CAT 2020 Question Paper Slot 3

Quant

56. If $\log_a 30 = A, \log_a(\frac{5}{3}) = -B$ and $\log_2 a = \frac{1}{3}$, then $\log_3 a$ equals

- $\mathbf{A} \quad \frac{2}{A+B-3}$
- B $\frac{2}{A+B}-3$
- c $\frac{A+B}{2}-3$
- $\mathbf{D} \quad \tfrac{A+B-3}{2}$

57. Dick is thrice as old as Tom and Harry is twice as old as Dick. If Dick's age is 1 year less than the average age of all three, then Harry's age, in years, is

58. Vimla starts for office every day at 9 am and reaches exactly on time if she drives at her usual speed of 40 km/hr. She is late by 6 minutes if she drives at 35 km/hr. One day, she covers two-thirds of her distance to office in one-thirds of her usual total time to reach office, and then stops for 8 minutes. The speed, in km/hr, at which she should drive the remaining distance to reach office exactly on time is

- A 29
- **B** 26
- **C** 28
- **D** 27

59. Let m and n be natural numbers such that n is even and $0.2<\frac{m}{20},\frac{n}{m},\frac{n}{11}<0.5$. Then m-2n equals

- **A** 3
- **B** 1
- **C** 2
- D 4

60. How many integers in the set {100, 101, 102, ..., 999} have at least one digit repeated?

61. In the final examination, Bishnu scored 52% and Asha scored 64%. The marks obtained by Bishnu is 23 less, and that by Asha is 34 more than the marks obtained by Ramesh. The marks obtained by Geeta, who scored 84%, is

- **A** 357
- **B** 417
- C 439
- **D** 399

62. If a,b,c are non-zero and $14^a=36^b=84^c$, then $6b(\frac{1}{c}-\frac{1}{a})$ is equal to

- **63.** A person invested a certain amount of money at 10% annual interest, compounded half-yearly. After one and a half years, the interest and principal together became Rs.18522. The amount, in rupees, that the person had invested is
- **64.** A man buys 35 kg of sugar and sets a marked price in order to make a 20% profit. He sells 5 kg at this price, and 15 kg at a 10% discount. Accidentally, 3 kg of sugar is wasted. He sells the remaining sugar by raising the marked price by p percent so as to make an overall profit of 15%. Then p is nearest to
 - A 22
 - **B** 35
 - **C** 25
 - **D** 31
- **65.** The points (2,1) and (-3,-4) are opposite vertices of a parallelogram. If the other two vertices lie on the line x+9y+c=0, then c is
 - **A** 12
 - **B** 13
 - **C** 15
 - **D** 14
- **66.** A and B are two railway stations 90 km apart. A train leaves A at 9:00 am, heading towards B at a speed of 40 km/hr. Another train leaves B at 10:30 am, heading towards A at a speed of 20 km/hr. The trains meet each other at
 - A 11:45 am
 - **B** 11:20 am
 - C 11:00 am
 - **D** 10:45 am
- **67.** Let N, x and y be positive integers such that N=x+y, 2 < x < 10 and 14 < y < 23. If N>25, then how many distinct values are possible for N?
- **68.** Let k be a constant. The equations kx+y=3 and 4x+ky=4 have a unique solution if and only if
 - A $|k| \neq 2$
 - **B** |k| = 2
 - C $k \neq 2$
 - D k=2

