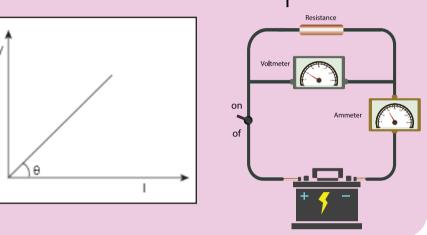
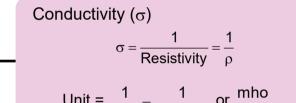
Resistance depending on temperature

· Resistivity of conductor increase with increase in tempreature.

Resistivity of semiconductor decreases with increases in temperature

• Resistance. (R) A = cross-section area $R = \frac{\rho \ell}{\rho}$ Α Unit of Resistance Ohm (Ω) Dependency of R on temperature (T) $R_2 = R_1(1 + \infty (T_2 - T_1))$ ∞ = Temperature coefficient of resistance Symbol ~~~~~ Rheostate is variable resistance Resistance colour code R = 1st digit – 2nd digit × 3rd digit + 4th digit% **Conductonce.** $C = \frac{1}{\text{Resistance}} = \frac{1}{R}$ Unit is mho (Ω^{-1}) -Grouping of Resistance Series grouping of resustance Equivalent resistance, $R_s = R_1 + R_2 + R_3 \dots$ I R₁ R₂ R₃ Current flow through each resistance is same. Potential difference, $V \propto R$ Some Important Formula After Stretching. it length increases by n times then resistance will increase by N2 times i.e., If radius be reduced to n times then area of cross-section decreases n^2 time so the • resistance become n^4 times i.e., $R_2 = n^4 R_1$ Using n conductors of equal resistance, the number of possible combination is 2^{n-1} . If the resistance of n conductors are totally

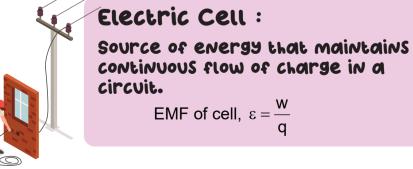

different, then the numbers of possible


• combination will be 2ⁿ.

Ohm'S Law

- · If physical condition remain same current $I \cap V = V = IR$
- R-electric resistance substances which Obey Ohm's law called Ohmic and that do Not obey called Non-ohmic Substances.
- Ohm's law is not valid for semi-conductor

• For Ohmic Substances
$$\tan \theta = \frac{V}{T} = R$$

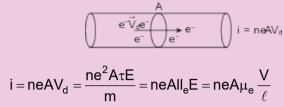

Unit = $\frac{1}{\Omega m} = \frac{1}{ohm \cdot m}$ or $\frac{mho}{m}$

Parallel grouping of resistance Equivalent resistance.

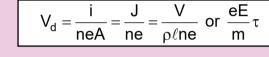
Potential difference across each resistance same

current distribution, in each resistance.

Cells in series and parallel


i.e., mixed current in the circuit, $I = \frac{n\epsilon}{\frac{nr}{rr} + R}$ m

Electric Current


S.I. Unit Ampere (A) COULOMD SECOND Instaneous, i =

> By convection. direction of flow of positive charge is taken as direction of flow of current. Drift velocity (Vd)

Drift velocity (Vd)

Average uniform velocity acquired by free electron.

 $V_d = \mu_e E$ (τ is avg. time between collisions)

```
mobility, \mu e = \frac{V_d}{M}
```

