

Chapter 17 Hydrogen and Its compounds

Hydrogen

(1) Position of hydrogen in the periodic table

Hydrogen is the first element in the periodic table. Hydrogen is placed in no specific group due to its property of giving electron (When H^- is formed) and also losing electron (When H^+ is formed).

(i) Hydrogen is placed in group I (Alkali metals) as,

(a) It has one electron in its (Outer) shell- $1s^1$ like other alkali metals which have (inert gas) ns^1 configuration.

(b) It forms monovalent H^+ ion like Li^+ , Na^+ ...

(c) Its valency is also 1.

(d) Its oxide (H_2O) is stable as Li_2O , Na_2O .

(e) It is a good reducing agent (In atomic as well as molecular state) like *Na*, *Li*...

(ii) Hydrogen also resembles halogens (Group VII A) as,

(a) It is also diatomic (H_2) like $F_2, Cl_2 \dots$

(b) It also forms anion H^- like F^- , Cl^- ... by gain of one electron.

(c) H^- has stable inert gas (*He*) configuration as CH_4, C_2H_6 like halogens CCl_4, SF_2Cl_2 etc.

(d) *H* is one electron short of duplet (Stable configuration) like *F*, *Cl*,... which are also one electron deficient than octet, $F - 2s^2 2p^5$; $Cl - 3s^2 3p^5$.

(e) (*IE*) of $H(1312 \ kJ \ mol^{-1})$ is of the same order as that of halogens.

(iii) (*IE*) of *H* is very high in comparison with alkali metals. Also size of H^+ is very small compared to that of alkali metal ion. *H* forms stable hydride only with strongly electropositive metals due to smaller value of its electron affinity (72.8 kJ mol⁻¹).

(iv) In view of the anomalous behaviour of hydrogen, it is difficult to assign any definite position to it in the periodic table. Hence it is customary to place it in group I (Along with alkali metals) as well as in group VII (Along with halogens).

(2) **Discovery and occurrence :** It was discovered by *Henry Cavendish* in 1766. Its name hydrogen was proposed by *Lavoisier*. Hydrogen is the 9th most abundant element in the earth's crust.

Hydrogen exists in diatomic state but in triatomicstate it is called as Hyzone. Systematic name of water is oxidane.

(3) **Preparation of Dihydrogen :** Dihydrogen can be prepared by the following methods,

(i) By action of water with metals

(a) Active metals like *Na*, *K* react at room temperature

$$2M + 2H_2O \rightarrow 2MOH + H_2$$
 [*M* = *N*a, *K* etc.]

(b) Less active metals like *Ca*, *Zn*, *Mg*, *Al* liberate hydrogen only on heating.

$$2Al + 3H_2O \rightarrow Al_2O_3 + 3H_2$$

(c) Metals like *Fe*, *Ni*, *Co*, *Sn* can react only when steam is passed over red hot metals.

$$3Fe + 4H_2O(\text{steam}) \rightarrow Fe_3O_4 + 4H_2$$

Ferrosoferric oxide

(ii) By the action of water on alkali and alkaline earth metals hydrides

$$NaH + H_2O \rightarrow NaOH + H_2$$

$$CaH_2 + 2H_2O \rightarrow Ca(OH)_2 + 2H_2$$

(iii) By reaction of metals like Zn, Sn, Al with alkalies (NaOH or KOH)

$$Zn + 2NaOH \xrightarrow{\Delta} Na_2ZnO_2 + H_2$$

sod. zincate
$$Al + 2NaOH + H_2O \xrightarrow{\Delta} 2NaAlO_2 + 2H_2$$

Sod. meta-aluminate
$$Si + 2NaOH + 2H_2O \xrightarrow{\Delta} Na_2SiO_3 + 3H_2$$

$$Sn + 2NaOH \xrightarrow{\Delta} Na_2SnO_2 + H_2 \uparrow$$

Sod. stannite

(iv) **By action of metal with acids** : All active metals which lie above hydrogen in electrochemical series, can displace hydrogen gas from dilute mineral acids like HCl, H_2SO_4 .

$$Fe + 2HCl \rightarrow FeCl_2 + H_2$$

(v) By the electrolysis of acidified water

$$2H_2O \xrightarrow{H^+ / \text{Electrolysis}} 2H_2 \uparrow + O_2 \uparrow$$

At cathode At anode

(vi) *Laboratory method* : In laboratory, it is obtained by action of granulated zinc with dilute H_2SO_4 .

$$Zn + dil. H_2SO_4 \rightarrow ZnSO_4 + H_2$$

It must be noted that

(a) Pure zinc is not used for the preparation of H_2 as rate of reaction of pure Zn with dil. H_2SO_4 is quite slow.

(b) Conc. H_2SO_4 is not used because then SO_2 gas is evolved instead of H_2 .

(vii) **Preparation of pure hydrogen**: It can be obtained by

(a) The action of pure dil. H_2SO_4 on pure magnesium ribbon.

 $Mg + H_2SO_4 \rightarrow MgSO_4 + H_2$

(b) Hydrogen of high purity (> 99.95%) is obtained by electrolysing warm aqueous barium hydroxide between nickel electrodes.

(c) By the action of water on sodium hydride.

 $NaH + H_2O \rightarrow NaOH + H_2 \uparrow$

(d) By the action of *KOH* (aq.) on aluminium. $2Al + 2KOH + 2H_2O \rightarrow 2KAlO_2 + 3H_2 \uparrow$

Hydrogen and Its compounds 679

(viii) Commercial production of dihydrogen

(a) **Bosch process :** In this method, water gas is mixed with twice its volume of steam and passed over heated catalyst Fe_2O_3 in the presence of a promoter Cr_2O_3 or ThO_2 at 773 K when CO_2 and H_2 are obtained. CO_2 is removed by dissolving it in water under pressure (20-25 *atm*) and H_2 left undissolved is collected.

$$C + H_2O \xrightarrow{1270 \ K} CO + H_2$$

Water gas
$$H_2 + CO + H_2O \xrightarrow{773 \ K}_{Fe_2O_3, C_2O_3} CO_2 + 2H_2$$

About 18% of the world's production of H_2 is obtained from coal.

(b) **Lane's process :** By passing steam over spongy iron at 773-1050 *K*.

$$3Fe + 4H_2O \rightarrow Fe_3O_4 + 4H_2$$

The ferrosoferric oxide (Fe_3O_4) so produced is reduced back to iron with water. this reaction is known as **Vivification reactions**

$$Fe_{3}O_{4} + 4H_{2} \rightarrow 3Fe + 4H_{2}O$$
$$Fe_{3}O_{4} + 4CO \rightarrow 3Fe + 4CO_{2}$$

(c) **By electrolysis of water** : Electrolysis of acidified water using platinum electrodes is used for the bulk preparation of hydrogen.

(d) **From hydrocarbons** : Hydrocarbons (alkanes) react with steam at high temperature to produce carbon monoxide and hydrogen, *e.g.*,

$$CH_4(g) + H_2O(g) \xrightarrow[Catalyst]{1270 K} CO(g) + 3H_2(g)$$

The mixture of *CO* and H_2 so obtained can be converted into hydrogen as in Bosch process. About 77% of the world's production of H_2 is obtained from hydrocarbons.

(e) It is also produced as a by-product of the brine electrolysis process for the manufacture of Cl_2 and *NaOH*.

(4) **Physical properties of dihydrogen :** It is a colourless, tasteless and odourless gas. It is slightly soluble in water. It is highly combustible. The Physical constants of atomic hydrogen are,

Atomic radius (pm) – 37 Ionic radius of H^- ion (pm) – 210 Ionisation energy $(kJmol^{-1})$ – 1312

Electron affinity $(kJ mol^{-1})$ -72.8

Electronegativity – 2.1

(5) Chemical properties of dihydrogen : Dihydrogen is quite stable and dissociates into hydrogen atoms only when heated above 2000 K, $H_2 \xrightarrow{2000 K} H + H$. Its bond dissociation energy is very high, $H_2 \rightarrow H + H$; $\Delta H = 435.9 \, kJ \, mol^{-1}$. Due to its high bond dissociation energy, it is not very reactive. However, it combines with many elements or compounds.

(i) Action with metals : To forms corresponding hydrides. $2Na + H_2 \xrightarrow{Heat} 2NaH$; $Ca + H_2 \xrightarrow{Heat} CaH_2$.

With transition metals (elements of d – block) such as *Pd*, *Ni*, *Pt* etc. dihydrogen forms interstitial hydrides in which the small molecules of dihydrogen occupy the interstitial sites in the crystal lattices of these hydrides. As a result of formation of interstitial hydrides, these metals adsorb large volume of hydrogen on their surface. This property of adsorption of a gas by a metal is called **occlusion**. The occluded hydrogen can be liberated from the metals by strong heating.

(ii) Reaction with Non-metals

$$2H_{2} + O_{2} \xrightarrow{Fe, Mo} 2H_{2}O$$

$$N_{2} + 3H_{2} \xrightarrow{Fe, Mo} 2NH_{3}$$

$$H_{2} + F_{2} \xrightarrow{Dark} 2HF$$

$$H_{2} + Cl_{2} \xrightarrow{Sunlight}_{673 K, Pressure} 2HCl$$

$$H_{2} + Br_{2} \rightarrow 2HBr$$

$$H_{2} + I_{2} \xrightarrow{673 K}_{Pr} 2HI$$

The reactivity of halogen towards dihydrogen decreases as, $F_2 > Cl_2 > Br_2 > I_2$

As a result, F_2 reacts in dark, Cl_2 in the presence of sunlight, Br_2 reacts only upon heating while the reaction with I_2 occurs in the presence of a catalyst.

(iii) **Reaction with unsaturated hydrocarbons** : H_2 reacts with unsaturated hydrocarbons such as ethylene and acetylene to give saturated hydrocarbons.

$$H_{2}C = CH_{2} + H_{2} \xrightarrow{\text{Ni or Ptor Pd}} CH_{3} - CH_{3}$$

$$Ethane$$

$$HC = CH + 2H_{2} \xrightarrow{\text{Ni or Ptor Pd}} CH_{3} - CH_{3}$$

This reaction is used in the *hydrogenation or hardening of oils*. The vegetable oils such as groundnut

oil or cotton-seed oil are unsaturated in nature because they contain at least one double bond in their molecules. Dihydrogen is passed through the oils at about 473 K in the presence of catalyst to form solid fats. The vegetable ghee such as Dalda, Rath, etc. are usually prepared by this process.

Vegetable oil+
$$H_2 \xrightarrow[(liquid)]{Ni} Fat$$

(solid)

(6) Uses of Dihydrogen

(i) As a reducing agent

(ii) In the hydrogenation of vegetable oils

(iii) As a rocket fuel in the form of liquid H_2

(iv) In the manufacture of synthetic petrol

(v) In the preparation of many compounds such as NH_3 , CH_3OH , Urea etc.

(vi) It is used in the oxy-hydrogen torch for welding if temperature around $2500^{\circ}C$ is required. It is also used in atomic hydrogen torch for welding purposes in which temperature of the order of $4000^{\circ}C$ is required.

Different forms of hydrogen

(1) **Atomic hydrogen :** It is obtained by the dissociation of hydrogen molecules. The atomic hydrogen is stable only for a fraction of a second and is extremely reactive. It is obtained by passing dihydrogen gas at atmospheric pressure through an electric arc struck between two tungsten rods.

The electric arc maintains a temperature around 4000 – 4500°C. As the molecules of dihydrogen gas pass through the electric arc, these absorb energy and get dissociated into atoms as

$$H_2(g) \xrightarrow{Electric} 2H(g) : \Delta H = 435.90 \text{ KJ mol}^{-1}$$

This arrangement is also called atomic hydrogen torch.

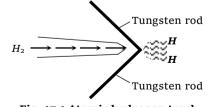
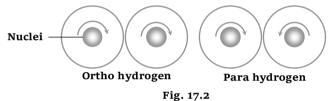



Fig. 17.1 Atomic hydrogen torch

(2) **Nascent hydrogen :** The hydrogen gas prepared in the reaction mixture in contact with the substance with which it has to react, is called nascent hydrogen. It is also called newly born hydrogen. It is more reactive than ordinary hydrogen. For example, if ordinary hydrogen is passed through acidified $KMnO_4$ (pink in colour), its colour is not discharged. On the other hand, if zinc pieces are added to the same solution, bubbles of hydrogen rise through the solution and the colour is discharged due to the reduction on $KMnO_4$ by nascent hydrogen.

$$\begin{split} &KMnO_4 + H_2 + H_2SO_4 \rightarrow No \ reaction \\ &Molecular \\ &Zn + H_2SO_4 \rightarrow ZnSO_4 + 2[H] \\ &Nascent \ hydrogen \\ &2KMnO_4 + 3H_2SO_4 + 10[H] \rightarrow K_2SO_4 + 2MnSO_4 + 8H_2O_4 \\ \end{split}$$

(3) **Ortho and para hydrogen :** A molecule of dihydrogen contains two atoms. The nuclei of both the atoms in each molecule of dihydrogen are spinning. Depending upon the direction of the spin of the nuclei, the hydrogen is of two types,

(i) Molecules of hydrogen in which the spins of both the nuclei are in the same directions, called ortho hydrogen.

(ii) Molecules of hydrogen in which the spins of both the nuclei are in the opposite directions, called para hydrogen.

Ordinary dihydrogen is an equilibrium mixture of ortho and para hydrogen. Ortho hydrogen \Rightarrow Para hydrogen. The amount of ortho and para hydrogen varies with temperature as,

(a) At $O^{\circ}K$, hydrogen contains mainly para hydrogen which is more stable.

(b) At the temperature of liquefaction of air, the ratio of ortho and para hydrogen is 1:1.

(c) At the room temperature, the ratio of ortho to para hydrogen is 3:1.

(d) Even at very high temperatures, the ratio of ortho to para hydrogen can never be more than 3:1.

Thus, it has been possible to get pure para hydrogen by cooling ordinary hydrogen gas to a very low temperature (close to 20 K) but it is never possible to get a sample of hydrogen containing more than 75% of ortho hydrogen. i.e., Pure ortho hydrogen can not be obtained.

Hydrogen and Its compounds 681

(4) **Hydrides :** Hydrogen forms binary hydrides of the type MH_x or M_mH_n with

(a) All main group elements except noble gases and probably indium and thallium.

(b) All lanthanoids and actinoids.

(c) Transition metals (*Sc*, *Y*, *La*, *Ac*, *Tc*, *Zr*, *Hf* and to a lesser extent *V*, *Nb*, *Ta*, *Cr*, *Cu* and *Zn*). In group 6 only *Cr* forms hydride (*CrH*).

Hydrides are classified into three main categories.

