Circle

Exercise 11A

Question 1:

Let AB be a chord of the given circle with centre O and radius 10 cm. Then, OA = 10 cm and AB = 16 cm. From O, draw OL \perp AB. We know that the perpendicular from the centre of a circle to a chord bisects the chord.

$$AL = \frac{1}{2} \times AB$$
$$= \left(\frac{1}{2} \times 16\right) \text{ cm} = 8 \text{ cm}.$$

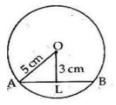
From right angled $\Delta \text{OLA},$ we have

 $OA^{2} = OL^{2} + AL^{2}$ $\Rightarrow OL^{2} = OA^{2} - AL^{2}$ $= 10^{2} - 8^{2}$ = 100 - 64 = 36 $\therefore OL = \sqrt{36} = 6 \text{ cm.}$

 \therefore The distance of the chord from the centre is 6 cm.

Question 2:

Let AB be the chord of the given circle with centre O and radius 5 cm. From O, draw OL \perp AB Then, OA = 5 cm and OL = 3 cm [given] We know that the perpendicular from the centre of a circle to a chord bisects the chord.



Now, in right angled $\triangle OLA$, we have $OA^2 = AL^2 + OL^2$ $\Rightarrow \qquad \Delta L^2 = OA^2 - OL^2$

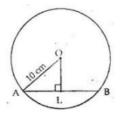
$$\Rightarrow AL^{2} = 6A^{2} - 6L^{2}$$

$$\Rightarrow AL^{2} = 5^{2} - 3^{2}$$

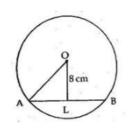
$$= 25 - 9 = 16$$

$$\therefore AL = \sqrt{16} = 4 \text{ cm}$$
So, AB = 2 AL
$$= (2 \times 4) \text{ cm} = 8 \text{ cm}$$

;, the length of the chord is 8 cm.



Let AB be the chord of the given circle with centre O.Draw OL ⊥ AB.



Then, OLis the distance from the centre to the chord. So, we have AB = 30 cm and 0L = 8 cm

We know that the perpendicular from the centre of a circle to a circle bisects the chord.

$$\therefore \qquad AL = \frac{1}{2} \times AB$$

$$= \left(\frac{1}{2} \times 30\right) \text{ cm} = 15 \text{ cm}$$
Now, in right angled $\triangle \text{OLA}$ we have,

$$OA^2 = OL^2 + AL^2$$

$$= 8^2 + 15^2$$

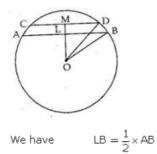
$$= 64 + 225 = 289$$

$$\therefore \qquad OA = \sqrt{289} = 17 \text{ cm}$$

$$\therefore \text{ the radius of the circle is 17 cm.}$$

Question 4:

(i)Let AB and CD be two chords of a circle such that AB || CD which are on the same side of the circle AlsoAB = 8 cm and CD = 6 cm OB = OD = 5 cm Join OL and LMSince the perpendicular from the centre of a circle to a chord bisects the chord.



 $= \left(\frac{1}{2} \times 8\right) \text{ cm} = 4 \text{ cm}$ $\text{MD} = \frac{1}{2} \times \text{CD}$

and

 $=\left(\frac{1}{2}\times 6\right)$ cm = 3 cm

Now in right angled
$$\triangle$$
 BLO

$$OB^{2} = LB^{2} + LO^{2}$$

$$\Rightarrow LO^{2} = OB^{2} - LB^{2}$$

$$\Rightarrow = 5^{2} - 4^{2}$$

$$= 25 - 16 = 9$$

$$\therefore LO = \sqrt{9} = 3 \text{ cm.}$$
Again in right angled \triangle DMO

$$OD^{2} = MD^{2} + MO^{2}$$

$$\Rightarrow MO^{2} = OD^{2} - MD^{2}$$

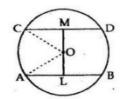
$$= 5^{2} - 3^{2}$$

$$= 25 - 9 = 16$$

 \Rightarrow MO = $\sqrt{16}$ = 4 cm

 \therefore The distance between the chords = (4-3) cm = 1 cm.

(ii)Let AB and CD be two chords of a circle such that AB $\parallel \mbox{CD}$ and they are on the opposite sides of the centre. AB = 8 cm and $CD = 6 \text{ cm}.Draw \text{ OL} \perp AB \text{ and } OM \perp CD.$



Join OA and OC Then OA = OC = 5 cm(radius)Since the perpendicular from the centre of a circle to a chord bisects the chord, we have,

$$AL = \frac{1}{2}AB$$
$$= \left(\frac{1}{2} \times 8\right) cm = 4 cm.$$

Als

⇒

⇒

Also

$$OM = \frac{1}{2}CD$$

$$= \left(\frac{1}{2} \times 6\right) cm = 3 cm$$
Now in right angled Δ OLA, we have

$$OA^{2} = AL^{2} + OL^{2}$$

$$\Rightarrow OL^{2} = OA^{2} - AL^{2}$$

$$= 5^{2} - 4^{2}$$

$$= 25 - 16 = 9 cm$$

$$\therefore OL = \sqrt{9} = 3 cm$$
Again in right angled Δ OMC, we have

$$OC^{2} = OM^{2} + CM^{2}$$

$$\Rightarrow OM^{2} = OC^{2} - CM^{2}$$

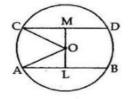
$$= 5^{2} - 3^{2}$$

= 25 - 9 = 16 $OM = \sqrt{16} = 4 \text{ cm}$ ⇒

;, the distance between the chords = (4+3) cm = 7 cm

Question 5:

Let AB and CD be two chords of a circle having centre O. AB = 30 cm and CD = 16 cm.

