Rational Numbers

FUNDAMENTALS

Rational Number:-

A number which can be expressed as $\frac{x}{v}$, where x and y are Integers and $y \neq 0$ is called a rational number.

e.g.,
$$\frac{1}{2}, \frac{2}{2}, \frac{-1}{2}, 0, \frac{3}{-2}$$
 etc.

- Set of rational number is denoted by Z.
- > A Rational number may be positive, zero or negative
- > If $\frac{x}{y}$ is a rational number and $\frac{x}{y} > 0$, then $\frac{x}{y}$ is called a positive Rational Number.

e.g.,
$$\frac{1}{2}, \frac{2}{5}, \frac{-3}{-2}, -\left(-\frac{1}{2}\right)$$
 etc.

Negative Rational Numbers:-

> If
$$\frac{x}{y}$$
 is a rational number and $\frac{x}{y} < 0$, then $\frac{x}{y}$ is called a Negative Rational Number.
e.g., $\frac{-1}{2} \cdot \frac{3}{-2}, \frac{-7}{11}$ etc.

Standard form of Rational Number:-

A Rational number $\frac{x}{y}$ is said to be m standard form, if x and y are integers having no common divisor other

than one, where $y \neq 0$.

e.g.,
$$\frac{-1}{2}, \frac{5}{6}, \frac{8}{11}$$
etc.

Note:- There are infinite rational numbers between any two rational numbers.

Property of Rational Number

Let x and y are two rational number and y > x, then the rational number between x and y is $\frac{1}{2}(x+y)$.

e.g., find 2 rational number between $\frac{1}{3}$ and $\frac{1}{2}$ Solution:- Let $x = \frac{1}{3}$ and $y = \frac{1}{3}$ and y > x. Then, Rational no. between $\frac{1}{3}$ and $\frac{1}{2}$ is $\frac{1}{2}\left(\frac{1}{3}+\frac{1}{2}\right)=\frac{1}{2}\left(\frac{2+3}{6}\right)=\frac{5}{12}$ Again Let $x=\frac{5}{12}$ and $y=\frac{1}{2}$ and y > x. then Rational no. between $\frac{5}{12}$ and $\frac{1}{2}$ is $\frac{1}{2}\left(\frac{5}{12}+\frac{1}{2}\right)=\frac{1}{2}\left(\frac{5+6}{12}\right)=\frac{1}{2}\times\frac{11}{12}=\frac{11}{24}$ Hence the Rational Numbers between $\frac{1}{3}$ and $\frac{1}{2}$ are $\frac{5}{12}$ and $\frac{11}{24}$.

 \blacktriangleright Let x and y are two rational number and y > x. Consider to find n rational numbers between x and y. Let d =

$$\frac{y-x}{n+1}$$

Then 'n' rational number lying between x and y are (x+d), (x+2d), (x+3d), (x+nd).

Example:- Find 9 rational number between 2 and 3.

Solution: Let x = 2 and y = 3 then y > x

Now
$$\mathbf{d} = \frac{y - x}{n+1} = \frac{3-2}{9+1} = \frac{1}{10}$$

Then, rational number are, 2 + 0.1, 2 + 0.2, 2 + 0.3, 2 + 0.4, 2 + 0.5, 2 + 0.6, 2 + 0.7, 2 + 0.8, 2 + 0.9 = 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8 and 2.9.

Representation of Rational Number on the Number line

> To represent - on the number line first we draw a number line XY.

Let O represent 0 (zero) and A represent 1. So divide OA into 4 equal parts, each point in the middle representing

P, Q and R. Point R represent $\frac{3}{4}$.

Operations on Rational Numbers

Addition of Rational Numbers:

Example: Find the sum of the rational numbers $\frac{-4}{9}, \frac{15}{12}$ and $\frac{-7}{18}$.

Solution: $\frac{-4}{9} + \frac{15}{12} + \frac{-7}{18} = \frac{-16 + 45 - 14}{36} = \frac{15}{36} = \frac{5}{12}$

Properties of Addition of Rational Number

Closure Property:- If a and b are two rational numbers, then a + b is always a rational number. E.g., Let a = 3, b = -2, then

$$a+b=3+(-2)-1$$

> Commutative Property:- If a and b are two rational number then a + b = b + a.