(i) **Saline or ionic hydrides** : Most of the *s*-block metals form this type of hydrides. These are non-volatile, non-conducting crystalline solids. However, BeH_2 and M_gH_2 have covalent polymeric structure. These ionic hydrides have rock-salt structure. Thermal stability of 1st and 2nd group hydrides are in the order;

LiH > NaH > KH > RbH > CsH

 $CaH_2 > SrH_2 > BaH_2$

 BeH_2, MgH_2 and LiH have significant covalent character.

Electrolysis of solution of saline hydride in molten alkali halide produces H_2 at anode. Saline hydrides react explosively with water.

 $NaH(s) + H_2O(aq) \rightarrow NaOH(aq) + H_2(g)$

The fire so produced cannot be extinguished by CO_2 as it gets reduced by the hot metal hydride. Only sand is useful, as it is a solid.

Alkali metal hydrides are used for making $LiAlH_4$, $NaBH_4$ etc. Alkali metal hydrides are also used for the removal of last traces of water from organic compounds.

(ii) *Metallic or interstitial hydrides* : Elements of groups 3, 4, 5 (*d*-block) and *f*-block elements form metallic hydrides. In group 6, only *Cr* forms hydride (*CrH*). Metals of group 7, 8, 9 do not form hydrides. This region of periodic table from group 7 to group 9 is known as hydride gap. Examples of hydrides of group 3 to 5 are, *ScH*₂, *YH*₂, *YH*₃, *LaH*₂, *LaH*₃, *TiH*₂, *ZrH*₂, *HfH*₂, *VH*,

VH_2 , NbH, NbH_2 , TaH

The *f*-block metals form hydrides of limiting compositions of MH_2 and MH_3 . All these hydrides are non-stoichiometric with variable composition *e.g.*,

 $ZrH_x(1.30 \le x \le 1.75)$, $TiH_x(1.8 \le x \le 2.0)$.

Most of these hydrides are good conductors of electricity in solid state.

Metallic hydrides can be used to store hydrogen especially in cars working on fuel cells.

(iii) Molecular or covalent hydrides : Hydrogen form molecular compounds with *p*-block elements (*B*, C, N, O, F; Si, P, S, Cl; Ga, Ge, As, Sb, Br; In, Sn, Sb, Te, I; Tl, Pb, At). common examples of such hydrides are CH_4 , NH_3 , H_2O , HF etc. The stability of these hydrides decreases down the group. For example, $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$. In a period the stability increases with increasing electronegativity. For example, $CH_4 < NH_3 < H_2O < HF$. Molecular hydrides are classified as electron rich, electron precise and electron deficient hydrides.

(a) *Electron rich molecular hydrides* : These hydrides have one or more lone pairs of electrons around the central more electronegative element. For example

$$H - O - H$$
, $H - N - H$, $H - F$:
 H

(b) Electron precise molecular hydrides : Elements of group 14 form such hydrides. The bond length increases on going down the group. A common example of electron precise molecular hydrides is CH_4 .

(c) Electron deficient molecular hydrides : These hydrides have lesser number of electrons than that required for writing the conventional Lewis structure. A common example of such molecular hydride is diborane, B_2H_6 .

(d) Systematic names of molecular hydrides : The systematic names of these hydrides are obtained from the name of the element and the suffix -ane. For example,

$$\begin{array}{ccc} PH_3 & H_2O & NH_3 \\ \text{Phosphane} & \text{oxidane} & \text{ozane} \end{array}$$

Isotopes of Hydrogen

Isotopes are the different forms of the same element, which have the same atomic number but different mass numbers.

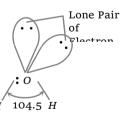
Table 17.1 Isotopes of hydrogen

Name	Symbo	Atomic	Mass	Relative	Nature
	1	numbe	numbe	abundanc	radioactive

		r	r	e	or non- radioactive
Protium or Hydroge n	¹ ₁ H or H	1	1	99.985%	Non- radioactive
Deuteriu m	$^{2}_{1}$ H or D	1	2	0.015%	Non- radioactive
Tritium	${}^{3}_{1}$ H or T	1	3	10 -15 %	Radioactive

Table 17.2 Physical	constants of	H_2, D_2	and	T_2
---------------------	--------------	------------	-----	-------

Property	H_2	D_2	<i>T</i> ₂	
Molecular mass	2.016	4.028	6.03	
Melting point (K)	13.8	18.7	20.63	
Boiling point (K)	20.4	23.9	25.0	
Heat of fusion $(kJ mol^{-1})$	0.117	0.197	0.250	
Heat of vaporisation (kJ mol ⁻¹)	0.994	1.126	1.393	
Bond energy (kJ mol ⁻¹)	435.9	443.4	446.9	


Isotopic effect : In general chemical properties of isotopes are same but quantiative differences are noticed amongst them. For example, the reaction between H_2 and Cl_2 is 13.4 times faster between D_2 and Cl_2 under similar conditions. Such differences in chemical properties, which are due to difference in the mass numbers of isotopes is known as isotopic effect.

Water

Water is the oxide of hydrogen. It is an important component of animal and vegetable matter. Water constitutes about 65% of our body. It is the principal constituent of earth's surface.

(1) **Structure :** Due to the presence of lone pairs,

the geometry of water is distorted and the H-O-H bond angle is 104.5°, which is less than the normal tetrahedral angle (109.5°). The geometry of the molecule is regarded as angular or bent. In water, each H 104.5

O-H bond is polar because of the high electronegativity of oxygen (3.5) in comparison to that of hydrogen (2.1). The resultant dipole moment of water molecule is 1.84D.

In ice, each oxygen atom is tetrahedrally surrounded by four hydrogen atoms; *two by covalent bonds and two by hydrogen bonds*. The resulting structure of ice is open structure having a number of vacant spaces. Therefore, the density of ice is less than that of water and ice floats over water. It may be noted

that water has maximum density $(1g cm^{-3})$ at $4^{\circ}C$ (277 *K*).

(2) **Heavy water :** Chemically heavy water is deuterium oxide $(D_2 O)$. It was discovered by **Urey**.

It is obtained as a by-product in some industries where H_2 is produced by the electrolysis of water.

Heavy water (D_2O) is used (a) as a moderator and coolant in nuclear reactors (b) in the study of mechanism of chemical reactions (c) as a starting material for the preparation of a number of deuterium compounds, *e.g.*,

$$SO_{3} + D_{2}O \rightarrow D_{2}SO_{4}$$

Deuteriosulphuric acid
$$Al_{4}C_{3} + 12 D_{2}O \rightarrow 3CD_{4} + 4Al(OD)_{3}$$

Deuteromethane
$$CaC_{2} + 2D_{2}O \rightarrow C_{2}D_{2} + Ca(OD)_{2}$$

Deuterioacetylene

(3) **Physical properties :** Water is colourless, odourless and tasteless liquid at ordinary temperature.

At 273K water is in equilibrium with ice and vapour this point is known triple point.

Table 17.3 Some physical constants of H_2O and D_2O at 298 K

Constant	Ordinary water <i>H</i> 2O	Heavy water D2O
Molecular mass	18.015	20.028
Maximum density (g cm ⁻³)	1.000	1.106
Melting point (K)	273.2	276.8
Boiling point (K)	373.2	374.4
Heat of fusion $(kJ mol^{-1})$ at 273K	6.01	6.28
Heat of vaporisation $(kJ mol^{-1})$ at $373K$	40.66	41.61
Heat of formation $(kJ mol^{-1})$	- 285.9	- 294.6
Ionisation constant	1.008×10^{-14}	1.95×10^{-15}

(4) **Chemical properties :** Water shows a versatile chemical behaviour. It behaves as an acid, a base, an oxidant, a reductant and as ligand to metals.

(i) **Dissociation of water** : Water is quite stable and does not dissociate into its elements even at high temperatures. Pure water has a small but measurable electrical conductivity and it dissociates as,

$$H_2O + H_2O \rightleftharpoons H_3O^+ + OH^-$$

Hydronium ion

 $K_W = 1.0 \times 10^{-14} mol^2 L^2$ at 298K

(ii) *Amphoteric nature* : Water can act both as an acid and a base and is said to be amphoteric. However, water is neutral towards litmus and its *p*H is 7.

(iii) **Oxidising and reducing nature** : Water can act both as an oxidising and a reducing agent in its chemical reactions. e.g.

$$2Na + 2H_2O \longrightarrow 2NaOH + H_2$$
$$2F_2 + 2H_2O \longrightarrow 4HF + O_2$$
$$Re ducing agent$$

(iv) *Hydrolytic reactions* : Water can hydrolyse many oxides, halides, hydrides, carbides, nitrides, phosphides, carbonates etc. to give an acid or a base or both as shown below :

$$SO_{2} + H_{2}O \rightarrow H_{2}SO_{3}$$

$$Mg_{3}N_{2} + 6H_{2}O \rightarrow 3Mg(OH)_{2} + 2NH_{3}$$

$$CaH_{2} + 2H_{2}O \rightarrow Ca(OH)_{2} + 2H_{2}$$

$$CaO + H_{2}O \rightarrow Ca(OH)_{2}$$

$$Na_{2}CO_{3} + 2H_{2}O \rightarrow 2NaOH + H_{2}CO_{3}$$

$$SiCl_{4} + 4H_{2}O \rightarrow Si(OH)_{4} + 4HCl$$

$$Ca_{3}P_{2} + 6H_{2}O \rightarrow 3Ca(OH)_{2} + 2PH_{3}$$

$$CaC_{2} + 2H_{2}O \rightarrow Ca(OH)_{2} + C_{2}H_{2}$$

(v) *Water forms hydrates with metal salts* : There are three main types of hydrates.

(a) Compounds in which water molecule are coordinated to the metal ion (complex compounds) $[Ni(OH_2)](NO_3)_2$, $Fe(OH_2)_6]Cl_3$ etc.

(b) Compound in which water molecule may be hydrogen bonded to oxygen to form oxo-anion. For example in $CuSO_4.5H_2O$, 4 molecules of water are co-ordinated to Cu^{2+} while the fifth molecule is hydrogen bonded to SO_4^{2-} ion.

(c) In some compounds, water molecule occupies, interstitial sites in the crystal lattice e.g., $BaCl_2.2H_2O$.

(5) Hard and Soft water

Water which produces lather with soap solution readily is called *soft water*. e.g. distilled water, rain water and demineralised water.

Water which does not produce lather with soap solution readily is called *hard water*. e.g. sea water, river water, well water and tap water.

(i) **Cause of hardness of water** : The hardness of water is due to the presence of bicarbonates, chlorides and sulphates of calcium and magnesium.

Hard water does not produce lather because the cations (
$$Ca^{+2}$$
 and Mg^{+2}) present in hard water react with soap to form insoluble precipitates,

 $M^{+2}_{From hard water} + 2C_{17}H_{35}COONa \rightarrow (C_{17}H_{35}COO)_2M + 2Na^+$ Sodium stearate(soap) Metal stearate(PPt.) Where M = Ca or Mg

Therefore, no lather is produced until all the calcium and magnesium ions are precipitated. This also results into wastage of lot of soap.

(ii) **Type of hardness of water** : The hardness of water is of two types,

(a) *Temporary hardness* : This is due to the presence of bicarbonates of calcium and magnesium. It is also called carbonate hardness.

(b) *Permanent hardness* : This is due to the presence of chlorides and sulphates of calcium and magnesium. It is also called non-carbonate hardness.

(iii) **Softening of water** : The process of the removal of hardness from water is called softening of water.

(a) *Removal of temporary hardness* : It can be removed by the following methods,

• By boiling : During boiling, the bicarbonates of *Ca* and *Mg* decompose into insoluble carbonates and give CO_2 . The insoluble carbonates can be removed by filtration.

$$Ca(HCO_{3})_{2} \xrightarrow{Heat} CaCO_{3} + CO_{2} + H_{2}O$$

$$Cal.bicarbonate \xrightarrow{PPt.} PPt.$$

$$Mg(HCO_{3})_{2} \xrightarrow{Heat} MgCO_{3} + CO_{2} + H_{2}O$$

$$Mag.bicarbonate \xrightarrow{PPt.} PPt.$$

• Clark's method : This process is used on a commercial scale. In this process, calculated amount of lime $[Ca(OH)_2]$ is added to temporary hard water.

$$Ca(HCO_3)_2 + Ca(OH)_2 \longrightarrow 2CaCO_3 \downarrow + 2H_2O$$

Soluble

$$Mg(HCO_3)_2 + Ca(OH_2) \longrightarrow MgCO_3 \downarrow + CaCO_3 \downarrow + 2H_2O$$

Soluble
(Insoluble)

(b) *Removal of permanent hardness* : Permanent hardness can be removed by the following methods,

• By washing soda method : In this method, water is treated with a calculated amount of washing soda (Na_2CO_3) which converts the chlorides and sulphates of *Ca* and *Mg* into their respective carbonates which get precipitated.

$$CaCl_{2} + Na_{2}CO_{3} \longrightarrow CaCO_{3} + 2NaCl$$

$$ppt.$$

$$MgSO_{4} + Na_{2}CO_{3} \longrightarrow MgCO_{3} + Na_{2}SO_{4}$$

$$ppt.$$

• Permutit method : This is a modern method employed for the softening of hard water. hydrated sodium aluminium silicate $(Na_2Al_2Si_2O_8.xH_2O)$ is called permutit. These complex salts are also known as zeolites.

The permutit as loosely packed in a big tank over a layer of coarse sand. Hard water is introduced into the tank from the top. Water reaches the bottom of the tank and then slowly rises through the permutit layer in the tank. The cations present in hard water are exchanged for sodium ions. Therefore this method is also called ion exchange method.

$$\begin{array}{c} Na_{2}Z+ & Ca^{+2} & \longrightarrow CaZ+2Na^{+} \\ \underset{\text{zeolite}}{\text{Sodium}} & \overset{\text{(From hard}}{\text{water})} & \overset{\text{Cal}}{\text{zeolite}} \\ Na_{2}Z+ & Mg^{+2} & \longrightarrow MgZ+2Na^{+} \\ \underset{\text{zeolite}}{\text{Sodium}} & \overset{\text{(From hard}}{\text{water})} & \underset{\text{zeolite}}{\text{zeolite}} \\ \end{array}$$
where $Z = Al_{2}Si_{2}O_{8}$. $xH_{2}O$

Hydrogen peroxide

Hydrogen peroxide (H_2O_2) was discovered by French chemist *Thenard*.