69. How r	many of the integers 1, 2, , 120, are divisible by none of 2, 5 and 7?
A 4	12
B 4	11
C 4	40
D 4	13
70. How r	many pairs(a, b) of positive integers are there such that $a \leq b$ and $ab = 4^{2017}$?
A 2	2018
B 2	2019
C 2	2017
D 2	2020
and g	Sunil, and Ravi run along a circular path of length 3 km, starting from the same point at the same time, oing in the clockwise direction. If they run at speeds of 15 km/hr, 10 km/hr, and 8 km/hr, respectively, nuch distance in km will Ravi have run when Anil and Sunil meet again for the first time at the starting?
A 4	1.8
B 4	1.6
C 5	5.2
D 4	1.2
	rapezium $ABCD$, AB is parallel to DC , BC is perpendicular to DC and $\angle BAD=45^0$. If DC = BC = 4 cm,the area of the trapezium in sq cm is
73. The a	area, in sq. units, enclosed by the lines $x=2,y=\mid x-2\mid +4$, the X-axis and the Y-axis is equal to
A 1	10
B 6	5
C 8	3
D 1	12
74. If $f(x)$	f(x+y)=f(x)f(y) and $f(5)=4$, then $f(10)-f(-10)$ is equal to
A 1	4.0625
B 0	
C 1	5.9375
D 3	

- **75.** $\frac{2\times 4\times 8\times 16}{(\log_2 4)^2(\log_4 8)^3(\log_8 16)^4}$ equals
- **76.** The vertices of a triangle are (0,0), (4,0) and (3,9). The area of the circle passing through these three points is
 - A $\frac{14\pi}{3}$
 - **B** $\frac{123\pi}{7}$
 - **C** $\frac{12\pi}{5}$
 - **D** $\frac{205\pi}{9}$

Answers

Quant

51. C	52. C	53. B	54. 40	55. A	56. A	57. 18	58. C	
59. B	60. 252	61. D	62. 3	63. 16000	64. C	65. D	66. C	
67. 6	68. A	69. B	70. A	71. A	72. 28	73. A	74. C	
75. 24	76. D							,

Explanations

Quant

51.C

Initially let's consider A and B as one component

The volume of the mixture is doubled by adding A(60% alcohol) i.e they are mixed in 1:1 ratio and the resultant mixture has 72% alcohol.

Let the percentage of alcohol in component 1 be 'x'.

Using allegations ,
$$\frac{(72-60)}{x-72}=\frac{1}{1}$$
 => x= 84

Percentage of alcohol in A = 60% => Let's percentage of alcohol in B = x%

The resultant mixture has 84% alcohol. ratio = 1:3

Using allegations ,
$$\frac{(x-84)}{84-60}=\frac{1}{3}$$

52. C

Given,
$$rac{\mathrm{sum\ of\ scores\ in\ n\ matches} + 38 + 15}{n + 2} = 29$$

Given,
$$rac{\mathrm{sum\ of\ scores\ in\ n\ matches}}{n}=30$$

Sum of the scores in 5 matches = 29*7 - 38-15 = 150

Since the batsmen scored less than 38, in each of the first 5 innings. The value of x will be minimum when remaining four values are highest

$$=> x = 2$$

53 B

To have real roots the discriminant should be greater than or equal to 0.

So,
$$m^2-8n\geq 0\ \&\ 4n^2-4m\geq 0$$

=>
$$m^2 \geq 8n \ \& \ n^2 \geq m$$

Since m,n are positive integers the value of m+n will be minimum when m=4 and n=2.

.'. m+n=6.

54.**40**

Let the desired efficiency of each worker '6x' per day.

In 60 days 60/200*6=1.8 km of work is to be done but actually 1.5km is only done.

Actual efficiency y'=1.5/1.8*6x=5x.

Now, left over work = 4.5km which is to be done in 140 days with 'n' workers whose efficiency is 'y'.

(i)/(ii) gives,

$$\frac{(140 \cdot 6x \cdot 200)}{(n \cdot 5x \cdot 140)} = \frac{6}{4.5}$$

=> n=180.

.'. Extra 180-140 = 40 workers are needed.

55.A

$$x_1 = -1$$

$$x_1 = x_2 + 2 \Rightarrow x_2 = x_1 - 2 = -3$$

Similarly,

$$x_3 = x_1 - 5 = -6$$

$$x_4 = -10$$

The series is -1, -3, -6, -10, -15......