In terms of relaxation time T

$$R = \frac{mI}{ne^2\tau A}$$
 and $\rho = \frac{m}{ne^2\tau}$

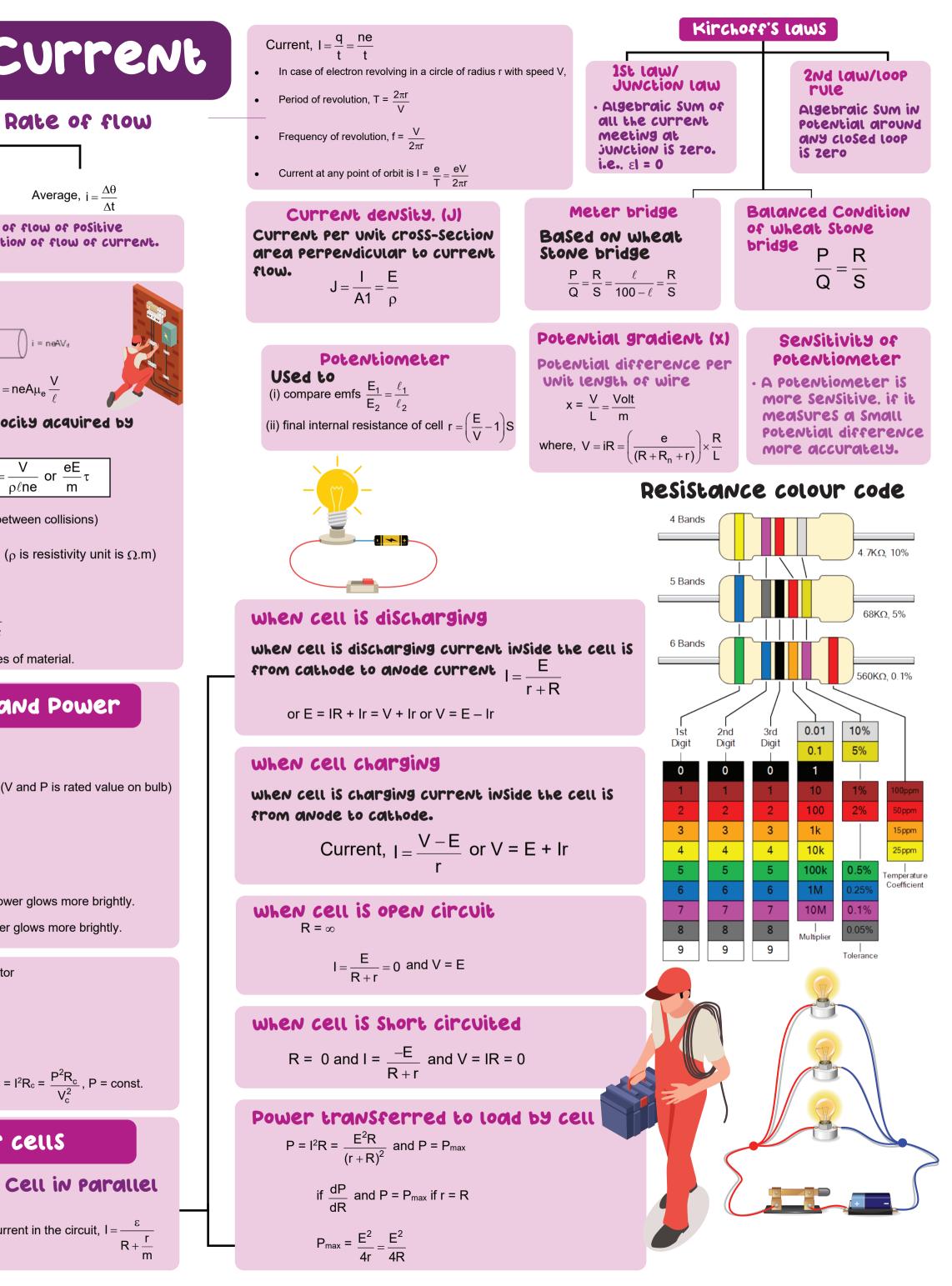
n, τ , and ρ are properties of material.

Electric Energy and Power

Principle of bulb

- Resistance of bulb, $R = \frac{V^2}{P}$ or $R \propto \frac{1}{P}$ (V and P is rated value on bulb)
- In parallel, $P = P_1 + P_2$
- In Series, $\frac{1}{P} = \frac{1}{P_1} + \frac{1}{P_2}$
- In parallel a bulb having more rated power glows more brightly
- In series a bulb having less rated power glows more brightly
- Heat energy developed across a resistor

 $H = I^2 Rt; t = time$


- Power, P = I²R = $\frac{V^2}{V}$
- For transmission cable, power loss, $\rho_c = I^2 R_c = \frac{P^2 R_c}{V^2}$, P = const.

Grouping of cells

Cell in Series.

Current in the circuits, $I = \frac{n\epsilon}{R + nr}$

Current in the circuit, I = -