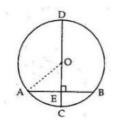


Join AO and OC which are its radii. So AO = 17 cm and CO = 17 cm. Draw OM ⊥ CD and OL ⊥ AB. Since the perpendicular from the centre of a circle to a chord bisects the chord, we have $AL = \frac{1}{2} \times AB$ $= \left(\frac{1}{2} \times 30\right) \text{ cm} = 15 \text{ cm}$ $CM = \frac{1}{2} \times CD$ $= \left(\frac{1}{2} \times 16\right) \text{ cm} = 8 \text{ cm}$ Now, in right angled Δ ALO, we have $AO^2 = OL^2 + AL^2$ $LO^2 = AO^2 - AL^2$ ⇒ $= 17^2 - 15^2$ = 289-225 = 64 $LO = \sqrt{64} = 8 \text{ cm}$ ⇒ Again, in right angled Δ CMO, we have $CO^2 = CM^2 + OM^2$ $OM^2 = CO^2 - CM^2$ ⇒ $= 17^2 - 8^2$ = 289- 64= 225 $OM = \sqrt{225} = 15 \text{ cm}$ ⇒ : Distance between the chords = OM + OL = (8+15)cm

= 23 cm.

Question 6:

CD is the diameter of a circle with centre O, and is perpendicular to chord AB. Join OA.



AB = 12 cm and CE = 3 cm

[Given]

Let $OA = OC = r \ cm$ Then, $OE = (r-3) \ cm$ Since the perpendicular from the centre of a circle to a chord bisects the chord, we have

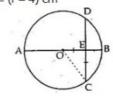
$$AE = \frac{1}{2} \times AB$$
$$= \left(\frac{1}{2} \times 12\right) cm = 6 cm$$

Now, in right angled $\triangle OEA$,

	$OA^2 = OE^2 + AE^2$
⇒	$r^2 = (r - 3)^2 + 6^2$
⇒	= r ² - 6r + 9 + 36
⇒	$r^2 - r^2 + 6r = 45$
⇒	6r = 45
⇒	$r = \frac{45}{6} = 7.5 \text{ cm}$
∴ OA, the radius of the circle is 7.5 cm.	

Question 7:

AB is the diameter of a circle with centre O which bisects the chord CD at point E. CE = ED = 8cm and EB = 4 cm. Join OC. Let OC = OB = r cm. Then, OE = (r - 4) cm



Now, in right angled $\triangle OEC$ $OC^2 = OE^2 + EC^2$ $r^2 = (r - 4)^2 + 8^2$ $\Rightarrow r^2 = r^2 - 8r + 16 + 64$ $\Rightarrow r^2 = r^2 - 8r + 80$

$$\Rightarrow r^{2} - r^{2} + 8r = 80$$

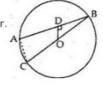
$$\Rightarrow 8r = 80$$

$$\Rightarrow r = \frac{80}{8} = 10 \text{ cm}$$

., the radius of the circle is 10 cm.

Question 8:

Given: OD \perp AB of a circle with centre O. BC is a diameter. To Prove: AC || OD and AC= $2 \times OD$ Construction: Join AC.



Proof: We know that the perpendicular from the centre of the circle to a chord bisects the chord. Here $OD \perp AB$ $\Rightarrow D$ is the mid – point of AB $\Rightarrow AD = BD$ Also, O is the mid – point of BC $\therefore OC = OB$ Now, in $\triangle ABC$, D is the midpoint of AB and O is

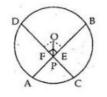
the midpoint of BC. Midpoint Theorem: The line segment joining the midpoints of any two sides of a triangle is parallel to the third side and equal to half of it.

$$\therefore OD \parallel AC \text{ and } OD = \frac{1}{2}AC$$

$$\therefore AC = 2 \times OD$$

Question 9:

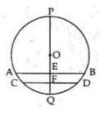
Sol.9. Given :O is the centre in which chords AB and CD intersects at P such that PO bisects ∠BPD.
 To Prove: AB = CD
 Construction:Draw OE ⊥ AB and OF ⊥ CD



 $\mathsf{Pr}\operatorname{oof}: \mathsf{In} \ \Delta \ \mathsf{OEP} \ \mathsf{and} \ \Delta \ \mathsf{OFP}$ [Each equal to 90°] $\angle OEP = \angle OFP$ OP = OP[common] $\angle OPE = \angle OPF$ [Since OP bisects ∠BPD] Thus, by Angle-Side-Angle criterion of congruence, have, $\Delta \text{ OEP} \cong \Delta \text{ OFP}$ [By ASA] The corresponding the parts of the congruent triangles are equal OE = OFC.P.C.T. ⇒ ⇒ Chords AB and CD are equidistant from the centreO. : chords equidistant AB = CD \Rightarrow from the centre are equal AB = CD....

Question 10:

Given: AB and CD are two parallel chords of a circle with centre O.POQ is a diameter which is perpendicular to AB. To Prove: $PF \perp CD$ and CF = FD

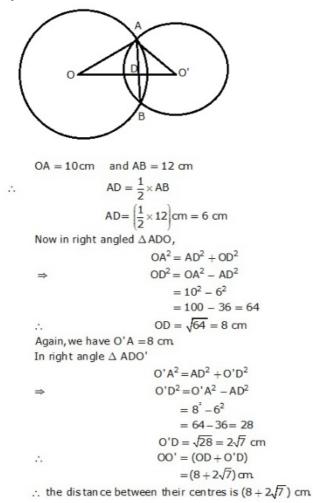


Question 11:

If possible let two different circles intersect at three distinct point A, B and C,

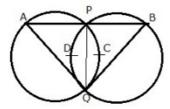
Then, these points are noncollinear. So a unique circle can be drawn to pass through these points. This is a contradiction.

