_{7}X \rightarrow {}^{A}_{7+1}Y + \beta^- + \nu^-$$

Q-value = $[m({}_{7}^{A}X) - m({}_{7,1}^{A}Y)]c^{2}$

Beta plus-decay

$${}^{A}_{7}X \longrightarrow {}^{A}_{7-1}Y + \beta + + \nu$$

Q-value =
$$[m(_{z}^{A}X) - m(_{z-1}^{A}Y) - 2me]c^{2}$$

Electron capture: when atomic electron is captured, X-rays are emitted.

$$_{z}^{A}X + e \longrightarrow _{Z-1}^{A}Y + v$$

Q - value =
$$[m(_{z}^{A}X) - m(_{z-1}^{A}Y)]c^{2}$$

In radioactive decay, number of nuclei at instant t is given by $N = N_0 e^{-\lambda t}$, λ -decay constant.

* Activity of sample : $A = A_0 e^{-\lambda t}$

Activity per unit mass is called specific activity.

Half life :
$$T_{1/2} = \frac{0.693}{\lambda}$$

* Average life: $T_{av} = \frac{T_{1/2}}{0.693}$

 A radioactive nucleus can decay by two different processes having half lives t₁ and t₂ respectively. Effective half-life of nucleus is given by

$$\frac{1}{t} = \frac{1}{t_1} + \frac{1}{t_2}.$$