E.g., Let
$$a = \frac{1}{2}$$
 and $b = \frac{1}{3}$ then

To check whether, a + b = b + a

$$\Rightarrow \frac{1}{2} + = \frac{1}{3} + \frac{1}{2}$$
$$\Rightarrow \frac{5}{6} = \frac{5}{6}$$

> Associative Property:-If a, b and c are three Rational number then,

$$a+(b+c)=(a+b)+c.$$

E.g., a = 1, b = -2 and c = 3 then, 1 + (-2 + 3) = (1 - 2) + 3 1 + 1 = -1 + 32 = 2

Existence of additive identity (property of zero):-

> Zero is the additive identity for any Rational Number because when zero is added to any Rational Number, then sum is the same given Number, (a + 0 = a).

E.g.,
$$2 + 0 = 2, -2 + 0 = -2, 3 + 0 = 3, \frac{-1}{2} + 0 = \frac{-1}{2}$$

Existence of additive inverse;-

> Negative of rational number.

For
$$\frac{a}{b}$$
, it is $-\frac{a}{b}$
e.g., For $\frac{1}{2}$, it is $-\frac{1}{2}$
 $\left(-\frac{1}{2}$ is a additive inverse of $\frac{1}{2}\right)$
 $-\frac{3}{2} \Rightarrow \frac{3}{2}$ $\left(\frac{3}{2}\right)$ is a additive inverse of $-\frac{3}{2}$)

Note:- Additive inverse of the rational number '0' is 0 itself.

Subtraction of Rational Number:-

> Subtraction is inverse process of addition

If
$$\frac{p}{q}$$
 and $\frac{r}{s}$ be two rational number it follows
 $\frac{r}{s} - \frac{p}{q} = \frac{r}{s} + \left(-\frac{p}{q}\right)$
e.g., subtract $\frac{-2}{7}$ from $\frac{3}{4}$.
Solution: $\frac{3}{4} - \left(-\frac{2}{7}\right) = \frac{3}{4} + \frac{2}{7} = \frac{21+8}{28} = \frac{29}{28}$

Multiplication of Rational Number;

The product of two rational numbers =
$$\frac{\text{The Product of the numerators}}{\text{Product of the denominators}}$$

If $\frac{a}{b}$ and $\frac{c}{d}$ are two rational numbers, then $\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$
Example:- Multiply $\frac{-17}{30}$ by $\frac{15}{-34}$
Solution:- $\frac{-17}{30} \times \frac{15}{34} = \frac{-17 \times 15}{30 \times -34} = \frac{1}{4}$

Properties of multiplication of Rational Numbers:

Closure Property:- If $\frac{a}{b}$ and $\frac{c}{d}$ are two rational numbers, then $\left(\frac{a}{b} \times \frac{c}{d}\right)$ is also a Rational Number.
e.g., $\frac{2}{3} \times \frac{3}{4} = \frac{2 \times 3}{3 \times 4} = \frac{1}{2}$ Commutative Property:- If $\frac{a}{b}$ and $\frac{c}{d}$ are two rational numbers, then $\frac{a}{b} \times \frac{c}{d} = \frac{c}{d} \times \frac{a}{b}$ e.g., $\frac{2}{3} \times \frac{3}{4} = \frac{3}{4} \times \frac{2}{3} \Rightarrow \frac{6}{12} = \frac{6}{12}$ $\frac{1}{2} = \frac{1}{2}$ Associative Property:- If $\frac{a}{b}, \frac{c}{d}$ and $\frac{e}{f}$ are three rational numbers, then $\frac{a}{b} \times \left(\frac{c}{d} \times \frac{e}{f}\right) = \left(\frac{a}{b} \times \frac{c}{d}\right) \times \frac{e}{f}$ e.g., $\frac{1}{2} \times \left(\frac{2}{3} \times \frac{3}{4}\right) = \left(\frac{1}{2} \times \frac{2}{3}\right) \times \frac{3}{4}$

$$\frac{6}{24} = \frac{6}{24}$$

Existence of Multiplicative Identity:- One is the multiplicative identity for any rational number because when 1 is multiplied to any Rational Number, Product is Given Rational Number itself.

e.g.,
$$\left(\frac{p}{q} \times 1\right) = \frac{p}{q}, \left(\frac{3}{4} \times 1\right) = \frac{3}{4}, \left(\frac{-5}{2} \times 1\right) = \frac{-5}{2}$$

Existence of Multiplicative inverse:- for any non-zero rational number $\frac{a}{b}$, there exist a unique rational $\frac{b}{a}$

such that
$$\left(\frac{a}{b} \times \frac{b}{a}\right) = 1$$

Hence, we say that $\frac{a}{b}, \frac{b}{a}$ are multiplicative inverse of each other

e.g., (i)
$$\frac{2}{3} \times \frac{3}{2} = 1$$

(ii) $\left(\frac{-3}{4} \times \frac{-4}{3}\right) = \frac{12}{12} = 1$

> **Distribution of Multiplication over Addition:-** for any three rational numbers $\frac{a}{b}, \frac{b}{a}$ and $\frac{e}{f}$