Question 12:



Question 13:

Given: Two equal cirles intersect at points P and Q.A straight line through P meets the circles in A and B. To Prove : QA = QBConstruction: Join PQ



Pr oof : Two circles will be congruent if and only if they have equal radii. If two chords of a circle are equal then their corresponding arcs are congruent. Here PQ is the common chord to both the circles. Thus, their corresponding arcs are equal. So, arc PCQ = arc PDQ $\therefore \qquad \angle QAP = \angle QBP$ [congruent arcs have the same degree mesure] $\therefore \qquad QA = QB$ [isosceles triangle, base angles are equal]

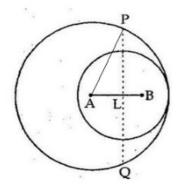
Question 14:

Given: AB and CD are the two chords of a circle with centre O. Diameter POQ bisects them at L and M To Prove :AB ∥ CD.

Question 15:

Two circles with centres A and B, having radii 5 cm and 3 cm touch each other internally. The perpendicular bisector of AB meets the bigger circle in P and Q. Join AP. Let PQ intersect AB at L. Then, AB = (5-3) cm = 2 cm. Since PQ is the perpendicular bisector of AB, we have

$$AL = \frac{1}{2} \times AB$$
$$= \left(\frac{1}{2} \times 2\right) am = 1 am$$

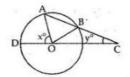


Now, in right angle ΔPLA

 $\begin{array}{rcl} \therefore & AP^2 = AL^2 + PL^2 \\ \Rightarrow & PL = \sqrt{AP^2 - AL^2} & am \\ & = \sqrt{(25 - 1)} & cm = \sqrt{24} & cm = 2\sqrt{6} & am \\ \therefore & PQ = (2 \times PL) & = (2 \times 2\sqrt{6}) & am = 4\sqrt{6} & cm \\ \therefore & the length of PQ = 4\sqrt{6} & cm \end{array}$

Question 16:

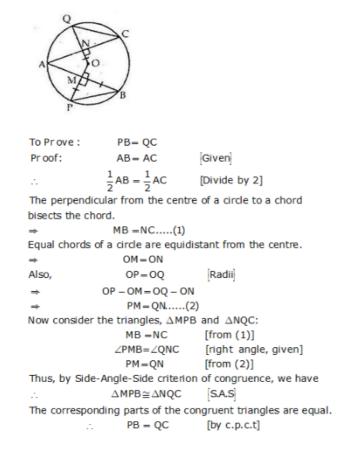
Given: AB is a chord of a circle with centre O.AB is produced to C such that BC = OB.Also, CO is joined to meet the circle in $D.\angle ACD = y^{\circ}$ and $\angle AOD = x^{\circ}$.



To Prove : X = 3yProof: OB=BC Given $\angle BOC = \angle BCO = y^{\circ}$ [isosceles triangle] $Ext. \angle OBA = \angle BOC + \angle BCO = (2y)^{\circ}$ [radii of same circle] Again, OA = OB∠OAB=∠OBA=(2y)° [isosceles triangle] Ext. $\angle AOD = \angle OAC + \angle ACO$ $= \angle OAB + \angle BCO = 3y^{\circ}$ $x^\circ = 3y^\circ$ $\therefore \angle AOD = x (given)$

Question 17:

Given:AB and AC are chords of the circle with centre O. AB = AC, OP \perp AB and OQ \perp AC.



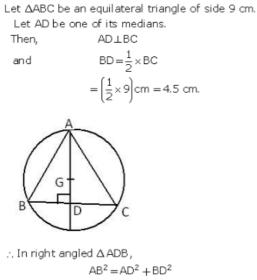
Question 18:

are two chords such that AB || CD. To Prove: AB = CD Construction:Draw OL LAB and OM LCD. Proof: In \triangle OLB and \triangle OMC \angle OLB = \angle OMC [Perpendicular bisector, angle = 90°] \angle OBL = \angle OCD [AB || CD, BC is a transversal, thus alternate interior angles are equal] OB = OC [Radii] Thus by Angle-Angle-Side criterion of congruence, we have $\therefore \triangle$ OLB $\cong \triangle$ OMC [By AAS] The corresponding parts of the congruent triangle are equal. \therefore OL = OM [C.P.C.T.]

Given: BC is a diameter of a circle with centre 0. AB and CD

But the chords equidistant from the centre are equal. $\therefore \qquad AB = CD$

Question 19:



$$AD^{2} = AB^{2} - BD^{2}$$

$$AD = \sqrt{AB^{2} - BD^{2}}$$

$$= \sqrt{(9)^{2} - (\frac{9}{2})^{2}} \text{ cm} = \frac{9\sqrt{3}}{2} \text{ cm}$$
an equilateral triangle, the centroid and circum

In an equilateral triangle, the centroid and circumcentre coincide and AG :GD= $2:1\,$

radius AG =
$$\frac{2}{3}$$
AD
= $\left(\frac{2}{3} \times \frac{9\sqrt{3}}{2}\right)$ cm = $3\sqrt{3}$ cm

∴ The radius of the circle is 3√3 cm.

Question 20:

⇒ ⇒ Given : AB and AC are two equal chords of a circle with centre O To Prove: ∠OAB=∠OAC Construction: Join OA, OB and OC.

Proof: In $\triangle OAB$ and $\triangle OAC$, AB = AC [Given] OA = OA [common] OB = OC [Radii] Thus by Side-Side-Side criterion of congruence, we have $\therefore \quad \triangle OAB \cong OAC$ [by SSS] The corresponding parts of the congruent triangles are equal. $\Rightarrow \quad \angle OAB = \angle OAC$ [by C.P.C.T.] Therefore, O lies on the bisector of $\angle BAC$

Question 21:

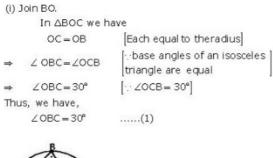
Given: OPQR is a square. A circle with centre O cuts the square in X and Y. To Prove: QX = QYConstruction: Join OX and OY. Proof: In $\triangle OXP$ and $\triangle OYR$ [Each equal to 90°] ∠OPX = ∠ORY OX = OY Radii OP = OR Sides of a square Thus by Right Angle-Hypotenuse-Side criterion of congruence, we have, $\triangle OXP \cong \triangle OYR$ by RHS

The corresponding parts of the congruent triangles are equal. $\Rightarrow PX = RY$ [by CP.C.T.] $\Rightarrow PQ - PX = QR - RY$ [$\because PQ = QR$]

QX = QY.