When the differences are in AP, then the nth term is $-\frac{n(n+1)}{2}$

$$x_{100} = -\frac{100(100+1)}{2} = -5050$$

56.A

$$\log_a 30 = A \ or \ \log_a 5 + \log_a 2 + \log_a 3 = A$$
....(1)

$$\log_a \left(\frac{5}{3}\right) = -B \ or \ \log_a 3 - \log_a 5 = B$$
....(2)

and finally $\log_a 2 = 3$

Substituting this in (1) we get $\log_a 5 + \log_a 3 = A - 3$

Now we have two equations in two variables (1) and (2). On solving we get

$$\log_a 3 = \frac{(A+B-3)}{2} or \log_3 a = \frac{2}{A+B-3}$$

57.**18**

Let tom's age = x

Given,

$$3x+1 = (x+3x+6x)/3$$

$$=> x = 3$$

Hence, Harry's age = 18 years

58.**C**

Let distance = d

Given,
$$\frac{d}{35} - \frac{d}{40} = \frac{6}{60}$$

$$=> d = 28km$$

The actual time taken to travel 28km = 28/40 = 7/10 hours = 42 min.

Given time taken to travel 58/3 km = 1/3 *42 = 14 min.

Then a break of 8 min.

To reach on time, he should cover remaining 28/3 km in 20 min => Speed = $\frac{\left(\frac{28}{3}\right)}{\frac{20}{20}}=28\,$ km/hr

59.**B**

$$0.2 < \frac{n}{11} < 0.5$$

Since n is an even natural number, the value of n = 4

$$0.2 < rac{m}{20} < 0.5 \:$$
 => 4< m<10. Possible values of m = 5,6,7,8,9

Since $0.2 < rac{n}{m} < 0.5$, the only possible value of m is 9

Hence m-2n = 9-8 = 1

60.252

Total number of numbers from 100 to 999 = 900

The number of three digits numbers with unique digits:

The hundredth's place can be filled in 9 ways (Number 0 cannot be selected)

Ten's place can be filled in 9 ways

One's place can be filled in 8 ways

Total number of numbers = 9*9*8 = 648

Number of integers in the set {100, 101, 102, ..., 999} have at least one digit repeated = 900 - 648 = 252

61.**D**

Let the total marks be 100x

Marks obtained by Bishnu = 52x

Marks obtained by Asha = 64x

Marks obtained by Ramesh = 52x+23

Marks obtained by Ramesh = 64x-34

$$=> x = \frac{19}{4}$$

Marks obtained by Geeta =84x = 84*19/4 = 399

62.**3**

Let
$$14^a=36^b=84^c$$
 = k

$$\Rightarrow$$
 a = $\log_{14} k$, b = $\log_{36} k$, c= $\log_{84} k$

$$6b(\frac{1}{c}-\frac{1}{a})$$
 = $6\cdot\frac{1}{2}\log_6k\left(\log_k84-\log_k14\right)$ = 3

63.**16000**

Given,

Rate of interest = 10%

Since it is compounded half-yearly, R=5%

n=3

We know, A =
$$P\left(1+\frac{R}{100}\right)^n$$

$$18522 = P \left(1 + 0.05\right)^3$$

64.C

Let the cost price of 1kg of sugar = Rs 100

The total cost price of 35 kg = Rs3500

Marked up price per kg = Rs 120

Glven, the final profit is 15% => Final SP of 35 kg = 3500 *1.15 = Rs 4025

First 5 kg's are sold at 20% marked up price => $SP_1 = 5 \cdot 100 \cdot 1.2$ = Rs 600

Next 15 kgs are sold after giving 10% discount => $SP_2 = 15 \cdot 100 \cdot 1.2 \cdot 0.9 = 1620$