(1) **Preparation :** It is prepared by

(i) **Laboratory method** : In laboratory, H_2O_2 is prepared by Merck's process. It is prepared by adding calculated amounts of sodium peroxide to ice cold dilute (20%) solution of H_2SO_4 .

$$Na_2O_2 + H_2SO_4 \longrightarrow Na_2SO_4 + H_2O_2$$

(ii) By the action of sulphuric acid or phosphoric acid on hydrated barium peroxide $BaO_2.8H_2O$

(a)
$$BaO_2.8H_2O + H_2SO_4 \rightarrow BaSO_4 \downarrow + H_2O_2 + 8H_2O_3$$

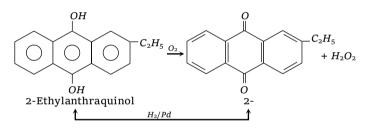
It must be noted that anhydrous barium peroxide does not react readily with sulphuric acid (because a coating of insoluble barium sulphate is formed on its surface which stops further action of the acid). Therefore, hydrated barium peroxide, $BaO_2.8H_2O$ must be used.

(b)
$$3BaO_2 + 2H_3PO_4 \rightarrow Ba_3(PO_4)_2 + 3H_2O_2$$

 $Ba_3(PO_4)_2 + 3H_2SO_4 \rightarrow 3BaSO_4 + 2H_3PO_4$

Phosphoric acid is preferred to H_2SO_4 because soluble impurities like barium persulphate (from $BaO_2.8H_2O + H_2SO_4$) tends to decompose H_2O_2 while

 H_3PO_4 acts as preservative (negative catalyst) for H_2O_2 .


(iii) *Industrial method* : On a commercial scale, H_2O_2 can be prepared by the electrolysis of 50% H_2SO_4 solution. In a cell, peroxy disulphuric acid is formed at the anode.

$$2H_2SO_4 \xrightarrow{\text{Elecrolysi}} H_2S_2O_8(aq.) + H_2(g)$$

Peroxy disulphuric acid

This is drawn off from the cell and hydrolysed with water to give H_2O_2 .

 $H_2S_2O_8 + 2H_2O \longrightarrow 2H_2SO_4 + H_2O_2$ The resulting solution is distilled under reduced pressure when H_2O_2 gets distilled while H_2SO_4 with high boiling point, remains undistilled.

(iv) **By redox process** : Industrially H_2O_2 is prepared by the auto-oxidation of 2-alkylanthraquinols. The process involves a cycle of reactions. The net reaction is the catalytic union of H_2 and O_2 to give H_2O_2 .

The H_2O_2 formed (about 1%) is extracted with water and concentrated.

(2) Physical properties

(i) Pure hydrogen peroxide is a pale blue syrupy liquid.

(ii) It freezes at $-0.5^{\circ}C$ and has a density of 1.4 in pure state.

(iii) Hydrogen peroxide is diamagnetic.

(iv) It is more highly associated via hydrogen bonding than water.

(v) Although it is a better polar solvent than H_2O . However, it can't be used as such because of strong autooxidation ability.

(vi) Dipole moment of H_2O_2 is 2.1 D.

(3) Chemical properties

(i) **Decomposition** : Pure H_2O_2 is an unstable liquid and decomposes into water and O_2 either upon standing or upon heating, $2H_2O_2 \longrightarrow 2H_2O + O_2$; $\Delta H = -196.0 kJ$

(ii) **Oxidising nature** : It is a powerful oxidising agent. It acts as an oxidising agent in neutral, acidic or

in alkaline medium. *e.g.* $2KI + H_2O_2 \longrightarrow 2KOH + I_2$ [In neutral medium]

$$2FeSO_4 + H_2SO_4 + H_2O_2 \longrightarrow Fe_2(SO_4)_3 + 2H_2O$$
 [In acidic medium]

$$MnSO_4 + H_2O_2 + 2NaOH \longrightarrow MnO_2 + Na_2SO_4 + 2H_2O$$

[In alkaline medium]

(iii) **Reducing nature** : H_2O_2 has tendency to take up oxygen from strong oxidising agents and thus, acts as a reducing agent, $H_2O_2 + O \longrightarrow H_2O + O_2$. It can act From oxidising agent

as a reducing agent in acidic, basic or even neutral medium.

In acidic medium, $H_2O_2 \longrightarrow 2H^+ + O_2 + 2e^-$

In alkaline medium,

 $H_2O_2 + 2OH^- \longrightarrow 2H_2O + O_2 + 2e^-$

(iv) **Bleaching action** : H_2O_2 acts as a bleaching agent due to the release of nascent oxygen.

$$H_2O_2 \longrightarrow H_2O + O$$

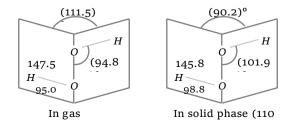
Thus, the bleaching action of H_2O_2 is due to oxidation. It oxidises the colouring matter to a colourless product, Colouring matter $+O \rightarrow$ Colour less matter.

 H_2O_2 is used to bleach delicate materials like ivory, silk, wool, leather etc.

(v) *Acidic nature* : Anhydrous hydrogen peroxide is acidic in character ($K_a = 1.55 \times 10^{-12}$ at 298 K). its dissociation in aqueous solution may be given as

$$H_2O_2 + H_2O \rightarrow H_3O^+ + HO_2^-$$

It forms two types of salts


$$NaOH + H_2O_2 \rightarrow NaHO_2 + H_2O_3$$

Sod. hydroperoxide
(Acidic salt)
 $2NaOH + H_2O_2 \rightarrow Na_2O_2 + 2H_2O_3$

$$NaOH + H_2O_2 \rightarrow Na_2O_2 + 2H_2O_3$$

Sod. peroxide
(Normal salt)

(vi) *Addition reactions* : Hydrogen peroxide is capable of adding itself to ethylenic linkage.

$$\begin{array}{c} CH_2 \\ \parallel \\ CH_2 \\ CH_2 \\ \text{Ethylene} \end{array} \rightarrow \begin{array}{c} CH_2OH \\ \parallel \\ CH_2OH \\ \text{Ethylene glyce} \end{array}$$

(4) **Structure of H_2O_2 :** Hydrogen peroxide is nonlinear, non-planar molecule. It has a open book structure. The -O-O- linkage is called peroxy linkage. The structure is shown below.

(5) **Concentration of H_2O_2 :** Dilute H_2O_2 is concentrated to about 50% by slow evaporation on a water bath. It is further concentrated to 90% in a vacuum desiccator using conc. H_2SO_4 as dehydrating agent. Further concentration to 99% is obtained by distillation under reduced pressure. Last traces of moisture in 99% of H_2O_2 are removed or anhydrous H_2O_2 is obtained by cooling it to 263 K in a cold bath of ether and dry ice followed by seeding with a few crystals of solid H_2O_2 when needle-shaped crystals of 100% H_2O_2 separate out. These crystals are removed, dried and melted to get 100% H_2O_2 .

(6) **Storage of H_2O_2:** H_2O_2 is not stored in glass bottles since the alkali metal oxides present in glass catalyse its decomposition. It is, therefore, stored in paraffin wax coated glass, plastic or teflon bottles. Small amounts of acid, glycerol, alcohol, acetanilide and H_3PO_4 are often used as stablizers to check its decomposition.

Uses of hydrogen peroxide

(i) For bleaching delicate articles like wool, hair, feather, ivory, etc.

(ii) For restoring colour of old lead paintings whose white lead has blackened due to formation of *PbS* by H_2S of atmosphere. Hydrogen peroxide converts the black lead sulphide to white lead sulphate

(iii) As an aerating agent in production of spong rubber.

(iv) As an antiseptic and germicide for washing wounds, teeth and ears, under the name of perhydrol.

(v) In the manufacture of sodium perborate, sodium percarbonate. These are used in high quality detergents.

(vi) As an antichlor.

(vii) As an oxidant for rocket fuel.

(viii) In the detection of *Ti*, *V* and *Cr* ions with which it forms peroxides of characteristics colours.

(ix) In the production of epoxides, propylene oxide and polyurethanes.

(x) In the synthesis of hydroquinone, pharmaceuticals (cephalosoporin) and food products like tartaric acid.

(xi) For pollution control of domestic effluents where it restores the aerobic conditions of sewage wastes. For pollution control of industrial effluents containing CN^- ions. H_2O_2 oxidises CN^- ions to harmless products.

∠ Hydrogen forms more compounds than even

carbon.

∠ Metals like *Pd*, *Pt*, *Au* etc., have the property of absorbing large quantity of hydrogen at normal or higher temperature. Colloidal *Pd* can absorb 2950 times its own volume of hydrogen and *Pd* metal can absorb 900 times its own volume of hydrogen.


This phenomenon is known as occlusion of hydrogen. the occlusion property of these metals is in the order

Colloidal Palladium > Palladium > Platinum > Gold > Nickel.

In solids, water molecules can also be present as zeolite water and clathrate water.

∠ Ice is a good thermal insulator.

 \swarrow 30% H_2O_2 is called perhydrol. Its volume strength is 100 and molarity is 8.8.

Hydrogen

1.	Which is used hy	drogen generators	[CPMT 1999]
	(a) NaH	(b) <i>HI</i>	
	(c) $S_6 H_3$	(d) None of	these

2. Metal hydride on treatment with water gives [Bihar CEE 1995]

(a) H_2O_2 (b) H_2O

- (c) Acid (d) Hydrogen
- 3. Hydrogen burns in air with a [RPET 2003](a) Light bluish flame (b) Yellow flame
 - (c) Green flame (d) None of these
 - Which pair does not show hydrogen isotopes

[UPSEAT 2003]

- (a) Ortho hydrogen and para hydrogen
- (b) Protium and deuterium
- (c) Deuterium and tritium

4.

5٠

- (d) Tritium and protium
- Which is distilled first[Pb. PMT 2002](a) Liquid CO_2 (b) Liquid N_2
- (c) Liquid O_2 (d) Liquid H_2
- On reaction with Mg, very dilute nitric acid produces
 - [CPMT 2003]
 - (a) NH_3 (b) Nitrous oxide
 - (c) Nitric oxide (d) Hydrogen

686	Hydrogen	and Its	compounds
-----	----------	---------	-----------

7.		g, identify the compound both oxidising and reducing		[EAMCET 1999; Manipal PMT 1999] (a) Dehydrogenation (b) Hydrogenation
	agents	[AMU 2002]		(c) Occlusion (d) Adsorption
	(a) H_2O_2	(b) H ₂	20.	Which of the following produces hydrolith with
	(c) SO_2	(d) Cl_2	20.	dihydrogen
8.	-	owing reaction produces		(a) <i>Mg</i> (b) <i>Al</i>
5.	hydrogen	owing reaction produces		(c) <i>Cu</i> (d) <i>Ca</i>
		[AIIMS 2002]	21.	The metal which displaces hydrogen from a
	(a) $Mg + H_2O$	(b) $BaO_2 + HCl$		boiling caustic soda solution is
	(c) $H_2S_4O_8 + H_2O$	(d) $Na_2O_2 + 2HCl$		(a) <i>As</i> (b) <i>Zn</i>
				(c) Mg (d) Fe
).	Hydrogen resembles in	n many of its properties [MH CET 2001]	22.	Metals like platinum and palladium can absorb large volumes of hydrogen under special
	(a) Halogen	(b) Alkali metals		conditions. Such adsorbed hydrogen by the metal
	(c) Both (a) and (b)	(d) None of these		is known as
о.	Ortho and para hydrog	gen differ in [AFMC 2001]		(a) Adsorbed hydrogen (b) Occluded hydrogen
	(a) Proton spin	(b) Electron spin	22	(c) Reactive hydrogen (d) Atomic hydrogen Which is poorest reducing agent
	(c) Nuclear charge	(d) Nuclear reaction	23.	(a) Nascent hydrogen
1.	•	ute mineral acids on metals		(b) Atomic hydrogen
	can give			(c) Dihydrogen
		[Kerala (Med.) 2002]		(d) All have same reducing strength
	(a) Monohydrogen	(b) Tritium	24.	The sum of protons, electrons and neutrons in the
	(c) Dihydrogen	(d) Trihydrogen	-1.	heaviest isotope of hydrogen is
2.	Hydrogen from HCl car	n be prepared by[Pb. CET 1997]		(a) 6 (b) 5
	(a) <i>Mg</i>	(b) <i>Cu</i>		(c) 4 (d) 3
	(c) <i>P</i>	(d) <i>Pt</i> .	25.	Number of nucleons in D_2 molecule is
3.	Which of the following of hydrogen gas	g can adsorb largest volume		(a) 1 (b) 2 (c) 3 (d) 4
		tinum (b)Finely divided nickel	26.	An ionic compound is dissolved simultaneously in
		n (d) Colloidal platinum		heavy water and simple water. Its solubility is
	-	(H^3) atom would contain		(a) Larger in heavy water (b)Smaller in heavy wa
4.	neutrons	I (H) atom would contain		(c) Solubility is same in both (d)
	(a) 1	(b) 2	27.	Ortho-hydrogen and para-hydrogen resembles in
				which of the following property
_	(c) 3 The colour of hydrogen	(d) 4		(a) Thermal conductivity(b) Magnetic properties
5.	The colour of hydrogen (a) Black	n is [MP PET 2004] (b) Yellow	- 0	(c) Chemical properties (d) Heat capacity
			28.	The difference between heat of adsorption of ortho and para hydrogen is
c	(c) Orange	(d) Colourless		(a) $0.4 kJ mol^{-1}$ (b) $0.8 kJ mol^{-1}$
6.	mixture of	at room temperature is a		(c) Zero (d) None of these
		n + 25% of <i>p</i> -Hydrogen	29.	Hydrogen ion H^- is isoelectronic with
		n + 75% of <i>p</i> -Hydrogen	29.	(a) <i>Li</i> (b) <i>He</i>
		n + 50% of <i>p</i> -Hydrogen		(c) H^+ (d) Li^-
	(d) 1% of <i>o</i> -Hydrogen		30.	Hydrogen can be fused to form helium at [AFMC 2005]
-	Hydrogen cannot redu		30.	(a) High temperature and high pressure
7.	(a) Hot <i>CuO</i>	(b) Fe_2O_3		(b) High temperature and low pressure
				(c) Low temperature and high pressure
	(c) Hot SnO_2	(d) Hot Al_2O_3		(d) Low temperature and low pressure
~	Hydrogen does not con	nhine with	0.1	Hydrogen can be prepared by mixing steam, and
8.			31.	inydrogen can be prepared by mixing steam, and
8.	(a) Antimony	(b) Sodium	31.	water gas at 500°C in the presence of Fe_3O_4 and
18.	(a) Antimony(c) Bismuth		31.	