Exercise 11B

Question 1:



Now, in ∆BOA, we have [Each equal to the radius] OB=OC ··base angles of an isosceles ∠OAB = ∠OBA \rightarrow triangle are equal ∠OBA=40° [∵∠OAB = 40°, given] \Rightarrow Thus, we have, ∠OBA=40°(2) ∠ABC=∠OBC+∠OBA =30° + 40° [from (1) and (2)] \Rightarrow $\angle ABC = 70^{\circ}$ \Rightarrow The angle subtended by an arc of a circle at the centre is double the angle subtended by the arc at any point on the circumference. ∠AOC=2×∠ABC $=2 \times 70^{\circ} = 140^{\circ}$ (ii) $\angle BOC = 360^{\circ} - (\angle AOB + \angle AOC)$ $=360^{\circ}-(90^{\circ}+110^{\circ})$ =360°-200°=160° We know that ∠BOC= 2∠BAC $\angle BAC = \frac{160^{\circ}}{2} = 80^{\circ}$ [$\because \angle BOC = 160^{\circ}$] 2 ∠BAC =80°. **Question 2:**

(i)

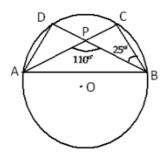
The angle subtended by an arc of a circle at the centre is double the angle subtended by the arc at any point on the circumference.

∴ ∠AOB=2∠OCA

 $\Rightarrow \angle OCA = \frac{70}{2} = 35^{\circ} \qquad [\because \angle AOB = 70^{\circ}]$ (ii) The radius of the circle is OA = OC

 \Rightarrow ∠OAC = ∠OCA [base angles of an isosceles triangle are equal \Rightarrow ∠OAC = 35° [as∠OCA = 35°]

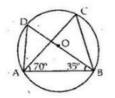
Question 3:



It is clear that $\angle ACB = \angle PCB$ Consider the triangle $\triangle PCB$. Applying the angle sum property, we have, $\angle PCB = 180^{\circ} - (\angle BPC + \angle PBC)$ $= 180^{\circ} - (180^{\circ} - 110^{\circ} + 25^{\circ})$ [$\angle APB$ and $\angle BPC$ are linear pair; $\angle PBC = 25^{\circ}$, given] $= 180^{\circ} - (70^{\circ} + 25^{\circ})$ $\angle PCB = 180^{\circ} - 95^{\circ} = 85^{\circ}$

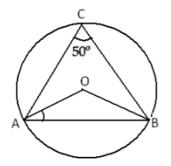
Angles in the same segment of a cirlce are equal. :. $\angle ADB = \angle ACB = 85^{\circ}$

Question 4:



It is clear that, BD is the diameter of the circle. Also we know that, the angle in a semicircle is a right angle. $\therefore \angle BAD = 90^{\circ}$ Now consider the triangle, $\triangle BAD$ $\Rightarrow \angle ADB = 180^{\circ} - (\angle BAD + \angle ABD)$ [Angle sum property] $\Rightarrow = 180^{\circ} - (90^{\circ} + 35^{\circ})$ [$\angle BAD = 90^{\circ}$ and $\angle ABD = 35^{\circ}$] $\Rightarrow = 180^{\circ} - 125^{\circ}$ $\Rightarrow \angle ADB = 55^{\circ}$ Angles in the same segment of a circle are equal. $\therefore \angle ACB = \angle ADB = 55^{\circ}$ $\therefore \angle ACB = 55^{\circ}$

Question 5:



The angle subtended by an arc of a circle at the centre is double the angle subtended by the arc at any point on the circumference.

∠AOB=2∠ACB =2×50° [Given] ∠AOB=100° Consider the triangle ∆OAB OA = OB

....(1) [radius of the circle] ∠OAB = ∠OBA [base angles of an isosceles triangle are equal]

Thus we have ∠OAB = ∠OBA

....(2) By angle sum property, we have Now ∠AOB + ∠OAB + ∠OBA = 180° 100° + 2∠OAB =180° [from (1) and (2)]

2∠OAB = 180° - 100° = 80° ⇒ $\angle OAB = \frac{80^{\circ}}{2} = 40^{\circ}$ ⇒ ∠OAB=40°

Question 6:

⇒

(i) Angles in the same segment of a circle are equal. ∠ABD and ∠ACD are in the segment AD. ∠ACD=∠ABD = 54° [Given] (ii) Angles in the same segment of a circle are equal. $\angle {\sf BAD}$ and $\angle {\sf BCD}$ are in the segment BD. ∴ ∠BAD=∠BCD = 43° [Given] (iii) Consider the ∆ABD. By Angle sum property we have ∠BAD+∠ADB+∠DBA=180° 43° +∠ADB + 54° = 180° ⇒ ∠ADB = 180° - 97° = 83° ⇒ ∠BDA = 83° ⇒

Question 7:

Angles in the same segment of a circle are equal. $\angle CAD$ and $\angle CBD$ are in the segment CD. $\therefore \angle CAD = \angle CBD = 60^{\circ}$ [Given] We know that an angle in a semi circle is a right angle. $\therefore \angle ADC = 90^{\circ}$ [angle in a semicircle] $\therefore \angle ACD = 180^{\circ} - (\angle ADC + \angle CAD)$ $= 180^{\circ} - (90^{\circ} + 60^{\circ})$ $= 180^{\circ} - 150^{\circ} = 30^{\circ}$