 $\frac{a}{b} \times \left(\frac{c}{d} \times \frac{e}{f}\right) = \left(\frac{a}{b} \times \frac{c}{d}\right) + \left(\frac{a}{b} \times \frac{e}{f}\right).$ This property is called distributive property for multiplication over addition. e.g., $\frac{1}{2} \times \left(\frac{2}{3} + \frac{3}{4}\right) = \frac{1}{2} \left(\frac{8+9}{12}\right) = \frac{1}{2} \times \frac{17}{12} = \frac{17}{24}$

> **Division of Rational Number:-** If $\frac{a}{b}$ is divided by $\frac{c}{d}$, then $\frac{a}{b}$ is the dividend, $\frac{c}{d}$ is the divisor and $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{b}$ is the quotient.

$$\frac{d}{b} \div \frac{d}{d} = \frac{d}{b} \times \frac{d}{c}$$
 is the quotien

Example: $\frac{14}{57} \div \frac{42}{19} = \frac{14}{57} \times \frac{19}{42} = \frac{14 \times 19}{57 \times 42} = \frac{1}{9}$

Decimal representation of Rational Numbers:- A rational number can be expressed as a terminating or non-terminating, recurring decimal.
For example:- 1. $\frac{1}{2} = 0.5, \frac{1}{4} = 0.25, \frac{1}{5} = 0.2$ etc. are rational numbers which are terminating decimals.

2.
$$\frac{4}{3} = 1.333.... = 1.\overline{3}, \frac{1}{6} = 0.1666.... = 0.1\overline{6}, \frac{1}{7} = 0.142857142857... = 0.\overline{142857}, etc$$

are non-terminating repeating decimals.

➤ If a rational number (≠ integer) can be expressed in the form $\frac{p}{2^n \times 5^m}$, where $\mathbf{P} \in \mathbf{Z}, n \in W$ and $m \in W$, the rational number will be terminating decimal otherwise, rational number will be non-terminating recurring decimal.

For Example:

1.
$$\frac{3}{10} = \frac{3}{2^1 \times 5^1}$$
, So, $\frac{3}{10}$ is a terminating decimal.
2. $\frac{7}{250} = \frac{7}{2^1 \times 5^3}$, So, $\frac{7}{250}$ is a terminating decimal.
3. $\frac{8}{75} = \frac{8}{5^2 \times 3}$ is a non-terminating, recurring decimal.

> Non-terminating recurring decimal is also called periodic decimal.

Method of expressing recurring decimals as rational number:

> The recurring part of the non-terminating recurring decimal is called period and the number of digits in the recurring part is called periodicity.

Example:

1.
$$\frac{1}{3} = 0.\overline{3}$$
, period = 3, Periodicity = 1
2. $\frac{7}{15} = 0.4\overline{6}$, Period = 6, Periodicity = 1
3. $\frac{5}{13} = 0.\overline{384615}$, Period=384615, Periodicity = 6

We can express non-terminating recurring decimals in the form of rational numbers.

Example-1:- Let us write $0.2\overline{45}$ in the form of rational number.

Solution:- Let $x = 0.2\overline{45}$ (i)Then 10x = 2.4545(ii)Also, 1000x = 245.4545(iii)

On subtracting (ii) from (iii), we get: $990x = 245 \Leftrightarrow x = \frac{245}{990} = \frac{49}{198}$.

Hence, $0.2\overline{45} = \frac{40}{198}$.

Example-2: Let us find the rational form of $0.\overline{428571}$.

Solution:- The periodicity of the recurring decimal is 6. So multiply the decimal fraction by 10^6 , $0.\overline{428571} = x$ (say)

 $10^{6} = 1000000 x = 428571.\overline{428571}$ $x = 0.\overline{428571}$ 99999x = 428571 $\therefore x = \frac{428571}{999999} = \frac{3}{7}$

Example-3:- Express $15.0\overline{2}$ as a rational Number

Solution:- Here, the whole number obtained by writing digits in there order =1502. The whole number made by the non-recurring digits in order =150,

The number of digits after the decimal point = 2 (two)

The number of digits after the decimals point do not recur = one

$$\therefore 15.0\overline{2} = \frac{1502 - 150}{10^2 - 10^1} = \frac{1352}{90} = \frac{676}{45}$$