10. Binomial Distribution

• **Binomial distribution:** For binomial distribution B(n, p), the probability of x successes is denoted by P(X = x) or P(X) and is given by $P(X = x) = {}^{n}C_{x}q^{n-x}p^{x}$, x = 0, 1, 2, ..., q = 1 - p Here, P(X) is called the probability function of the binomial distribution.

Example:

An unbiased coin is tossed 5 times. Find the probability of getting at least 4 heads.

Solution:

Let the random variable *X* denotes the number of heads.

Here,
$$n = 5$$
 and P (getting a head) $= \frac{1}{2}$
 $\therefore p = \frac{1}{2}$ and $q = 1 - \frac{1}{2} = \frac{1}{2}$
 $P(X = r) = {}^{n}C_{r}p^{r}q^{n-r} = {}^{5}C_{r}(\frac{1}{2})^{r}(\frac{1}{2})^{5-r} = {}^{5}C_{r}(\frac{1}{2})^{5}$
 P (getting at-least 4 heads) $= P(X \ge 4)$
 $= P(X = 4) + P(X = 5)$
 $= {}^{5}C_{4}(\frac{1}{2})^{5} + {}^{5}C_{4}(\frac{1}{2})^{5}$
 $= (5 + 1)(\frac{1}{2})^{5}$
 $= 6 \times \frac{1}{32}$
 $= \frac{3}{16}$

Normal Distribution

A continuos random variable X with parameter μ and $\sigma 2$ is said to follow normal distribution if its probability density function is given as

fx=
$$1\sigma2\pi e$$
-x- $\mu22\sigma2$; - ∞ \infty, - ∞ < μ < ∞ , σ >00 ; Otherwise

A random variable X that follows normal distribution with parameters μ and $\sigma 2$ is represented as $X \sim N\mu$, $\sigma 2$. The normal probability distribution or the normal curve is bell-shaped. The curve is symmetric about the mean, μ and the flatness of the curve is determined by its standard deviation, σ .

If f(x) is a probability density function, then $Px1 \le X \le x2 = \int x1x2fx dx$. This is same as the area bounded by the probability density curve f(x), x-axis, $x = x_1$ and $x = x_2$.

The total area under the normal distribution curve is 1. Since the normal distribution curve is symmetric about the mean μ , therefore, $PX < \mu = PX > \mu = 12$.

Standard Normal Variable

Let Z be a random variable defined as $Z=X-\mu\sigma$. The distribution of Z is normal distribution with parameters $\mu=0$ and $\sigma 2=1$ and is represented as $Z\sim N0$, 1. The distribution with mean, $\mu=0$ and standard deviation $\sigma=1$ is called the standard normal distribution and the random variable Z is called the standard normal variable. A continuous random variable Z is said to be standard normal variable if its probability density function is

 $fz=12\pi e-z22$; $-\infty < z < \infty 0$; Otherwise