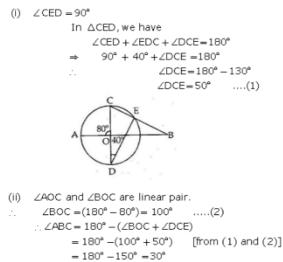
ZCDE = ZACD = 30°

AC || DE and CD is a transversal, thus alternate angles are equal

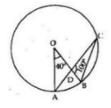
Question 8:

Join CO and DO, \angle BCD= \angle ABC= 25° [alternate interior angles] The angle subtended by an arc of a circle at the centre is double the angle subtended by the arc at any point on the circumference. ∴ ∠BOD= 2∠BCD =50° [∠BCD = 25°] Similarly, ∠AOC=2∠ABC =50° AB is a straight line passing through the centre. ∴ ∠AOC+∠COD+∠BOD=180° ⇒ 50° + ∠COD + 50° = 180° ∠COD =180° -100° =80° ⇒ $\angle CED = \frac{1}{2} \angle COD$ $=\frac{80^{\circ}}{2}=40^{\circ}$ ∠CED= 40°

Question 9:



Question 10:



The angle subtended by an arc of a circle at the centre is double the angle subtended by the arc at any point on the circumference.

 $\therefore \ \angle AOB = 2\angle ACB$ $\Rightarrow \ = 2\angle DCB \ [\because \angle ACB = \angle DCB]$ $\Rightarrow \angle DCB = \frac{1}{2}\angle AOB$ $= \left(\frac{1}{2} \times 40\right) = 20^{\circ}$ Consider the $\triangle DBC$;

Byangle sum property, we have

 $\begin{array}{ccc} \angle BDC + \angle DCB + \angle DBC = 180^{\circ} \\ \Rightarrow & 100^{\circ} + 20^{\circ} + \angle DBC = 180^{\circ} \\ \Rightarrow & \angle DBC = 180^{\circ} - 120^{\circ} = 60^{\circ} \\ \Rightarrow & \angle OBC = \angle DBC = 60^{\circ} \\ \therefore & \angle OBC = 60^{\circ} \end{array}$

Question 11:

Join OB.

 $\begin{array}{cccc} & OA = OB & [Radius] \\ & & \angle OBA = \angle OAB = 25^{\circ} & [base angles are \\ & & equal in isosceles triangle \\ Now in \triangle OAB, we have \\ \Rightarrow & \angle OAB + \angle OBA + \angle AOB = 180^{\circ} \\ \Rightarrow & & 25^{\circ} + 25^{\circ} + \angle AOB = 180^{\circ} \\ \Rightarrow & & \angle AOB = 180^{\circ} - 50^{\circ} = 130^{\circ} \\ \end{array}$ The angle subtended by an arc of a circle at the centre is double the angle subtended by the arc at any point on the circumference. $\begin{array}{c} \ddots & & \angle AOB = 2\angle ACB \\ \end{array}$

$$\Rightarrow \qquad \angle ACB = \frac{1}{2} \angle AOB = \frac{1}{2} \times 130 = 65^{\circ}$$
$$\Rightarrow \qquad \angle ECB = 65^{\circ}$$

P E C C B C C C

Consider the right triangle \triangle BEC. We know that the sum of three angles in a triangle is 180°. $\Rightarrow \angle$ EBC + \angle BEC + \angle ECB = 180° $\Rightarrow \angle$ EBC + 90° + 65° = 180° $\Rightarrow \angle$ EBC = 180° - 155° = 25°

∴ ∠EBC = 25°

Question 12:

Question 14:

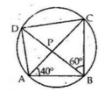
Consider the triangle, ΔPRQ . PQ is the diameter. The angle in a semicircle is a right angle. $\Rightarrow \angle PRQ = 90^{\circ}$ By the angle sum property in $\triangle PRQ$, we have, $\angle QPR + \angle PRQ + \angle PQR = 180^{\circ}$ $\Rightarrow \angle QPR + 90^{\circ} + 65^{\circ} = 180^{\circ}$ ∠QPR = 180° - 155° = 25°(1) \Rightarrow

Now consider the triangle ${\Delta}\mathsf{PQM}.$ Since PQ is the diameter, $\angle \text{PMQ} = 90^{\circ}$ Again applying the angle sum property in ${\bigtriangleup}\mathsf{PQM},$ we have $\angle QPM + \angle PMQ + \angle PQM = 180^{\circ}$ $\Rightarrow \qquad \angle QPM + 90^{\circ} + 50^{\circ} = 180^{\circ}$ ⇒ ∠QPM = 180° - 140° = 40° Now in quadrilateral PQRS ∠QPS+∠SRQ=180° $\Rightarrow \angle QPR + \angle RPS + \angle PRQ + \angle PRS = 180^{\circ}$ from (1) 25° + 40° + 90° + ∠PRS = 180° ⇒ ∠PRS =180° -155° = 25° \Rightarrow ∠PRS=25°

Exercise 11C

Question 1:

 $\angle BDC = \angle BAC = 40^{\circ} \text{ [angles in the same segment]}$ $In \triangle BCD, \text{ we have}$ $\angle BCD + \angle BDC + \angle DBC = 180^{\circ}$ $\therefore \qquad \angle BCD + 40^{\circ} + 60^{\circ} = 180^{\circ}$ $\Rightarrow \qquad \angle BCD = 180^{\circ} - 100^{\circ} = 80^{\circ}$ $\therefore \qquad \angle BCD = 80^{\circ}$



(ii) Also $\angle CAD = \angle CBD$ [angles in the same segment] $\therefore \qquad \angle CAD = 60^{\circ}$ [$\because \angle CBD = 60^{\circ}$]

Question 2:

 $\begin{array}{l} \angle PQR + \angle PRQ + \angle RPQ = 180^{\circ} \\ \Rightarrow \qquad 30^{\circ} + 90^{\circ} + \angle RPQ = 180^{\circ} \quad [from (i)and(ii)] \\ \Rightarrow \qquad \angle RPQ = 180^{\circ} - 120^{\circ} = 60^{\circ} \\ \therefore \qquad \angle RPQ = 60^{\circ} \end{array}$