3kgs of sugar got wasted

=> 23 kg of sugar was sold at Rs (600 +1620) = Rs 2220

Remaining 12kg should be sold at Rs 4025 - 2220 = Rs1805

=> SP of 1kg =
$$1805/12 \simeq 150$$

Hence, the seller should further mark up by $rac{(150-120)}{120} \cdot 100 = 25\%$

65.**D**

The midpoints of two diagonals of a parallelogram are the same

Hence the midpoint of (2,1) and (-3,-4) lie on x+9y+c=0

midpoint of (2,1) and (-3,-4) =
$$(\frac{2-3}{2}, \frac{1-4}{2})$$
 = (-1/2, -3/2)

Keeping this coodinates in the above line equation, we get c = 14

66.C

The distance travelled by A between 9:00 Am and 10:30 Am is 3/2*40 =60 km.

Now they are separated by 30 km

Let the time taken to meet =t

Distance travelled by A in time t + Distance travelled by B in time t = 30

Hence they meet at 11:00 AM

67.**6**

Possible values of x = 3,4,5,6,7,8,9

When x = 3, there is no possible value of y

When x = 4, the possible values of y = 22

When x = 5, the possible values of y=21,22

When x = 6, the possible values of y = 20.21,22

When x = 7, the possible values of y = 19,20,21,22

When x = 8, the possible values of y=18,19,20,21,22

When x = 9, the possible values of y=17,18,19,20,21,22

The unique values of N = 26,27,28,29,30,31

68.A

Two linear equations ax+by= c and dx+ ey = f have a unique solution if $\frac{a}{d} \neq \frac{b}{e}$

Therefore,
$$\frac{k}{4} \neq \frac{1}{k} \Rightarrow k^2 \neq 4$$

$$=> k \neq |2|$$

The number of multiples of 2 between 1 and 120 = 60

The number of multiples of 5 between 1 and 120 which are not multiples of 2 = 12

The number of multiples of 7 between 1 and 120 which are not multiples of 2 and 5 = 7

Hence, number of the integers 1, 2, ..., 120, are divisible by none of 2, 5 and 7 = 120 - 60 - 12 - 7 = 41

70.**A**

$$ab = 4^{2017} = 2^{4034}$$

The total number of factors = 4035.

out of these 4035 factors, we can choose two numbers a,b such that a le in [4035/2] = 2017.

And since the given number is a perfect square we have one set of two equal factors.

.'. many pairs(a, b) of positive integers are there such that $a \leq b$ and $ab = 4^{2017}$ = 2018.

71.A

Anil and Sunil will meet at a first point after LCM ($\frac{3}{15}, \frac{3}{10}$) = 3/5 hr

In the mean time, distance travelled by ravi = 8 * 3/5 = 4.8 km

72.**28**

Given, BC = DE = 4

$$CD = BE = 5$$

In triangle ADE, EAD=45^{0}\$\$

$$\tan 45 = \frac{DE}{AE} \Rightarrow AE = 4$$

Area of trapezium = Area of rectangle BCDE + Area of triangle AED

$$= 20 + 8 = 28$$

73.**A**

The required figure is a trapezium with vertices A(0,0), B(2,0), C(2,4) and D(0,6)

Area of trapezium = $\frac{1}{2} \left(sum \ of \ the \ opposite \ sides \right) \cdot height$ = $\frac{1}{2} \left(4+6 \right) \cdot 2 \ = \ 10$

74.**C**

The given function is equivalent to $f(x) = a^x$

Given,
$$f(5) = 4$$

$$\Rightarrow a^5 = 4 => \ a = 4^{\frac{1}{5}}$$

$$=> f(x) = 4^{\frac{x}{5}}$$

75.**24**

$$\frac{(2\cdot 4\cdot 8\cdot 16)}{(\log_2 2^2)^2 \cdot \left(\log_{2^2} 2^3\right)^3 \cdot \left(\log_2 2\right)}$$

$$=\frac{2^{10}}{4\cdot \left(\frac{3}{2}\right)^3\cdot \left(\frac{4}{3}\right)^4}=24$$