41. (c) Bosch process (d) Parke's process Ionization energy of hydrogen is 32. Which of the following metal do not liberate (a) Equal to that of chlorine hydrogen from dilute hydrochloric acid (b) Lesser than that of chlorine (a) *Zn* (b) *Mq* (c) Slightly higher than that of chlorine (c) *Fe* (d) Au (d) Much higher than that of chlorine 33. An element reacts with hydrogen to form a 42. Hydrogen acts as a reducing agent and thus compound A which on treatment with water resembles liberates hydrogen gas. The element can be (b) Noble gas (a) Halogen (a) Nitrogen (b) Chlorine (c) Radioactive elements(d) Alkali metals (d) Calcium (c) Selenium Which position for hydrogen explain all its 43. **34.** Hydrogen combines with other elements by properties (a) Losing an electron (a) At the top of halogen (b) Gaining an electron (b) At the top of alkali metals (c) Sharing an electron (c) At the top of carbon family (d) Losing, gaining or sharing electron (d) None of these **35.** Which of the following explanation is best for not Hydrogen readily combines with non-metals and 44. placing hydrogen with alkali metals or halogen thus it shows its (a) The ionization energy of hydrogen is high for (a) Electronegativity character group of alkali metals or halogen (b) Electropositive character (b) Hydrogen can form compounds (c) Both (a) and (b) (c) Hydrogen is a much lighter element than the alkali metals or halogens (d) None of these (d) Hydrogen atom does not contain any neutron The oxidation states shown by hydrogen are 45. **36.** Which of the following terms is not correct for (a) -1 only (b) Zero only hydrogen (d) +1 only (c) +1, -1, 0 (a) Its molecule is diatomic 46. Hydrogen readily combines with metals and thus (b) It exists both as H^+ and H^- in different shows its chemical compounds (a) Electropositive character(b)Electronegative character (c) It is the only species which has no neutrons in (c) Both (a) and (b) (d) None of these the nucleus Electrolysis of fused sodium hydride liberate 47. (d) Heavy water is unstable because hydrogen is hydrogen at the substituted by its isotope deuterium (a) Anode When electric current is passed through an ionic 37. (b) Cathode hydride in the molten state (a) Hydrogen is liberated at the anode (c) Cathode and anode both (b) Hydrogen is liberated at the cathode (d) None of these (c) No reaction takes place **48.** Protonic acid is (d) Hydride ion migrates towards cathode (a) A compound that form solvated hydrogen ion 38. Which of the halogen has maximum affinity for in polar solvent hydrogen (b) An acid which accepts the proton (a) *F*₂ (b) *Cl*₂ (c) A compound that forms hydride ion in polar (c) Br₂ (d) I_{2} solvent (d) An acid which donates the proton Which of the following statements is most 39. applicable to hydrogen **49.** In all its properties, hydrogen resembles (a) It can act as a reducing agent (a) Alkali metals only (b) It can act as an oxidising agent (b) Halogen only (c) It can act both as oxidising and reducing agent (c) Both alkali metals and halogens (d) It can neither act as oxidising nor as a (d) Neither alkali metals nor halogens reducing agent

40. Hydrogen is

(a) Electropositive

(b) Electronegative

(c) Both electropositive as well as electronegative

(d) Neither electropositive nor electronegative

- Hydrogen molecule differs from chlorine molecule 50. in the following respect
 - (a) Hydrogen molecule is non-polar but chlorine molecule is polar
 - (b) Hydrogen molecule is polar while chlorine molecule is non-polar

	· · · · · · · · · · · · · · · · · · ·	
	hydrogen	can form intermolecular bonds but chlorine
	molecule does not (d) Hydrogen molecule coordination bond molecule can	cannot participate in formation but chlorine
51.	Which of the following protium, deuterium and	g statements concerning tritium is not true
	(a) They are isotopes of	each other
	(b) They have similar ele	ectronic configurations
	(c) They exist in the nat	ure in the ratio of 1 : 2 : 3
		are in the ratio of 1 : 2 : 3
52.	When SO_3 is treated	with heavy water the
	product is/are	
	(a) Deuterium and sulph	
	(b) Deuterium and sulph	urous acid
	(c) Only deuterium	
	(d) Dideuterosulphuric a	
53.	possible diatomic molecu	sotopes, the number of iles will be
	(a) 2	(b) 6
	(c) 9	(d) 12
54.	In which of the compoun oxidation state of -1	ds does hydrogen have an
	(a) CH_4	(b) NH_3
	(c) HCl	(d) <i>CaH</i> ₂
55.	Pure hydrogen is obtaine of	ed by carrying electrolysis
	(a) Water containing H_{2}	SO ₄
	(b) Water containing Nation $(c) = P_{\alpha}(OH)$, solution	ОН
	(c) $Ba(OH)_2$ solution	
-0	(d) <i>KOH</i> solution	h and is willing a few the
56.	production of hydrogen g	
	-	(b) Water gas
	(c) Coal gas	(d) None of these
57.		lydrogen in
	(a) Chemical properties	
	(b) Physical properties(c) Both physical and choose	emical properties
	(d) Radioactive propertie	
58.	Tritium undergoes radio	
50.	(a) α -particles	(b) β -particles
	(c) Neutrons	(d) γ -rays
59 .		drogenation of vegetable
	(a) Methane	(b) Ethane
	(c) Ozone	(d) Hydrogen
60.		c hydrogen into ordinary
	hydrogen is	, <u>,</u>
	(a) Exothermic change	

- (a) Exothermic change
- (b) Endothermic change

	(c) Nuclear change
6-	(d) Photochemical change
61.	The name hydrogen was given by
	(a) Cavendish(b) Lavoisier(c) Urey(d) None of these
62.	The ratio C_p / C_v for H_2 is
	(a) 1.40 (b) 1.67
	(c) 1.33 (d) None of these
63.	Triatomic hydrogen is called
	(a) Deuterium (b) Hyzone
	(c) Ortho form (d) Hydronium ion
64.	
	With an ethereal solution of <i>AlCl</i> ₃
	(a) <i>LiCl</i> (b) <i>LiH</i>
-	(c) <i>Li</i> (d) <i>LiOH</i>
65.	
	(a) Acidic solution (b) Basic solution
66.	(c) Neutral solution (d) Hydride ion Ionic hydrides are usually
50.	(a) Good electrically conductors when solid
	(b) Easily reduced
	(c) Good reducing agents
	(d) Liquid at room temperature
67.	When $NaBH_4$ is dissolved in water
	(a) It decomposes with the evolution of H_2
	(b) Na^+ and BH_4^- are formed which are stable
	(c) BH_4^- ions formed initially decompose to
	produce <i>OH</i> ⁻ ions, which prevent further decomposition
	(d) NaH and B_2H_6 are produced
68.	Systematic name of H_2O (oxide of hydrogen) is
	(a) Water (b) Hydrogen oxide
	(c) Oxidane (d) None of these
69.	Group 2 hydrides with significant covalent character is/are
	(a) BeH_2 (b) MgH_2
	(c) Both (a) and (b) (d) None of these
7 0.	Limiting compositions of <i>f</i> -block hydrides are
	(a) MH_2 and MH_3 (b) MH_3 and MH_5
	(c) MH_2 and MH_8 (d) MH_2 and MH_6
71.	Hydrogen directly combines with[Roorkee Entrance 199
	(a) <i>Au</i> (b) <i>Cu</i>
	(c) <i>Ni</i> (d) <i>Ca</i>
72.	Chemical A is used for water softening to remove temporary hardness. A reacts with sodium
	carbonate to generate caustic soda. When CO_2 is bubbled through a solution of A it turns cloudy
	bubbled through a solution of A, it turns cloudy.

carbonate to generate caustic soda. When CO_2 is bubbled through a solution of *A*, it turns cloudy. What is the chemical formula of *A*

[Pb. CET 1990; AIIMS 1999]

	(a) <i>CaCO</i> ₃ (b) <i>CaO</i>	
_	(c) $Ca(OH)_2$ (d) $Ca(HCO_3)_2$	
73.	When same amount of zinc is treated separately with excess of sulphuric acid and excess of sodium hydroxide solution the ratio of volumes of hydrogen evolved is [CPMT 1991]	
	(a) 1:1 (b) 1:2	
	(c) 2:1 (d) 9:4	
74.	Which one of the following substances is used in the laboratory for a fast drying of neutral gases [CBSE PMT 1992]	
	(a) Phosphorus pentoxide	
	(b) Active charcoal	
	(c) Anhydrous calcium chloride(d) Na₃PO₄	
75.	Which is the lightest gas [CPMT 1993]	
	(a) Nitrogen (b) Helium	
	(c) Oxygen (d) Hydrogen	
76.	The composition of tritium is [UGET Manipal 1995]	
	(a) 1 electron, 1 proton, 1 neutron	
	(b) 1 electron, 2 protons, 1 neutron	
	(c) 1 electron, 1 proton, 2 neutrons	
	(d) 1 electron, 1 proton, 3 neutrons	
77.	The property of hydrogen which distinguishes it	
	from alkali metals is	
	(a) Its electropositive character	
	(b) Its affinity for non metal	
	(c) Its reducing character	
	(d) Its non-metallic character	
78.	The hydride ion H^- is a stronger base than its hydroxide ion OH^- . Which of the following reactions will occur if sodium hydride (<i>NaH</i>) is dissolved in water	
	[CBSE PMT 1997]	
	(a) $H^{-}(aq) + H_2O \rightarrow H_3O^{-}(aq)$	
	(b) $H^{-}(aq) + H_2O(l) \rightarrow OH^{-}(aq) + H_2(g)$	
	(c) $H^{-}(aq) + H_2O(l) \rightarrow \text{No reaction}$	
	(d) None of these	
70	Hydrogen accepts an electron to form inert gas	
79.	configuration. In this it resembles [Pb. PMT 1997]	
	(a) Halogen (b) Alkali metals	
	(c) Chalcogens (d) Alkaline earth metals	
80.	Which of the following is correct for hydrogen	
	[AFMC 1997; BHU 1997]	
	(a) It can form bonds in +1 as well as -1 oxidation	
state		
	(b) It is always collected at cathode	
	(c) It has a very high ionization potential	
	(d) It has same electronegativity as halogens	
81.	Which of the following will not displace hydrogen	

[AFMC 1997; BHU 1997]		(a) $CaCO_3$
m bonds in +1 as well as -1 oxidation		(c) $CaSO_4$
	5۰	Heavy water is

Which of the following will not displace hydrogen 81.

	n, a ogen and teo e	ompound.	
			[Pb. PMT 1999]
	(a) <i>Ba</i>	(b) <i>Pb</i>	
	(c) <i>Hg</i>	(d) <i>Sn</i>	
82.	Which of the following g	gas is insolu	ıble in water
			[Pb. CET 2003]
	(a) <i>SO</i> ₂	(b) <i>NH</i> ₃	
	(c) <i>H</i> ₂	(d) <i>CO</i> ₂	
83.	Which element forms chemistry	maximum	compound in
			[Pb. CET 2004]
	(a) <i>O</i>	(b) <i>H</i>	
	(c) <i>Si</i>	(d) C	
84.	Hydrogen is not obtaine	d when zin	c reacts with
			[J & K 2005]
	(a) Cold water	(b) Hot <i>N</i>	aOH solution

(c) Conc. sulphuric acid (d) dilute HCl

Water or hydride of oxygen

- Synthetic detergents are more effective in hard water than soaps because [AMU 2002] (a) They are highly soluble in water
 - (b) Their Ca^{++} and Mg^{++} salts are water soluble

(c) Their Ca^{++} and Mg^{++} salts are insoluble in ater

- (d) None of these
- D_2O is used more in [BHU 1997; CPMT 1997]
 - (a) Chemical industry
 - (b) Nuclear reactor
 - (c) Pharmaceutical preparations
 - (d) Insecticide preparation
- Heavy water (D_2O) is [RPET/PMT 2000; CPMT 2000]
 - (a) A product of oxygen and hydrogen
 - (b) Water of mineral springs
 - (c) Water obtained by repeated distillation and condensation

(d) Ordinary water containing dissolved salts avy metals

Temporary hardness may be removed from water by adding

(a) $CaCO_3$	(b) <i>Ca</i> (<i>OH</i>) ₂

(d) HCl

is [AFMC 1997; UPSEAT 2003

MH CET 2003; Pb. CET 2001]

[Pb. PMT 2002]

- (a) Water containing Fe, Cr, Mn
- (b) Water at 0°C
- (c) $D_2 O$

	(d) Water obtained afte	er a number of distillations		(a) 1 <i>M</i>	(b) 2.5 <i>M</i>
6.	Heavy water is compou	nd of[DPMT 2001; DCE 2002]		(c) 5 <i>M</i>	(d) 55.5 <i>M</i>
	(a) Oxygen and heavier isotopes of hydrogen		15.	Which of the follo	owing is not a hard water
	(b) Hydrogen and heavier isotopes of oxygen			(a) Water contain	ning CaCl ₂
	(c) Heavier isotopes of	oxygen and hydrogen		(b) Water contain	ning dil. <i>HCl</i>
	(d) None of these			(c) Water contain	-
7.		g pair of ions makes the		(d) None of these	
	water hard				sed in atomic reactor as
		[AMU 2002]	16.	(a) Coolant	
	(a) Na^+ , SO_4^{2-}	(b) K^+, HCO_3^-		(b) Moderator	
	(c) Ca^{2+}, NO_3^-	(d) NH_4^+, Cl^-		(c) Both moderat	or and coolant
8.	Temporary hardness of	water can be removed by		(d) Neither coola	
	1 5	[Pb. PMT 2001]	17.	Heavy water free	
	(a) Addition of potassiu	ım permagenate		(a) 0°C	(b) 3.8°C
	(b) Boiling			(c) 38°C	(d) – 0.38°C
	(c) Filtration	c) Filtration		The <i>pH</i> of D_2O are	nd H_2O at 298 K is
	(d) Addition of chloring	2		(a) 7.0, 7.0	(b) 7.35, 7.0
9.	When zeolite (Hydrated sodium aluminium			(c) 7.0, 6.85	(d) 6.85, 7.35
		silicate) is treated with hard water the sodium		Which of the follo	
	ions are exchanged with [DPMT 2000]				ter is electrolysed more rapidly
	$(a) OU^{-}$ iona		than	D_2O	
		(a) OH^{-} ions (b) SO_{4}^{2-} ions		(b) Reaction betw	veen H_2 and Cl_2 is much faste
	(c) Ca^{2+} ions	(d) H^+ ions		than D_2 and	
10.		Which of the following statements do not define			at lower temperature than H_2O
	universal solvent"	erty of water "Water is a		_	ation energy for D_2 is greate
	(a) It can dissolve	maximum number of	than		ation energy for D_2 is greate
com	pounds	maximum number of		-	
	(b) It has very low diel	ectric constant	20.		llowing will determine whethe ess liquid is water or not
	(c) It has high liquid ra	inge		(a) Melting	ess inquite is water of not
	(d) None of these			(b) Tasting	
11.		ons in nuclear reactor is		(c) Phosphthaleir	1
	slowed down by			-	h of anhydrous <i>CuSO</i> 4
	(a) Heavy water (D_2O)	(b) Ordinary water	21		
$(H_2 O$	<i>D</i>)		21.	water because	not used for carrying drinking
	(c) Zinc rod	(d) Fused caustic soda			vered with a coating of lead