Question 3:

In cyclic quadrilateral ABCD, AB∥DC and∠BAD=100°

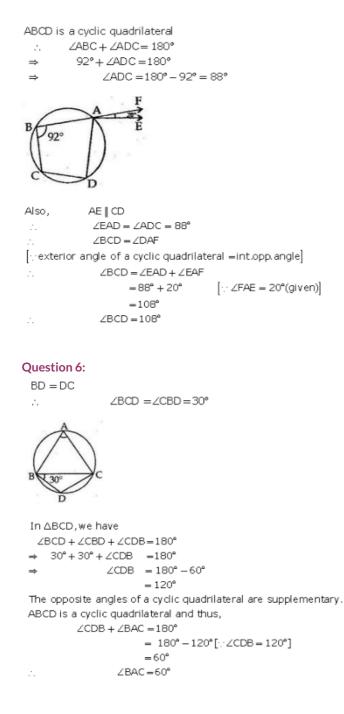
(i) $\angle BCD + \angle BAD = 180^{\circ}$ $\Rightarrow \angle BCD + 100^{\circ} = 180^{\circ}$ $\Rightarrow \angle BCD = 180^{\circ} - 100^{\circ} = 80^{\circ}$ (ii) Also, $\angle ADC = \angle BCD = 80^{\circ}$ $\therefore \angle ADC = 80^{\circ}$ (iii) $\angle ABC = \angle BAD = 100^{\circ}$ $\therefore \angle ABC = 100^{\circ}$

Question 4:

[: exterior angle of a cyclic quadrilateral interior opposite angle]

Question 5:

∠PBC=65°



Question 7:

Angle subtended by an arc is twice the angle subtended by it on the droumference in the alternate segment. Here arcABC makes $\angle AOC = 100^{\circ}$ at the centre of the dircle and $\angle ADC$ on the droumference of the dircle $\therefore \angle AOC = 2\angle ADC$

 $\Rightarrow \angle ADC = \frac{1}{2}(\angle AOC)$ $\Rightarrow \qquad = \frac{1}{2} \times 100^{\circ} \ [\angle AOC = 100^{\circ}]$ $\Rightarrow \angle ADC = 50^{\circ}$

The opposite angles of a cyclic quadrilateral are supplementary ABCD is a cyclic quadrilateral and thus,

∠ADC + ∠ABC = 180° = 180° - 50° [∵∠ADC = 50°] = 130° ∴ ∠ABC = 130° ∴ ∠ADC = 50° and ∠ABC = 130°

Question 8:

 \triangle ABC is an equilateral triangle. \therefore Each of its angle is equal to 60° $\Rightarrow \angle$ BAC = \angle ABC = \angle ACB = 60°

(i) Angles in the same segment of a circle are equal. \therefore ZBDC = ZBAC

 $= 60^{\circ}$ [: $\angle BAC = 60^{\circ}$]

 $\Rightarrow \angle BDC = 60^{\circ}$

 (ii) The opposite angles of a cyclic quadrilateral are supplementary ABCE is a cyclic quadrilateral and thus,

∠BAC + ∠BEC =180° ∠BEC= 180° - 60°[∵∠BAC = 60°] =120°

∠BEC=120°

⇒

Question 9:

ABCD is a cyclic quadrilateral.

 $\therefore \qquad \angle A + \angle C = 180^{\circ} \qquad \begin{bmatrix} \text{opp. angle of a cyclic quadrilateral} \\ \text{are supplementary} \end{bmatrix}$ $\Rightarrow \qquad \angle A + 100^{\circ} = 180^{\circ}$

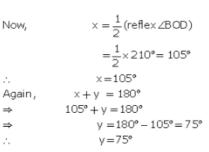
⇒ ∠A = 180° - 100° = 80°

Now in $\triangle ABD$, we have $\angle A + \angle ABD + \angle ADB = 180^{\circ}$ $\Rightarrow 80^{\circ} + 50^{\circ} + \angle ADB = 180^{\circ}$

⇒ ∠ADB = 180° - 130° = 50°
∴ ∠ADB = 50°

Question 10:

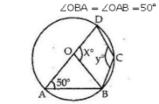
O is the centre of the circle and $\angle BOD = 150^{\circ}$ ∴ Reflex ∠BOD =(360° – ∠BOD) =(360°-150°)=210°



Question 11:

⇒

O is the centre of the circle and $\angle \text{DAB} = 50^\circ$ OA=OB [Radii] ⇒



```
In ∆OAB we have
\angle OAB + \angle OBA + \angle AOB = 180^{\circ}
\Rightarrow 50° + 50° + \angleAOB = 180°
                  ∠AOB =180° -100° = 80°
⇒
Since, AOD is a straight line,
                     ×=180° – ∠AOB.
                      =180^{\circ} - 80^{\circ} = 100^{\circ}
```

```
× =100°
The opposite angles of a cyclic quadrilateral are supplementary.
ABCD is a cyclic quadrilateral and thus,
          ∠DAB+∠BCD=180°
                   \angle BCD = 180^{\circ} - 50^{\circ} [\because \angle DAB = 50^{\circ}, given]
                        =130°
                       y =130°
Thus, \times =100° and y = 130°
```

Question 12:

ABCD is a cyclic quadrilateral. We know that in a cyclic quadrilateral exterior angle = interior opposite angle. $\angle CBF = \angle CDA = (180^{\circ} - \times)$ $130^{\circ} = 180^{\circ} - \times$ ⇒ $\times = 180^{\circ} - 130^{\circ} = 50^{\circ}$ ⇒

$$\times = 50^{\circ}$$

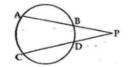
Question 13:

```
AB is a diameter of a circle with centre O and DO || CB,
∠BCD = 120°
(i) Since ABCD is a cyclic quadrilateral
     ∠BCD+∠BAD=180°
120° + ∠BAD =180°
\Rightarrow
⇒
               ∠BAD = 180° - 120° = 60°
(ii)
              ∠BDA = 90°
                             [angle in a semi circle]
      In ∆ABD we have
      ∠BDA+∠BAD+∠ABD=180°
    90° + 60° + ∠ABD = 180°
⇒
                ∠ABD=180° -150° = 30°
⇒
(iii) OD = OA.
     ∠ODA = ∠OAD = ∠BAD = 60°
⇒
             ∠ODB= 90° – ∠ODA
                    = 90^{\circ} - 60^{\circ} = 30^{\circ}
Since DO CB, alternate angles are equal
   ∠CBD=∠ODB
⇒
            = 30°
(iv) \angle ADC = \angle ADB + \angle CDB
            = 90^{\circ} + 30^{\circ} = 120^{\circ}
 Also, in ∆AOD, we have
      ∠ODA+∠OAD+∠AOD = 180°
        60° + 60° +∠AOD = 180°
 ⇒
 -
                       ∠AOD=180°-120°=60°
 Since all the angles of △AOD are of 60° each
 ∴ △ AOD is an equilateral triangle.
```

Question 14:

AB and CD are two chords of a circle which interect each other at P, outside the circle. AB = 6cm, BP = 2 cm and PD = 2.5 cm Therefore, AP x BP = CP x DP

Or, 8 x 2 = (CD + 2.5) x 2.5 cm [as CP = CD + DP]



 $Let \times = CD$

Thus, $8 \times 2 = (x + 2.5) \times 2.5$ \Rightarrow 16 cm = 2.5 x + 6.25 cm \Rightarrow 2.5 x = (16 - 6.25) cm \Rightarrow 2.5 x = 9.75 cm \Rightarrow x = $\frac{9.75}{2.5}$ = 3.9 cm \therefore x = 3.9 cm

Therefore, CD = 3.9 cm

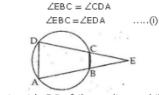
Question 15:

O is the centre of a circle having ∠AOD = 140° and∠CAB = 50° (i) ∠BOD = 180° - ∠AOD = 180° - 140° = 40° OB = OD ∠OBD = ∠ODB 140% In ∆OBD, we have ∠BOD+∠OBD+∠ODB=180° +∠OBD+∠OBD = 180° [∵∠OBD = ∠ODB] 40° + 2∠OBD = 180° [∵∠BOD = 40°] ⇒ ∠BOD + ∠OBD + ∠OBD = 180° ⇒ 2∠0BD =180° - 40° =140° ⇒ $\angle OBD = \angle ODB = \frac{140}{2} = 70^{\circ}$ ⇒ Also, $\angle CAB + \angle BDC = 180^{\circ}$ [: ABCD is cyclic] ∠CAB + ∠ODB + ∠ODC = 180° ⇒ 50° + 70° +∠ODC = 180° \Rightarrow ∠ODC = 180° - 120° = 60° ⇒ ∠ODC = 60° $\angle EDB = 180^{\circ} - (\angle ODC + \angle ODB)$ $= 180^{\circ} - (60^{\circ} + 70^{\circ})$ $= 180^{\circ} - 130^{\circ} = 50^{\circ}$ (ii) ∠EBD =180° - ∠OBD $= 180^{\circ} - 70^{\circ} = 110^{\circ}$

Question 16:

⇒

Consider the triangles, ΔEBC and ΔEDA Side AB of the cyclic quadrilateral ABCD is produced to E



Again, side DC of the cyclic quadrilateral ABCD isproduced to E. ∠ECB=∠BAD ⇒ ∠ECB =∠EAD(ii)

and ∠BEC = ∠DEA [each equal to∠E]....(iii) Thus from (i), (ii) and (iii), we have $\triangle EBC \cong \triangle EDA$

Question 17:

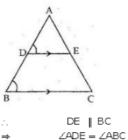
⇒

 ΔABC is an isosceles triangle in which AB=AC and a circle passing through B and C intersects AB and AC at D and E. AB =AC Since ∠ACB = ∠ABC ∠ADE = ∠ACB = ∠ABC So, ext. ∠ADE = ∠ABC

DE || BC. -

Question 18:

 \triangle ABC is an isosceles trianglein which AB = AC. D and E are the mid points of AB and AC respectively.



....(i) AB = ACGiven ∠ABC = ∠ACB(ii) ∠ADE=∠ACB [From (i) and(ii)] Now,∠ADE+∠EDB = 180° [∴ ADBis a straightline] ∠ACB +∠EDB = 180°

⇒ The opposite angles are supplementary.

- ⇒ D,B,C and E are concyclic
 - i.e. D, B, C and E is a cyclic quadrilateral.

Question 19:

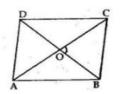
Also,

⇒

Let ABCD be a cyclic quadrilateral and let O be the centre of the circle passing through A, B, C, D. Then each of AB, BC, CD and DA being a chord of the circle , its right bisector must pass through O. ... the right bisectors of AB, BC, CD and DA pass through and are concurrent.

Question 20:

ABCD is a rhombus. Let the diagonals AC and BD of the rhombus ABCD intersect at O. But, we know, that the diagonals of a rhombus bisect each other at right angles. So,∠BOC = 90° ∴ ∠BOC lies in a drde.



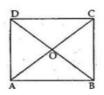
Thus the circle drawn with BC as diameter will pass through O

Similarly, all the circles described with AB, AD and CD as diameters will pass through O.

Question 21:

ABCD is a rectangle.

Let O be the point of intersection of the diagonals AC and BD of rectangle ABCD.

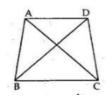


Since the diagonals of a rectangle are equal and bisecteach other. $\therefore OA = OB = OC = OD$

Thus, O is the centre of the circle through A, B, C, D.

Question 22:

Let A, B, C be the given points. With B as centre and radius equal to AC draw an arc. With C as centre and AB as radius draw another arc, which cuts the previous arcat D.