(a) They are covered with a coating of lead carbonate

- (b) They are corroded by air and moisture
- (c) Water containing dissolved air attacks lead forming soluble hydroxide
- (d) None of these
- **22.** Which one of the following removes temporary hardness of water
 - (a) Slaked lime (b) Plaster of Paris
 - (c) Cuprous (d) Hydrolith
- **23.** Which of the following will cause softening of hard water
 - (a) Passing it through cation exchange resin
 - (b) Passing it through anion exchange resin
 - (c) Passing it through sand

(d) Permanent hardness can be removed by

13. Which of the following is not true

towards soap

nitrates

12.

presence of

boiling the water

Temporary hardness of water is due to the

(a) Magnesium bicarbonate (b) Calcium chloride

(a) Hardness of water depends on its behaviour

(b) The temporary hardness is due to the

(c) Permanent hardness is due to the presence of

soluble Ca and Mg sulphates, chlorides and

presence of Ca and Mg bicarbonates

(c) Magnesium sulphate (d) Calcium carbonate

14. The molarity of pure water at $4^{\circ}C$ is

Hydrogen	and	Its	compounds	691
----------	-----	-----	-----------	-----

	(d) Passing it through alumina				
24.	6 I I	33			
	hardness of water can be removed, by adding [AFMC 2	005			
	(a) Sodalime (b) Sodiumbicarbonate				
_	(c) Washing soda (d) Sodium chloride				
25.	C C				
	(a) Aluminates of calcium and sodium	bo			
	(b) Silicates of calcium and sodium	_			
	(c) Hydrated silicates of aluminium and sodium	34			
	(d) Silicates of calcium and magnesium				
26.	The approximate mass of tritium oxide molecule is				
	(a) 18 amu (b) 20 amu				
	(c) 22 amu (d) 24 amu				
27.					
	(a) 19 (b) 18				
	(d) 19 (d) 10 (d) 20				
8.	Water is said to be permanently hard when it				
	contains				
	(a) Sulphates of Mg and Ca				
	(b) Bicarbonates of <i>Mg</i> and <i>Ca</i>				
	(c) Sulphates of <i>Cu</i> and <i>Hg</i>	35			
	(d) Carbonates and bicarbonates of Mg and Ca				
29.	Sodium sulphate is soluble in water but barium sulphate is insoluble because [Pb. PMT 1995]				
	(a) The hydration energy of Na_2SO_4 is more than	36			
	its lattice energy				
	(b) The lattice energy of $BaSO_4$ is more than its				
	hydration energy				
	(c) The lattice energy has no role to play in solubility				
	(d) The hydration energy of Na_2SO_4 is less than	37			
	its lattice energy	57			
	(e) Both (a) and (b)				
30.	The alum used for purifying water is[EAMCET 1999]				
	(a) Ferric alum (b) Chrome alum	38			
	(c) Potash alum (d) Ammonium alum				
31.	Which of the following metal will not reduce H_2O				
	[CPMT 1999]	39			
	(a) <i>Ca</i> (b) <i>Fe</i>	39			
	(c) <i>Cu</i> (d) <i>Li</i>				
32.	Which of the following is correct about heavy water				
	[DCE 2002]				
	(a) Water at 4°C having maximum density is	40			
	known as heavy water				

- (b) It is heavier than water (H_2O)
- (c) It is formed by the combination of heavier isotope of hydrogen and oxygen

(d) None of these

The boiling point of water is exceptionally high
 because

[KCET 2001]

- (a) There is covalent bond between *H* and *O*
- (b) Water molecule is linear
- (c) Water molecules associate due to hydrogen bonding
 - (d) Water molecule is not linear
- **34.** Match list I with list II and select the correct answer using the codes given below the lists[SCRA 2001]

	List I		List II
1.	Heavy water		(a) Bicarbonates of <i>Mg</i> and <i>Ca</i> in water
2.	Temporary water	hard	(b) No foreign ions in water
3.	Soft water		(c) $D_2 O$
4	Permanent water	hard	(d) Sulphates and chlorides of <i>Mg</i> and <i>Ca</i> in water

Codes

- (a) 1-c, 2-d, 3-b, 4-a (b) 1-b, 2-a, 3-c, 4-d
- (c) 1-*b*, 2-*d*, 3-*c*, 4-*a* (d) 1-*c*, 2-*a*, 3-*b*, 4-*d*

35. The H-O-H angle in water molecule is about [AFMC 2001]

- (a) 90° (b) 180° (c) 102° (d) 105°
- 36. When two ice cubes are pressed over each other, they unite to form one cube. Which of the following forces is responsible to hold them together [AFMC 2001]
 (a) Hydrogen bond formation
 - (b) Van der Waals forces
 - (c) Covalent attraction
 - (d) Ionic interaction

(a) Centrifugation

- 37. What is formed when calcium carbide reacts with heavy water [Manipal PMT 2001; Pb. CET 2000]
 (a) C₂D₂
 (b) CaD₂
 - (c) Ca_2D_2O (d) CD_2
- **38.** Pure water can be obtained from sea water by [CBSE PMT 2001]
 - (b) Plasmolysis
 - (c) Reverse osmosis (d) Sedimentation
- **39.** Action of water or dilute mineral acids on metals can give
 - [Kerala PMT 2002] (a) Monohydrogen (b) Tritium
 - (c) Dihydrogen (d) Trihydrogen
 - (e) D_2
- 40. Metal which does not react with cold water but evolves H₂ with steam is [DCE 2002]
 - (a) *Na* (b) *K*
 - (c) *Pt* (d) *Fe*
- **41.** *pH* of neutral water at room temperature nearly

	692 Hydrogen an	d Its compounds			
	(a) 0	(b) 14		(a) MnO_2	(b) <i>PbO</i> ₂
	(c) 7	(d) 10^{-7}		(c) <i>BaO</i> ₂	(d) None of these
42.	Maximum number of hy	vdrogen bonding in H_2O is	6.	The oxide that gives l	hydrogen peroxide (H_2O_2) on
		4; MP PMT 2004; BHU 2004]		-	dilute acid (H_2SO_4) is[Pb. PMT 19
	(a) 1	(b) 2		(a) MnO_2	(b) PbO_2
	(c) 3	(d) 4		(c) Na_2O_2	(d) TiO_2
4 3 .	The low density of ice of	compared to water is due to [Pb. CET 2004]	_		-
	(a) Induced dipole-indu		7.	Hydrogen peroxide is	; CBSE PMT 2000; KCET 2002]
	(b) Dipole-induced dipo	_		(a) Ozone	, CDSE 1 M1 2000, KCE1 2002]
	(c) Hydrogen bonding i			(b) Barium peroxide	
	(d) Dipole-dipole intera			(c) Acidic solution of	KMnO ₄
44.	Which of the following	, acid is formed when SiF_4		(d) Lead sulphide sus	
	reacts with water		8.		$H_2O_2 \rightarrow S + 2H_2O$ manifests
		[BHU 2004]		-	[UPSEAT 2000]
	(a) SiF_4	(b) H_2SiF_4		(a) Acidic nature of H	H_2O_2
	(c) H_2SO_4	(d) $H_2 SiF_6$		(b) Alkaline nature of	H_2O_2
4 5 .	Triple point of water is [AFMC 2004]			(c) Oxidising nature of	
	(a) 273 <i>K</i>	(b) 373 <i>K</i>		(d) Reducing action of	
	(c) 203 K	(d) 193 <i>K</i>	9.	-	
46.	Hardness of water is due to presence of salts of [BHU 2005]			Cl_2	of the reaction of H_2O_2 with
	(a) Na^+ and K^+	(b) Ca^{2+} and Mg^{2+}			[RPET 2003]
	(c) Ca^{2+} and K^{+}	(d) Ca^{2+} and Na^+		(a) $O_2 + HOCl$	(b) $HCl + O_2$
				(c) $H_2O + HCl$	(d) $HCl + H_2$
	Hydrogen	peroxide	10.	H_2O_2 will oxidise	[Roorkee 1995]
_				(a) $KMnO_4$	(b) <i>PbS</i>
1.	In which of the following reaction hydrogen peroxide is a reducing agent [BHU 1995] (a) $2FeCl_2 + 2HCl + H_2O_2 \rightarrow 2FeCl_3 + 2H_2O$ (b) $Cl_2 + H_2O_2 \rightarrow 2HCl + O_2$ (c) $2HI + H_2O_2 \rightarrow 2H_2O + I_2$			(c) MnO_2	(d) H_2S
			11.	Fenton's reagent is	[MP PET 2000; RPET 2000]
				(a) <i>FeSO</i> ₄ + H_2O_2	(b) $Zn + HCl$
				(c) $Sn + HCl$	(d) None of these
	(d) $H_2SO_3 + H_2O_2 \rightarrow H_2SO_3$	-	12.	The structure of H_2O_2	is [CBSE 1999; AFMC 2004]
		. 2		(a) Planar	(b) Linear
2.		f 10 volume of hydrogen ulate its strength[UPSEAT 2001	1	(c) Spherical	(d) Non-planar
	-	(b) 4.045%	13 .	The volume strength o	of 1.5 $N H_2O_2$ solution is

(a) 3.00% (b) 4.045% (c) 2.509% (d) 3.035%

In lab H_2O_2 is prepared by[CPMT 2002; MH CET 2003; 3.

(a) Cold
$$H_2SO_4 + BaO_2$$
 (b) $HCl + BaO_2$

(c) Conc.
$$H_2SO_4 + Na_2O_2$$
 (d) $H_2 + O_2$

4. The structure of
$$H_2O_2$$
 is **[UPSEAT 2001]**

(a)
$$H O - O H$$
 (b) $H O - O H$
(c) $H - O - O - H$ (d) $O - O H$

HCl is added to the following oxides which one 5٠ would give H_2O_2 [Kurukshetra CEE 1998]

 $S + 2H_2O$ manifests [UPSEAT 2000] eaction of H_2O_2 with [RPET 2003] $HCl + O_2$ $HCl + H_2$ [Roorkee 1995] PbS H_2S PET 2000; RPET 2000] Zn + HClNone of these BSE 1999; AFMC 2004] Linear Non-planar volume strength of 1.5 $N H_2O_2$ solution is [BHU 2004; Pb. CET 2004] (a) 8.4 *litres* (b) 4.2 litres (c) 16.8 litres (d) 5.2 litres 14. The volume of oxygen liberated from 15 ml of 20 [MH CET 2003] volume H_2O_2 is (a) 250 ml (b) 300 ml (c) 150 ml (d) 200 ml The strength in volumes of a solution containing 15. 30.36 g/litre of H_2O_2 is [UPSEAT 2004] (a) 10 volume (b) 20 volume (c) 5 volume (d) None of these 16. Hydrogen peroxide is used as

- (a) Oxidising agent
- (b) Reducing agent

	(c) Both as oxidising an	nd reducing agent	
	(d) Drying agent		
17.	Equivalent weight of H_2	$_2O_2$ is	
	(a) 17	(b) 34	
	(c) 68	(d) 18	
18.	20 volume H_2O_2 solution	on has a strength of about	
	(a) 30%	(b) 6%	
	(c) 3%	(d) 10%	
19.	H_2O_2 is manufactured t	-	
	(a) By the action of H_2C		
	(b) By the action of H_2S	SO_4 on Na_2O_2	
	(c) By electrolysis of 50	$0\% H_2SO_4$	
	(d) By burning hydroge	n in excess of oxygen	
20.	Which one of the follow	ing is a true peroxide	
	(a) <i>NO</i> ₂	(b) <i>MnO</i> ₂	
	(c) BaO_2	(d) SO_2	
21.	1 <i>ml</i> of H_2O_2 solution g	ives 10 ml of O_2 at NTP. It	
	is		
	(a) 10 vol. H_2O_2	(b) 20 vol. H_2O_2	
	(c) 30 vol. H_2O_2	(d) 40 vol. H_2O_2	
22.	Which substance does n of H_2O_2	ot speed up decomposition	
	(a) Glycerol	(b) <i>Pt</i>	
	(c) Gold	(d) MnO_2	
23.	Which of the followin H_2O_2	ng cannot be oxidised by	
	(a) O ₃	(b) <i>KI / HCl</i>	
	(c) PbS	(d) Na_2SO_3	
24.	Which substance cannot	t be reduced by H_2O_2	
	(a) $KMnO_4 / H_2SO_4$	(b) $K_2 Cr_2 O_7 / H_2 SO_4$	
	(c) Ag_2O	(d) Fe^{3+}	
<u> </u>			
25.	e		
	 (a) H₂O₂ can act as an oxidising agent (b) H₂O₂ can act as a reducing agent 		
	2 2		
	(c) H_2O_2 has acidic pro		
	(d) H_2O_2 has basic prop	berties	
26.	H_2O_2 is	_	
	(a) Poor polar solvent t		
	(b) Better polar solvent	-	
	(c) Both have equal poly(d) Better polar solve		
	oxidising ability lim	-	
27.			