Then D is the required point BD and CD. In \triangle ABC and \triangle DCB AB = DC AC = DB BC = CB [common] $\therefore \quad \triangle ABC \cong \triangle DCB$ [by SSS] $\Rightarrow \qquad \angle BAC = \angle CDB$ [CP.C.T] Thus, BC subtends equal angles, $\angle BAC$ and $\angle CDB$ on the same side of it.

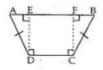
∴ Points A, B, C, D are concyclic.

Question 23:

ABCD is a cyclic quadrilateral $\begin{array}{c} \angle B - \angle D = 60^{\circ} \qquad \dots \dots (i) \\ \text{and} \qquad \angle B + \angle D = 180^{\circ} \qquad \dots \dots (ii) \\ \text{Adding (i) and (ii) we get,} \\ 2\angle B = 240^{\circ} \\ \therefore \qquad \angle B = \frac{240}{2} = 120^{\circ} \\ \text{Substituting the value of } \angle B = 120^{\circ} \text{ in (i) we get} \\ 120^{\circ} - \angle D = 60^{\circ} \\ \Rightarrow \qquad \angle D = 120^{\circ} - 60^{\circ} = 60^{\circ} \\ \text{The smaller of the two angles i.e.} \angle D = 60^{\circ} \end{array}$

Question 24:

ABCD is a quadrilateral in which AD = BC and \angle ADC = \angle BCD Draw DE \perp AB and CF \perp AB

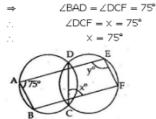


Now, in \triangle ADE and \triangle BCF, we have ∠AED = ∠BFC [each equal to 90°] ∠ADE = ∠ADC - 90° = ∠BCD - 90° = ∠BCF AD = BC [given] Thus, by Angle-Angle-Side criterionof congruence, we have $\triangle ADE \cong \triangle BCF$ [by AAS congruence] The corresponding parts of the congruent triangles are equal. ∠A=∠B Now, $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ 2∠B + 2∠D = 360° \Rightarrow ⇒ 2(∠B + ∠D) = 360° $\angle B + \angle D = \frac{360}{2} = 180^{\circ}$ ⇒

ABCD is a cyclic quadrilateral.

Question 25:

If one side of a cyclic quadrilateral is produced then the exterior angle is equal to the interior opposite angle.



The opposite angles of the opposite angles of a cyclic quadrilateral is 180°

 $\begin{array}{lll} \Rightarrow & \angle DCF + \angle DEF = 180^{\circ} \\ \Rightarrow & 75^{\circ} + \angle DEF = 180^{\circ} \\ \Rightarrow & \angle DEF = 180^{\circ} - 75^{\circ} = 105^{\circ} \\ As & \angle DEF = y^{\circ} = 105^{\circ} \\ \therefore & x = 75^{\circ} \text{ and } y = 105^{\circ} \end{array}$

Question 26:

Given: Let ABCD be a cyclic quadrilateral whose diagonals AC and BD inter sect at O at right angles Let OL 1 AB such that LO produced meets CD at M.

To Prove: CM = MD Pr oof: ∠1= ∠2 [angles in the same segment] $\angle 2 + \angle 3 = 90^{\circ}$ [∵∠OLB = 90°] [∴LOM is a straight line] ∠3+∠4 =90° and ∠BOC = 90° Z2+Z3=Z3+Z4 λ. Z2 =Z4 ⇒ Thus, ∠1=∠2 and Z2 = Z4 $\angle 1 = \angle 4$ ⇒ OM = CM Similarly, OM = MDCM = MDHence,

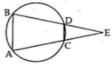
Question 27:

Chord AB of a circle is produced to E. If one side of a cyclic quadrilateral is produced then the exterior angle is equal to the interior opposite angle. \therefore Ext.2BDE = 2BAC = 2EAC(1)

Chord CD of a circle is produced to E \therefore Ext. \angle DBE = \angle ACD = \angle ACE.....(2) Consider the triangles \triangle EDB and \triangle EAC. \angle BDE = \angle CAE [from(1)] \angle DBE = \angle ACE [from(2)] \angle E = \angle E [common] $\therefore \qquad \triangle$ EDB~ \triangle EAC.

Question 28:

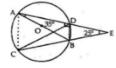
Given: AB and CD are two parallel chords of a circle BDE and ACE are straight lines which intersect at E. If one side of a cyclic quadrilateral is produced then the exterior angle is equal to the interior opposite angle. \therefore ExtZEDC = ZA and, ExtZDCE = ZB



Also, $AB \parallel CD$ $\Rightarrow \qquad \angle EDC = \angle B$ and $\angle DCE = \angle A$ $\therefore \qquad \angle A = \angle B$ $\therefore \qquad \triangle AEB$ is isosceles.

Question 29:

AB is a diameter of a circle with centre O. ADE and CBE are straight lines, meeting at E, such that \angle BAD = 35° and \angle BED = 25°. Join BD and AC.



[angle in a semi circle] Now, ∠BDA = 90° = ∠EDB $\angle EBD = 180^{\circ} - (\angle EDB + \angle BED)$ ⇒ $= 180^{\circ} - (90^{\circ} + 25^{\circ})$ $= 180^{\circ} - 115^{\circ} = 65^{\circ}$ $\angle DBC = (180^{\circ} - \angle EBD)$ $=180^{\circ} - 65^{\circ} = 115^{\circ}$ ∠DBC = 115° $\angle DCB = \angle BAD$ [angle in the same segment] (ii) Again, Since, ∠BAD = 35° ∠DCB = 35° (iii) $\angle BDC = 180^{\circ} - (\angle DBC + \angle DCB)$ $= 180^{\circ} - (\angle DBC + \angle BAD)$ $=180^{\circ} - (115^{\circ} + 35^{\circ})$ $=180^{\circ} - 150^{\circ} = 30^{\circ}$ ∠BDC = 30°