(a) 50% (b) 70%

Hydrogen and Its compounds 693

	Hydrogen and its o	Joinpounds 095				
	(c) 30%	(d) 90%				
28.	H_2O_2 is a					
	(a) Weak acid	(b) Weak base				
	(c) Neutral	(d) None of these				
29.						
		(b) Insoluble				
	(c) Coloured	(d) Unstable				
30.	Decomposition of H_2O_2	is prevented by				
	(a) NaOH	(b) <i>MnO</i> ₂				
	(c) Acetanilide	(d) Oxalic acid				
31.	H_2O_2 is always stored i	n black bottles because				
	(a) It is highly unstable					
	(b) Its enthalpy of deco	mposition is high				
	-	oxidation on prolonged				
stan	ding					
	(d) None of these					
32.	H_2O_2 on reacting with e					
	(a) Ethane	(b) Ethanal				
22	(c) Ethylene glycol					
33.	used	is wrong about H_2O_2 ? It is				
		in production of spong				
rubb		in production of spong				
	(b) As an antichlor					
	(c) For restoring white colour of blackened lead					
pain	-					
	(d) None of these					
34.		$E^{\circ} = -0.68 V$. This equation				
	represents which of the H_2O_2	he following behaviour of				
	(a) Reducing	(b) Oxidising				
	(c) Acidic	(d) Catalytic				
35.	The structure of H_2O_2 i	-				
		(b) Linear				
	(c) Closed book	(d) Pyramidal				
36.		vith acidified potassium				
	dichromate and ether, ethereal layer becomes					
	(a) Green	(b) Red				
	(c) Blue	(d) Black				
37.	K_a of H_2O_2 is of the ord	der of [MP PMT 1994]				
	(a) 10 ⁻¹²	(b) 10 ⁻¹⁴				
	(c) 10 ⁻¹⁶	(d) 10^{-10}				
38.	In which of the followi	ng reactions, H_2O_2 acts as				
	a reducing agent	[EAMCET 2001]				
	(a) $PbO_2(s) + H_2O_2(aq) \rightarrow 0$	$PbO(s) + H_2O(l) + O_2(g)$				
	(b) $Na_2SO_3(aq) + H_2O_2(aq)$	$) \rightarrow Na_2SO_4(aq) + H_2O(l)$				
	(c) $2Kl(aa) + H_2O_2(aa) \rightarrow 2$	$VKOH(aa) + I_{a}(s)$				

(c) $2Kl(aq) + H_2O_2(aq) \rightarrow 2KOH(aq) + I_2(s)$

			_	
	(d) $KNO_2(aq) + H_2O_2(aq) \rightarrow$	$KNO_3(aq) + H_2O(l)$		(
39.	H_2O_2 acts as an oxidising	g agent in [Kerala PMT 2004]	6.	ł
	(a) Neutral medium			(
	(b) Acidic medium			(
	(c) Alkaline medium			(
	(d) Alkaline and neutral	medium		(
	(e) Acidic and alkaline m	edium	7.	I
40.	The $H - O - O$ bond angle	in H_2O_2 is[Kerala PMT 2004]		(
	(a) 107.28°	(b) 109.28°		(
				(
	(c) 104.5°	(d) 106 ^o	•	(
	(e) 97°		8.	F
41.	The volume of oxygen li	iberated from 0.68 gm of	cold	(1
	H_2O_2 is		colu	(
		[Pb. PMT 2004]		Ċ
	(a) 112 ml	(b) 224 <i>ml</i>		(
	(c) 56 ml	(d) 336 ml		
				(
	C critical	Thinking	9.	H

Critical Thinking

Objective Questions

- **1.** Polyphosphates are used as water softening agents because they
 - (a) Form soluble complexes with anionic species
 - (b) Precipitate anionic species
 - (c) Forms soluble complexes with cationic species(d) Precipitate cationic species
- 2. The critical temperature of water is higher than that of O_2 because H_2O molecule has [IIT 1997]
 - (a) Fewer electrons than oxygen
 - (b) Two covalent bonds
 - (c) V-shape
 - (d) Dipole moment
- 3. One mole of calcium phosphide on reaction with excess water gives [IIT 1999]
 - (a) One mole of phosphene
 - (b) Two moles of phosphoric acid
 - (c) Two moles of phosphene
 - (d) One mole of phosphorus pentaoxide
- **4.** When zeolite, which is hydrated sodium aluminium silicate, is treated with hard water the sodium ions are exchanged with
 - (a) H^+ ions (b) Ca^{2+} ions
 - (c) Mg^{2+} ions (d) Both Ca^{2+} and Mg^{2+}
- **5.** Hydrogen peroxide is
 - (a) A stronger acid than water
 - (b) A weaker acid than water
 - (c) An oxidising agent

- (d) A reducing agent Hydrogen can be obtained from water by (a) Reaction with metal oxides (b) Reaction with non-metal oxides (c) Reaction with metals (d) Reaction with metal hydrides Which of the following is/are hard water(s) (a) Water containing some potash alum (b) Water containing a few drops of HCl (c) Water containing common salt (d) Water containing calcium nitrate Pick the odd one out (a) Sodium borohydride reacts very slowly with vater (b) Sodium borohydride reacts very violently with cold water to produce H_2 (c) Solubility of sodium borohydride in water at 25°*C* is 10.05 *g*/*mL* (d) Melting point of sodium borohydride is 500°C Hydrogen can be obtained from water, by the action of water on (a) Calcium carbide (b) Calcium hydride (c) Calcium oxide (d) Calcium **10.** What is true about ice (a) Its density is more than water [IIT JEE (Screening) 2002 (c) It is a thermal insulator (d) Its density is less than water Hydrogen will not reduce 11. [IIT 1985] (a) Heated cupric oxide (b) Heated ferric oxide (c) Heated stannic oxide (d) Heated aluminium oxide HCl is added to following oxides. Which one 12. would give H_2O_2 [IIT 1980] (a) MnO_2 (b) PbO_2 (c) BaO (d) None of these Which of the following pair will not produce 13. dihydrogen gas [IIT 1994] (a) Cu + HCl(dil.)(b) $Fe + H_2SO_4$
 - (c) Mg + steam (d) Na + alcohol
- **14.** The amount of H_2O_2 present in 1 L of 1.5 NH_2O_2 solution is
 - $\begin{bmatrix} IIT 1990 \\ (a) 2.5 g \\ (c) 3.0 g \\ \end{bmatrix} (b) 25.5 g \\ (d) 8.0 g$
- 15. Hydrogen is evolved by the action of cold dil. HNO_3 on

[IIT 1998]

(a) *Fe* (b) *Mn*

[111] 199

	(c) <i>Cu</i> (d) <i>Al</i>				
16.	Hydrogen can behave as a metal	27			
	(a) At very high temperature (b)				
	(c) At very high pressure (d)At very low pressure				
17.	D_2O is preferred to H_2O , as a moderator, in				
	nuclear reactors because				
	(a) D_2O slows down fast neutrons better				
	(b) D_2O has high specific heat	29			
	(c) D_2O is cheaper				
	(d) None of these				
18.	Out of the two allotropic forms of dihydrogen, the form with lesser molecular energy is				
	(a) Ortho (b) Meta	30			
	(c) Para (d) All have same energy	5			
19.	Saline hydrides react explosively with water, such fires can be extinguished by				
	(a) Water (b) Carbon dioxide				
	(c) Sand (d) None of these				
20.	Metals of groups 7, 8 and 9 do not form metallic hydrides. This is termed as	31			
	(a) Hydride gap (b) Hydride shift				
	(c) Anhydride (d) Dehydride				
21.	When temporary hard water containing $Mg(HCO_3)_2$ is boiled the ppt. formed is of	32			
	(a) $MgCO_3$ (b) MgO				
	(c) $Mg(OH)_2$ (d) None of these				
22.	Permanent hardness due to Mg^{2+} ions is best				
	removed by	Ξ			
	(a) $Ca(OH)_2$ (b) Na_2CO_3	Ξ			
	(c) $Na_2CO_3 + Ca(OH)_2$ (d) None of these	=			
23.	The most abundant element in the universe is	=			
	(a) Carbon (b) Silicon	-			
	(c) Hydrogen (d) Helium	Re			
24.	Pick out the correct statement	C0			
	 (a) By decreasing the temperature pure para- hydrogen can be obtained 	(a			
	(b) By increasing the temperature pure ortho- hydrogen can be obtained	(b			
	(c) By decreasing the temperature pure ortho- hydrogen can be obtained	(c (d			
	(d) By increasing the temperature pure para- hydrogen can be obtained	(e			

- **25.** Hydrogen can be produced by heating
 - (a) Cu with H_2SO_4 (b) Sodium formate
 - (c) Sodium oxalate (d) None of these
- **26.** Plumbosolvency is a health hazard in the transportation of
 - (a) Hard water only
 - (b) Soft water only
 - (c) Both (a) and (b)

		(d) Water containing plu	•	
		-	ins sodium chloride. It is	
	At	(a) Hard water	(b) Soft water	
e	~	(c) Moderately hard	(d) None of these	
	28.	water decreases with ris	alt, whose solubility in se of temperature is	
		(a) $CaCl_2$	(b) $CaSO_4$	
		(c) $Ca(HCO_3)_2$	(d) $MgSO_4$	
	29.	table sugar and commo	ontaining some dissolve on salt is passed through esins. The resulting wate	
		(a) Tasteless	(b) Sweet	
		(c) Salty	(d) None of these	
	30.	Water obtained by puri exchange resins is (a) Pure water	fication with organic io	
		(b) Free from only Ca^{2+}	, Mg^{2+} ions	
		(c) Free from HCO_3^- , SO_4^2		
		(d) None of these		
	31. Which of the following can effectively ren types of hardness of water			
		(a) Soap	(b) Washing soda	
		(c) Slaked lime	(d) None of these	
	32.		of hydrogen peroxide i Its percentage strength i [KCET 2005]	
		(a) 1%	(b) 3%	
		(c) 10%	(d) 90%	

For ANMS Aspirants

Read the assertion and reason carefully to mark the correct option out of the options given below :

- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (c) If assertion is true but reason is false.
- (d) If the assertion and reason both are false.
- (e) If assertion is false but reason is true.
- 1. Assertion : Hydrogen combines with other elements by losing, gaining or sharing of electrons.

Reason : Hydrogen forms electrovalent and covalent bonds with other elements.

2. Assertion : Calgon is used for removing Ca^{2+} and Mg^{2+} ions from hard water.

	Reason :	Calgon forms precipitates with Ca^{2+} and Mg^{2+} .
3.	Assertion :	Decomposition of H_2O_2 is a disproportionation reaction.
	Reason :	H_2O_2 molecule simultaneously undergoes oxidation and reduction.
4.	Assertion :	H_2O_2 has higher boiling point than water.
	Reason :	H_2O_2 has stronger dipole-dipole interactions than water.
5۰	Assertion :	H_2O_2 is not stored in glass bottles.
	Reason :	Alkali oxides present in glass catalyse the decomposition of H_2O_2 .
6.	Assertion :	H_2O_2 reduces Cl_2 to HCl .
	Reason :	H_2O_2 is called antichlor.
7.	Assertion :	In acidic medium, H_2O_2 reacts with MnO_2 to give O_2 .
	Reason :	H_2O_2 is a strong oxidising agent.
8.	Assertion :	In alkaline solution, H_2O_2 reacts
		with potassium ferricyanide.
	Reason :	H_2O_2 is a strong reducing agent.
9.	Assertion :	Acidulated water is an example of hard water.
	Reason :	In the presence of an acid, soap is converted into insoluble free fatty acids.
10.	Assertion :	Hydrogen peroxide forms only one series of salts called peroxides.
	Reason :	Hydrogen peroxide molecule has only one replaceable hydrogen atom.

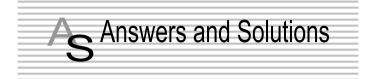
	Hydrogen								
1	a	2	d	3	a	4	а	5	d
6	d	7	b	8	a	9	с	10	a
11	с	12	a	13	c	14	b	15	d
16	а	17	d	18	d	19	c	20	d
21	b	22	b	23	c	24	c	25	d
26	b	27	c	28	a	29	b	30	a
31	С	32	d	33	d	34	d	35	c

36	d	37	a	38	а	39	с	40	C
41	с	42	d	43	d	44	b	45	c
46	b	47	a	48	a	49	c	50	d
51	с	52	d	53	b	54	d	55	c
56	b	57	b	58	b	59	d	60	a
61	b	62	a	63	b	64	b	65	b
66	с	67	C	68	С	69	C	70	a
71	d	72	C	73	а	74	C	75	d
76	с	77	d	78	b	79	а	80	a
81	с	82	C	83	b	84	C		

Water or hydride of oxygen

1	b	2	b	3	с	4	b	5	c
6	а	7	b	8	b	9	c	10	b
11	а	12	а	13	d	14	d	15	d
16	C	17	b	18	b	19	C	20	d
21	C	22	а	23	а	24	C	25	c
26	c	27	d	28	а	29	е	30	c
31	C	32	C	33	C	34	d	35	d
36	а	37	а	38	c	39	c	40	d
41	c	42	d	43	c	44	b	45	a
46.	b								

Hydrogen peroxide


1	В	2	d	3	а	4	b	5	С
6	C	7	d	8	c	9	b	10	b
11	а	12	d	13	a	14	b	15	a
16	C	17	a	18	b	19	C	20	c
21	а	22	a	23	a	24	d	25	d
26	d	27	d	28	a	29	а	30	c
31	c	32	C	33	d	34	а	35	a
36	C	37	a	38	a	39	е	40	е
41	b								

Critical Thinking Questions

1	c	2	d	3	c	4	d	5	acd
6	cd	7	abd	8	b	9	bd	10	cd
11	d	12	d	13	а	14	b	15	b
16	C	17	d	18	C	19	c	20	a
21	C	22	C	23	C	24	b	25	b
26	b	27	b	28	b	29	b	30	d
31	a	32	b						

Assertion & Reason

1	а	2	d	3	а	4	C	5	a
6	а	7	b	8	a	9	a	10	d

Hydrogen and its preparation

- 1. (a) $NaH + H_2O \rightarrow NaOH + H_2 \uparrow$
- **2.** (d) $KH + H_2O \rightarrow KOH + H_2 \uparrow$
- **3.** (a) Hydrogen burns in air with a light bluish flame.
- (a) Ortho and para hydrogen show different spin in a hydrogen molecule it does not show hydrogen isotopes.
- 5. (d) Boiling point of liquid hydrogen is lowest of given substances so it is distilled first.
- 6. (d) $Mg + 2HNO_3 \rightarrow Mg(NO_3)_2 + H_2 \uparrow$
- 8. (a) $Mg + 2H_2O \rightarrow Mg(OH)_2 + H_2 \uparrow$
- **10.** (a) Ortho and para hydrogen differ in proton spin.

11. (c)
$$Mg + 2H_2O \rightarrow Mg(OH)_2 + H_2$$

- **12.** (a) $Mg + 2HCl \rightarrow MgCl_2 + H_2 \uparrow$
- 13. (c) Order of adsorption of H₂ (occlusion) is
 Colloidal Palladium > Palladium > Platinum > Gold > Nickel
- 14. (b) Number of neutrons = Mass number Atomic number
 - = 3 1 = 2
- **17.** (d) Because *Al* has more affinity for oxygen than hydrogen.
- 18. (d) Helium is a noble gas and does not combine with hydrogen.
- **19.** (c) Occlusion is the phenomenon of adsorption of hydrogen by metal.
- **20.** (d) CaH_2 is known as hydrolith.
- **21.** (b) *Zn* displaces hydrogen from the boiling solution of *NaOH*.

 $Zn + 2NaOH + 2H_2O \rightarrow Na_2[Zn(OH)_4] + H_2 \uparrow$

- **22.** (b) Occluded hydrogen is the hydrogen absorbed by the metal.
- **23.** (c) Because dihydrogen is less reactive.
- **24.** (c) $_{1}H^{3}$ has 3 nucleons (1 proton + 2 neutrons) and one electron so sum of these is 3 + 1 = 4.
- **25.** (d) ${}_{1}^{2}D_{2}$ = (2 neutrons + 2 protons) = 4 nucleons.
- **26.** (b) Solubility of ionic compound is lower in heavy water.

Hydrogen and Its compounds 697

- **27.** (c) These allotropic forms have similar chemical properties.
- **28.** (a) It is 0.4 kJ/mol.
- **29.** (b) $H^- = 1s^2$; $He = 1s^2$
- **30.** (a) A fusion reaction is difficult to occur because positively charged nuclei repel each-other. At very high temperatures of the order of 10^6 to $10^7 K$, the nuclei may have sufficient energy to overcome the repulsive forces and fuse. It is for this reason, fusion reactions are also called thermonuclear reactions. Hence, hydrogen can be fused to form helium at high temperature and high pressure.
- **31.** (c) It is Bosch process.
- **32.** (d) Gold is a noble metal.
- **33.** (d) $Ca + H_2 \rightarrow CaH_2 \xrightarrow{2H_2O} Ca(OH)_2 + 2H_2$
- 34. (d) Hydrogen can loose one electron (*e.g. HF*). It can gain one electron (*e.g. NaH*), Hydrogen can also share one electron (*e.g. H H*).
- **35.** (c) Hydrogen is a much lighter element than alkali metals or halogen.
- 36. (d) Heavy water is not unstable.

37. (a)
$$M^+H^- \rightarrow M^+ + H^-_{\text{Hydride ion}}$$

 $H^- \rightarrow \frac{1}{2}H_2 + e^-$ (At anode)

- **38.** (a) F_2 has maximum tendency to react with hydrogen. the decreasing order of reactivity is $F_2 > Cl_2 > Br_2 > l_2$.
- **39.** (c) It acts both as a reducing agent and oxidising agent.
- **40.** (c) $H \to H^+ + e^-$

 $H + e^- \rightarrow H^-$

- 41. (c) IE of *H* is 1312 *kJ/mole*.IE of *Cl* is 1255 *kJ/mole*.
- 42. (d) Alkali metals are good reducing agents because of low ionization energy and hydrogen also shows same character.
- (d) Position of hydrogen in the periodic table is not fully justified.
- **44.** (b) $H_2 + Cl_2 \rightarrow H^+Cl^-$. In this hydrogen has positive oxidation state.
- **45.** (c) For example HF, NaH, H_2

46. (b) $2Na + H_2 \rightarrow 2Na^+H^-$

Hydrogen has -ve (-1) oxidation state.

47. (a) $NaH \Rightarrow Na^+ + H^-$

At anode : $H^- \rightarrow H + e^-$

$$H + H \rightarrow H_2$$

- **48.** (a) For example *HCl* is a protonic acid $HCl + H_2O = [H_3O]^+ + Cl^-$
- **49.** (c) Hydrogen resembles both alkali metals and halogens.
- **50.** (d) Chlorine has lone pair which it can donate to form co-ordinate bond while hydrogen cannot.
- **51.** (c) Actually these exist in the ratio.
 - Protium : Deuterium : Tritium 1 : 1.56×10^{-2} : 1×10^{-17}
- **52.** (d) $SO_3 + D_2O \rightarrow D_2SO_4$ dideutero-sulphuric acid.
- **53.** (b) H^1H^1 , H^1H^2 , H^2H^2 , H^3H^3 , H^2H^3
- 54. (d) $\overset{+2}{Ca} \overset{x}{H_2}$ *i.e.*, 2 + 2x = 0, x = -12x = -2 or $x = \frac{-2}{2} = -1$
- **55.** (c) Pure hydrogen is obtained by the electrolysis of $Ba(OH)_2$ solution in a *U*-tube using nickel electrode. The gas is liberated at the cathode and is passed over heated platinum gauze to remove oxygen if present as impurity.
- 56. (b) $\underbrace{CO + H_2}_{\text{water gas}} + H_2O \xrightarrow{\text{cataly st}} CO_2 + 2H_2$
- **57.** (b) Deuterium $\binom{2}{1}H$ and hydrogen $\binom{1}{1}H$ both have same atomic number but different mass number so they have similar chemical but different physical properties.

58. (b) ${}_{1}^{3}H \rightarrow {}_{2}^{3}He + {}_{-1}^{0}e$

59. (d) V.oil + $H_2 \xrightarrow{Ni}_{\Delta}$ Fat

- **60.** (a) $2H \Rightarrow H_2$; $\Delta H = -104.5$ kcal
- **61.** (b) Lavoisier give the name hydrogen which means water maker.
- **62.** (a) For diatomic gases (*e.g.* H_2) $r = C_p / C_v = 1.40$ For monoatomic gases r = 1.66

For triatomic gases r = 1.33

- **63.** (b) H_3 is also called Hyzone.
- **64.** (b) $4LiH + AlCl_3 \xrightarrow{\text{Ether}} LiAlH_4 + 3LiCl$
- **65.** (b) Alkali metal hydrides react with water to give metal hydroxide and H_2 *e.g.*,

 $NaH + H_2O \rightarrow NaOH + H_2$

Alkali metal hydroxides are strongly basic in nature.

- **66.** (c) Ionic hydrides are good reducing agents.
- 68. (c) Systematic name of water is oxidane.

- **69.** (c) BeH_2 and MgH_2 have significant covalent character.
- **70.** (a) Limiting composition of f block hydrides are MH_2 and MH_3 .
- **71.** (d) H_2 does not react with Au, Cu or Ni with Ca it gives CaH_2 . $Ca + H_2 \rightarrow CaH_2$
- 72. (c) $Ca(OH)_2$ is used for the softening of temporary hard water. $Ca(OH)_2(aq) + CO_2(g) \rightarrow CaCO_3(s) + H_2O(l)$
- 73. (a) $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$ $Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$ \therefore Ratio of volumes of H_2 evolved is 1 : 1.
- 74. (c) Anhydrous CaCl₂ is used for fast drying of neutral gases.
- **75.** (d) Hydrogen is the lightest gas.
- **76.** (c) An atom of tritium contains 1 proton, 1 electron and 2 neutrons.
- 77. (d) Hydrogen is a non-metal while all other members of group 1 (alkali metals) are metals.

78. (b)
$$H^{-}(aq) + H_2O(l) \to OH^{-}(aq) + H_2(g)$$

base 1 acid 2 base 2 acid 1

79. (a)
$$H_{1s^{1}} + e^{-} \rightarrow H^{-}_{1s^{2} \text{ or } [He]^{2}}$$

 $F + e^{-}_{[He]^{2}2s^{2}2p^{5}} \rightarrow F^{-}_{[He]^{2}2s^{2}2p^{6} \text{ or } [Ne]^{10}}$

- **80.** (a) Hydrogen from bonds in +1 and -1 oxidation state.
- **81.** (c) Mercury (*Hg*) will not displace hydrogen.
- **82.** (c) Hydrogen is the lightest gas. It is insoluble in water.
- 83. (b) Hydrogen forms maximum number of compounds in chemistry comparison than carbon.
- **84.** (c) $Zn + H_2O \rightarrow ZnO + H_2$

$$Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$$

 $Zn + 2HCl \rightarrow ZnCl_2 + H_2$ $Zn + 2H_2SO_4 \rightarrow ZnSO_4 + SO_2 + 2H_2O.$

Water or hydride of oxygen

4. (b)
$$Ca(HCO_3)_2 + Ca(OH)_2 \rightarrow 2CaCO_3 \downarrow + 4H_2O_{ppt.}$$

5. (c) D_2O in which $D = {}_1H^2$

,

9.

- (b) HCO₃⁻ is main reason of temporary hardness of water.
- (b) By boiling temporary hardness of water can be removed.

$$Ca(HCO_3)_2 \xrightarrow[\text{insoluble}]{\text{Boil}} CaCO_3 + H_2O + CO_2$$

(insoluble)
(c) $Na_2Al_2Si_2O_8 .xH_2O + Ca^{+2} \rightarrow Zeolite$

 $CaAl_2Si_2O_8.xH_2O + 2Na^+$

- 10. (b) Water has high dielectric constant *i.e.*, 82, high liquid range and can dissolve maximum number of compounds. That is why it is used as universal solvent.
- **11.** (a) Heavy water *i.e.*, D_2O slows down the speed of neutrons in nuclear reactors..
- (a) Chlorides and sulphates of Mg and Ca produces permanent hardness and bicarbonates of Mg and Ca produces temporary hardness.
- (d) Permanent hardness cannot be removed by boiling of water but temporary hardness can be removed.
- 14. (d) The density of water is $1 g cm^{-3}$ at $4^{\circ}C$

so molarity
$$= \frac{1000}{18} = 55.5 M$$
.

15. (d) Water containing Ca^{+2} , Mg^{+2} and $H^+(>10^{-7}m)$ is a hard water.

 $H^+(aq) + CH_3COONa(aq) \Rightarrow CH_3COOH(s) + Na^+(aq)$

- 16. (c) Heavy water is used as a moderator to slow down the speed of fast moving neutrons and as well as a coolant.
- **17.** (b) Heavy water freezes at a slightly higher temperature than water.
- **18.** (b) *pH* of heavy water is slightly more than seven.
- **19.** (c) D_2O actually has higher freezing point (3.8°*C*) than water H_2O (0°*C*).
- **20.** (d) Colourless anhydrous *CuSO*₄ becomes blue on reaction with water.
- 21. (c) Due to plumbosolvancy, lead dissolves in water to a small extent to form soluble hydroxide which is poisonous so lead pipe is not used for carrying drinking water.
- **22.** (a) Slaked lime removes temporary hardness of water.

$$\begin{array}{c} Ca(OH)_2 + Ca(HCO_3)_2 \rightarrow 2CaCO_3 \downarrow + 2H_2O \\ \\ \text{From hard water} \end{array}$$

- **23.** (a) In cation exchange resin Mg^{+2} and Ca^{+2} (cations) are replaced by Na^+ ions.
- 24. (c) Washing soda removes both the temporary and permanent hardness by converting soluble calcium and magnesium compounds into insoluble carbonates.

$$\begin{aligned} CaCl_2 + Na_2CO_3 &\rightarrow CaCO_3 + 2NaCl \\ CaSO_4 + Na_2CO_3 &\rightarrow CaCO_3 + Na_2SO_4 \\ Ca(HCO_3)_2 + Na_2CO_3 &\rightarrow CaCO_3 + 2NaHCO_3. \end{aligned}$$

25. (c) It is
$$Na_2Al_2Si_2O_8.xH_2O$$

- **26.** (c) ${}_{1}H_{2}^{3}O = 16 + 2 \times 3 = 22 amu$
- **27.** (d) $H_2 O(H = {}_1 H^2)$ 16 + 2 × 2 = 20 amu

2

30. (c) $K_2SO_4.Al_2(SO_4)_3.24H_2O_4$

Potash alum is generally used for purifying water.

- **31.** (c) Copper will not reduce H_2O to H_2 because of low reducing power of copper comparison than hydrogen.
- **32.** (c) Heavy water is formed by the combination of heavier isotope $({}_{1}H^{2} \text{ or } D)$ with oxygen.

$$D_2 + O_2 \rightarrow \frac{2D_2O}{\text{Heavy water}}$$

- **33.** (c) Water molecule associate due to inter molecular hydrogen bonding.
- **34.** (d) Heavy water is D_2O (1 c)

Temporary hard water contains bicarbonates of Ca^{2+} and $Mg^{2+}(2-a)$

Soft water may have no foreign ions (3-b).

Permanent hard water contains sulphates and chlorides of Ca^{+2} and $Mg^{2+}(4-d)$

- **35.** (d) The H O H angle in water molecule is about 105° (due to two lone pair of electron).
- **36.** (a) Two ice cubes when pressed over each other unite due to hydrogen bond formation.
- **37.** (a) $CaC_2 + 2D_2O \rightarrow C_2D_2 + Ca(OD)_2$
- **38.** (c) Pure water can be obtained from sea water by reverse osmosis.
- **39.** (c) Action of water on dil. Mineral acids (HCl, H_2SO_4) can give dihydrogen.
- **40.** (d) Iron (*Fe*) does not react with cold water to give H_2 . However, iron reacts with steam to give H_2 .
- **41.** (c) *pH* of neutral water at room temperature is seven.
- 43. (c) The low density of ice compared to water is due to hydrogen bonding interactions.
- **44.** (b) Silicon tetra fluoride on hydrolysis furnish ortho silicic acid and hydrogen silicofluoride.

$$\begin{array}{cccc} 3SiF_4 &+ 4H_2O \longrightarrow H_2SiO_4 + & 2H_2SiF_4 \\ (\text{Silicontetra} & (Water) & (Ortho & (Hydrogen Silico Fluoride) \\ & Silicicacid) & Fluoride) \end{array}$$

- **45.** (a) The triple point of any substance is that temperature and pressure at which the material can exist in all three phases (Solid, liquid and gas) in equilibrium specifically the triple point of water is 273.16*K* at 611.2 *Pa*.
- **46.** (b) Hardness of water is due to the presence of bicarbonates, chlorides and sulphates of *Ca*

and M_g on it. These Ca^{2+} and Mg^{2+} ions react with the anions of fatty acids present in soaps to form curdy white precipitates. As a result, hard water does not produce lather with soap immediately.

Hydrogen peroxide

1. (b) $Cl_2 + H_2O_2 \rightarrow 2HCl + O_2$

In this reaction H_2O_2 works as reducing agent

- **2.** (d) $[H_2O_2 \rightarrow H_2O + \frac{1}{2}O_2] \times 2$
 - $2H_2O_2 \rightarrow 2H_2O + O_2$ 22.4 *litre* at N.T.P. ⁶⁸ g
 - :: 22.4 *litre* O_2 at N.T.P. obtained by 68 gm of H_2O_2
 - \therefore 10 *litre* O_2 at N.T.P. obtained by

$$\frac{68}{22.4}$$
 × 10 = 30.35 gm / litre

:. 1000 ml O_2 at N.T.P. obtained by = 30.35 gm

 \therefore 100 ml O_2 at N.T.P. obtained by

$$=\frac{30.35}{1000} \times 100 = 3.035\%$$

- 3. (a) $H_2SO_4 + BaO_2 \rightarrow BaSO_4 + H_2O_2$
- 5. (c) $BaO_2 + 2HCl \rightarrow BaCl_2 + H_2O_2$
- 6. (c) $Na_2O_2 + H_2SO_4 \rightarrow Na_2SO_4 + H_2O_2$
- 7. (d) $PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O_2$
- 8. (c) $H_2S + H_2O_2 \rightarrow S_0 + 2H_2O_2$

In this reaction H_2O_2 shows oxidising nature.

9. (b)
$$H_2O_2 + Cl_2 \rightarrow 2HCl + O_2$$

13. (a) Volume strength $= 5.6 \times \text{Normality}$

$$= 5.6 \times 1.5 = 8.4$$
 litre

14. (b) Quantity of $H_2O_2 = 15 ml$ and volume of $H_2O_2 = 20$

We know that 20 volume of H_2O_2 means 1 *litre* of this solution will give 20 *litre* of oxygen at N.T.P.

Since, oxygen liberated from 1000 *ml* (1 *litre*) of $H_2O_2 = 20$ *litre*, therefore oxygen liberate from 15 *ml* of H_2O_2 $= \frac{20}{1000} \times 15 = 0.3$ *litre* = 300 *ml*

15. (a) E.W. of
$$H_2O_2 = 17$$

 $N = \frac{30.36}{17} = 1.78 \ N$

Volume strength = $5.6 \times Normality$

 $= 5.6 \times 1.78 = 10$ litre

- **17.** (a) Equivalent weight of H_2O_2 is 17.
- **18.** (b) :: 22.4 litre O_2 at N.T.P. obtained by 68 gm of H_2O_2

$$\therefore$$
 1 litre O_2 at N.T.P. obtained by $\frac{68}{22.4}$ gm of H_2O_2

 \therefore 20 litre $O_2\,$ at N.T.P. obtained by

 $\frac{68}{22.4} \times 20 \text{ gm of } H_2O_2 = 60.71 \text{ gm of } H_2O_2$

: 1000 ml O_2 at N.T.P. obtained by = 60.71 gm of H_2O_2

$$\therefore 100 \quad ml \quad O_2 \quad \text{at N.T.P. obtained by}$$
$$= \frac{60.71}{1000} \times 100 = 6.71\%$$

- **19.** (c) Electrolysis of 50% sulphuric acid gives per disulphuric acid $(H_2S_2O_8)$ which on distillation yields 30% solution of hydrogen peroxide.
- **20.** (c) Due to O O bond.
- **21.** (a) 10 volume of H_2O_2 means 10 ml of O_2 is obtained from 1 ml of H_2O_2 .
- **22.** (a) Glycerol, phosphoric acid or acetanilide is added to H_2O_2 to check its decomposition.
- **23.** (a) H_2O_2 reduces O_3 to O_2

$$O_3 + H_2O_2 \rightarrow H_2O + 2O_2$$

- **24.** (d) Fe^{+3} cannot be reduced by H_2O_2 while all other get reduced.
- (d) Hydrogen peroxide does not show basic properties.
- **26.** (d) Although H_2O_2 is a better polar solvent than H_2O . However it cannot be used as such because of the strong autooxidation ability.
- **27.** (d) H_2O_2 is used as an oxidant for rocket fuel and has 90% concentration to be used in rockets.

28. (a)
$$H_2O_2 \rightarrow H_2O + [O]$$

weak acid

- **29.** (a) Lattice energy of all metal nitrate are less than that of their solvation energy so nitrates of metals soluble in water.
- **31.** (c) H_2O_2 is unstable liquid and decomposes into water and oxygen either on standing or on heating.

32. (c)
$$\underset{CH_2}{\overset{H}{\underset{}}} + H_2O_2 \rightarrow \underset{CH_2OH}{\overset{H}{\underset{}}}$$

- **33.** (d) H_2O_2 show all these properties.
- **34.** (a) As H_2O_2 is loosing electrons so it is acting as reducing agent.
- **36.** (c) This is due to the formation of CrO_5 .

$$K_2Cr_2O_7 + H_2SO_4 + 4H_2O_2 \rightarrow K_2SO_4 + 2CrO_5 + 5H_2O_{\text{Blue}}$$

37. (a) K_a of $H_2O_2 = 1.55 \times 10^{-12}$

38. (a) In the following reaction H_2O_2 acts as a reducing agent.

$$PbO_2(s) + H_2O_2(aq) \rightarrow PbO(s) + H_2O(l) + O_2(g)$$

39. (e) H_2O_2 acts as an oxidising agent in acidic and alkaline medium.

40. (e)
$$0^{-1.48\text{\AA}}$$
 $0^{-1.48\text{\AA}}$ $0^$

41. (b) We know that

 $2H_2O_2 \longrightarrow 2H_2O + O_2$

 $2 \times 34 g$ 22400 ml

 \therefore 2×34 gm = 68 gm of H_2O_2 liberates

22400 ml O_2 at STP

 \therefore .68 gm of H_2O_2 liberates

$$=\frac{.68\times22400}{68}=224\ ml$$

Critical Thinking Questions

- 1. (c) Polyphosphates (sodium hexametaphosphates, sodium tripolyphosphate or STPP) from soluble complexes with Ca^{+2} , Mg^{+2} present in hard water.
- 2. (d) Critical temperature of water is more than O_2 due to its dipole moment (Dipole moment of water = 1.84 *D*; Dipole moment of $O_2 = \text{zero } D$).
- 3. (c) $Ca_3P_2 + 6H_2O \rightarrow 2PH_3 + 3Ca(OH)_2$ (Cal. phosphide) phosphene 1 mole (2 moles)
- 4. (d) Zeolite when treated with hard water exchange Cu^{+2} and Mg^{+2} ions (present in hard water) with Na^+ ions.

6. (c,d)
$$Mg + 2H_2O \rightarrow Mg(OH)_2 + H_2 \uparrow$$

$$LiH + H_2O \rightarrow LiOH + H_2 \uparrow$$

- 7. (a,b,d) Water containing any cation other than NH_4^+ and alkali metal is a hard water.
- (b) Reaction of *NaBH*⁴ with cold water is very slow. All other statements except (b) are correct.

9. (b,d)
$$CaH_2 + 2H_2O \rightarrow Ca(OH)_2 + 2H_2 \uparrow$$

 $Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2 \uparrow$

- 10. (c,d) Ice is a poor conductor of heat (a good thermal insulator) and its density is less than water.
- **11.** (d) H_2 will not reduce heated Al_2O_3 .
- 12. (d) MnO_2 , PbO_2 and BaO will not give H_2O_2 with $HCl.MnO_2$ and PbO_2 will give Cl_2 and BaO will react with HCl to give $BaCl_2$ and water.
- **13.** (a) *Cu* and dil. *HCl* will not produce H_2 .
- 14. (b) Strength = Normality × Eq. mass = 1.5×17 (eq. mass of H_2O_2)

$$= 25.5 \ gL^{-1}$$

- **15.** (b) $Mn + 2HNO_3(dil.) \to Mn(NO_3)_2 + H_2$
- **16.** (c) Hydrogen behaves as a metal at very high pressure.
- 17. (d) H_2O absorbs neutrons more than D_2O and this decreases the number of neutrons for the fission process.
- **18.** (c) The para form of H_2 has lesser energy than the ortho form.
- **19.** (c) Fire due to action of water on saline hydrides cannot be extinguished with water or CO_2 . These hydrides can reduce CO_2 at high temperature to produce O_2 .
- **21.** (c) $Mg(OH)_2$ is less soluble than $MgCO_3$. On boiling temporary hard water containing Mg^{+2} ions, the ppt. obtained is of $Mg(OH)_2$ are not that of $MgCO_3$.
- 22. (c) $Ca(OH)_2$ removes the permanent hardness due to Mg^{2+} ion, but it produces Ca^{2+} ions which are removed by Na_2CO_3 .

 $Mg^{2+} + Ca(OH)_2 \rightarrow Mg(OH)_2 \downarrow + Ca^{2+}$

 $Ca^{2+} + Na_2CO_3 \rightarrow CaCO_3 \downarrow +2Na^+$

 $Ca(OH)_2$ or Na_2CO_3 alone cannot remove the permanent hardness.

25. (b) $2HCOONa(s) \xrightarrow{\Delta} H_2(g) \uparrow + \downarrow (S) COONa (s)$ Sod. formate $H_2(g) \uparrow + \downarrow (S) COONa (s)$ Sod. oxalate

- **26.** (b) Presence of CO_3^{2-} and SO_4^{2-} ions in water reduced the tendency of dissolution of *Pb* in water as $Pb(OH)_2$.
- **27.** (b) *NaCl* does not make water hard.
- **28.** (b) Solubility of $CaSO_4$ in water decreases with increase in temperature.
- **29.** (b) Organic ion exchange resins can remove only ionic impurities.
- **30.** (d) Water obtained from organic ion-exchange resins is free from all ionic impurities.
- 31. (a) Soap can remove all types of hardness of water as it converts the hardness producing cations into insoluble ppt.
- **32.** (b) 10 volume solution of H_2O_2 is 3.035% solution

i.e., 3.035 *g* of H_2O_2 is present in 100*ml* of the solution.

Assertion & Reason

2. (d) Both assertion (A) and reason (R) are not true.

Correct Assertion : Calgon mask the properties of Ca^{2+} and Mg^{2+} ions present in water without removing them as ppt.

Correct Reason : Calgon forms soluble complexes with Ca^{2+} and Mg^{2+} in which properties of these ions are masked.

3. (a) Both assertion (A) and reason (R) are true and R is the correct explanation of A.

Correct Reason : H_2O_2 is a strong reducing agent.

- 4. (c) Assertion (A) is correct but reason (R) is not the correct explanation of A.
- 10. (d) Both assertion (A) and reason (R) are not true.

Correct Assertion : Hydrogen peroxide forms two series of salts called hydroperoxides and peroxides.

Correct Reason : Hydrogen peroxide molecule has two replaceable hydrogen atoms.

ET Self Evaluation Test -17

Hydrogen and Its compounds

- **1.** Temperature of maximum density in H_2O and D_2O respectively are
 - (a) 277.15 *K*, 284.75 *K*
 - (b) 273.15 *K*, 277.15 *K*
 - (c) 277.15 *K*, 285.75 *K*
 - (d) 284.75 K, 277.15 K
- 2. Non-metallic oxides dissolves in water to form
 - (a) Acidic solution
 - (b) Alkaline solution
 - (c) Neutral solution
 - (d) None of these
- **3.** Ordinary water is not used as a moderator in nuclear reactors because
 - (a) It cannot slow down fast moving neutrons
- (b) It cannot remove the heat from the reactor core
 - (c) It absorbs the fast moving neutrons
 - (d) Of its corrosive action on the metallic parts of the nuclear reactor
- 4. Brackish water mostly contains
 - (a) Calcium chloride (b) Barium sulphate
 - (c) Sodium chloride (d) Mineral acids
- **5.** $TiH_{1.73}$ is an example of
 - (a) Ionic hydride
 - (b) Covalent hydride
 - (c) Metallic hydride
 - (d) Polymeric hydride
- **6.** The volume strength of perhydrol is

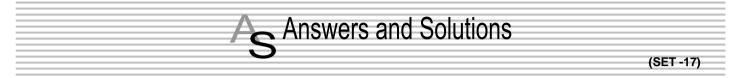
(a) 20	(b) 30

- (c) 100 (d) 10
- **7.** The solubility of an ionic compound is compared in heavy and simple water. It is
 - (a) Higher in heavy water
 - (b) Lower in heavy water

- (c) Same in heavy water and simple water
- (d) Lower in simple water
- 8. Which of the following cannot be reduced by H_2O_2
 - (a) Ag_2O
 - (b) Fe^{3+}
 - (c) Acidified KMnO₄
 - (d) Acidified $K_2Cr_2O_7$
- **9.** Hydrogen can be prepared by the action of dil. H_2SO_4 on
 - (a) Copper (b) Iron
 - (c) Lead (d) Mercury
- **10.** The element whose hydride contains maximum number of hydrogen per atom of the element is
 - (a) *Na* (b) *O* (c) *B* (d) *Si*
- **11.** Indicator type silica gel used as a dehumidifier contains
 - (a) Cu^{2+} ions (b) Ni^{2+} ions
 - (c) Co^{2+} ions (d) Fe^{2+} ions
- 12. To an aqueous solution of $AgNO_3$ some NaOH(aq)is added, till a brown ppt. is obtained. To this H_2O_2 is added dropwise. The ppt. turns black with the evolution of O_2 . The black ppt. is
 - (a) Ag_2O (b) Ag_2O_2
 - (c) *AgOH* (d) None of these
- 13. Atomic hydrogen reacts with oxygen to give
 - (a) Almost pure water
 - (b) Almost pure hydrogen peroxide
 - (c) A mixture of water and hydrogen peroxide
 - (d) None of these
- 14. Which of the following cannot be used for the preparation of H_2
 - (a) $Zn + HCl(dil.) \rightarrow$
 - (b) $NaH + H_2O \rightarrow$
 - (c) $Zn + HNO_3(dil.) \rightarrow$

(d) HCOONa $\xrightarrow{\Lambda}$

. . .


(a) Calgon(c) Serpeck

(b) Baeyer

(d) Hoope

15. The process used for the removal hardness of water is

[EAMCET 2001]

1. (a) Temperature of maximum density of H_2O is 277.15 *K*.

Temperature of maximum density of D_2O is 284.75 *K*.

- 2. (a) Non metallic oxides in water are form acidic solutions *e.g.* $P_2O_5 + 3H_2O \rightarrow 2H_3PO_4$
- **3.** (c) Ordinary water absorbs fast moving neutrons, thus stopping the process of nuclear fission.
- **4.** (c) Brackish water mostly contains sodium chloride.
- **5.** (c) It is a metallic hydride.
- 6. (c) The volume strength of perhydral is 100 perhydral is $30\% H_2O_2$
 - 10 vol. $H_2O_2 \equiv 3\% H_2O_2$

 \therefore 30% of $H_2O_2 \equiv 100$ vol. H_2O_2

- (b) The solubility of an ionic compound is more in simple water and less in heavy water.
- **8.** (b) H_2O_2 cannot reduce Fe^{3+} . All other compounds are reduced by H_2O_2 .
- 9. (b) Hydrogen cannot be prepared by the action of dil. H₂SO₄ on copper or mercury as these two metals cannot displace hydrogen from acids. Action of dil. H₂SO₄ are stops after sometimes due to the formation of insoluble PbSO₄. Only, iron reacts rapidly with dil. H₂SO₄ to give H₂.

- 10. (d) Hydride of $Si(SiH_4)$ contains more hydrogen atoms than hydrides of $Na(NaH), O(H_2O), B(BH_3)$.
- (c) Indicator type of gel used as a dehumidifier contains CO²⁺ ions, when dry it is blue in colour and on absorbing moisture it becomes pink.
- **12.** (d) $2AgNO_3(aq) + 2NaOH(aq) \rightarrow$

 $Ag_2O(s)+H_2O(l)+2NaNO_3(aq)$ Brown ppt.

$$Ag_2O(s) + H_2O_2(aq) \rightarrow H_2O(l) + O_2(g) + 2Ag(s)$$

Black pot.

The finely divided Ag is black in colour.

 (b) Atomic hydrogen reacts with oxygen to give almost pure hydrogen peroxide.

 $2[H] + O_2 \rightarrow H_2O_2$

14. (c) $Zn + 2HCl(dil.) \rightarrow ZnCl_2 + H_2$

 $NaH + H_2O \rightarrow NaOH + H_2$ $2HCOONa \xrightarrow{\Lambda} Na_2C_2O_4 + H_2$

sodium oxalate

$$4Zn + 10 HNO_3 dil. \rightarrow 4Zn(NO_3)_2 + N_2O + 5H_2O$$

*****5.** (a) Calgon process is used for the removal of hardness of water.