20. Trigonometry: Concept of Measurement of Angle

Let us Work Out 20

1. Question

Let us express the following into degrees, minutes and seconds.

(iii) 375" (iv)
$$27\frac{1^{\circ}}{12}$$

(v) 72.04°

Answer

(i) 832'

1 degree = 60 minutes

 $\Rightarrow 832' = \frac{832}{60} \text{ degree}$ $\Rightarrow 832' = 13\frac{13}{15}$ $\Rightarrow 832' = 13 \text{ degrees 52 minutes}$ (ii) 6312'' 1 degree = 3600 seconds $\Rightarrow 6312'' = \frac{6312}{3600} \text{ degrees}$ $\Rightarrow 6312'' = \frac{263}{150} \text{ degree}$ $\Rightarrow 6312'' = 1\frac{113}{150} \text{ degree}$ $\Rightarrow 6312'' = 1 \text{ degree } 45\frac{1}{5} \text{ minutes}$ $\Rightarrow 6312'' = 1 \text{ degree } 45 \text{ minutes } 12 \text{ seconds}$ (iii) 375"

1 degree = 3600 seconds

$$\Rightarrow 375'' = \frac{375}{3600} \text{ degrees}$$
$$\Rightarrow 375'' = \frac{5}{48} \text{ degree}$$
$$\Rightarrow 375'' = 6\frac{1}{4} \text{ minutes}$$

 \Rightarrow 375" = 6 minutes 15 seconds

2. Question

Let us determine the circular values of the followings

(i) 60° (ii) 135°

- (ii) -150° (iv) 72°
- (v) 22°30' (vi) -62°30'
- (vii) 52°52'30"

Answer

(i) 60°

 $\therefore 180^{\circ} = \pi$ $\Rightarrow radian = 60 \times \frac{\pi}{180}$ $\Rightarrow radian = \frac{\pi}{3}$ (ii) 135° $\therefore 180^{\circ} = \pi$ $\Rightarrow radian = 135 \times \frac{\pi}{180}$ $\Rightarrow radian = \frac{3\pi}{4}$ (ii) -150° $\therefore 180^{\circ} = \pi$

$$\Rightarrow radian = -150 \times \frac{\pi}{180}$$

$$\Rightarrow radian = -\frac{5}{6}\pi$$
(iv) 72°

$$\because 180° = \pi$$

$$\Rightarrow radian = 72 \times \frac{\pi}{180}$$

$$\Rightarrow radian = \frac{2\pi}{5}$$
(v) 22°30'

$$\Rightarrow 20° + \frac{30}{60}°$$

$$\Rightarrow 20° + \frac{30}{60}°$$

$$\Rightarrow 20° + \frac{1}{2}°$$

$$\Rightarrow \frac{41}{2}°$$

$$\because 180° = \pi$$

$$\Rightarrow radian = \frac{41}{2} \times \frac{\pi}{180}$$

$$\Rightarrow \frac{41}{360}\pi$$
(vi) -62°30'

$$\Rightarrow -60° - \frac{1}{2}°$$

$$\Rightarrow -\frac{121}{2}°$$

$$\Rightarrow radian = -\frac{121}{2} \times \frac{\pi}{180}$$

$$\Rightarrow radian = -\frac{121}{2} \times \frac{\pi}{180}$$

(vii) 52°52'30''

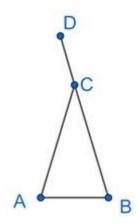
$$\Rightarrow 52° + 52' + 30''$$

$$\Rightarrow 52° + 52' + \frac{30}{60}'$$

$$\Rightarrow 52° + \frac{105'}{2}$$

$$\Rightarrow 52° + \frac{105}{60 \times 2}°$$

$$\Rightarrow \frac{2503}{48}°$$


$$\because 180° = \pi$$

$$\Rightarrow radian = \frac{2503}{48} \times \frac{\pi}{180}$$

$$\Rightarrow radian = \frac{2503\pi}{8640}$$

In \triangle ABC, AC=BC and BC is extended upto the point D. If \angle ACD=144°, then let us determine the circular value of each of the angles of \triangle ABC.

Answer

 $\angle ACD = 144^{\circ}$

 \therefore DCB is straight line, ∠DCB = 180°

$$\Rightarrow \angle ACB = 180^{\circ} - 144^{\circ} = 36^{\circ}$$

:: AC=BC, by opposite angle property

 $\Rightarrow \angle CAB = \angle CBA = x$

By Angle sum Property

$$\Rightarrow \angle CAB + \angle CBA + \angle ACB = 180^{\circ}$$

$$\Rightarrow 2x + 36^{\circ} = 180^{\circ}$$

$$\Rightarrow x = 72^{\circ}$$

$$\Rightarrow \angle CAB = \angle CBA = 72^{\circ} \text{ and } \angle ACB = 36^{\circ}$$

$$\Rightarrow \angle CAB = \angle CBA = 72 \times \frac{\pi}{180}$$

$$\Rightarrow \angle CAB = \angle CBA = \frac{2\pi}{5}$$
And $\angle ACB = 36^{\circ}$

$$\Rightarrow \angle ACB = 36 \times \frac{\pi}{180}$$

$$\Rightarrow \angle ACB = \frac{\pi}{5}$$

If the difference of two acute angles of a right-angled triangle is $\frac{2\pi}{5}$, then let us write the sexagesimal values of two angles.

Answer

let the two angles be x and y.

: it is a right-angled triangle

$$\mathbf{x} + \mathbf{y} = \frac{\pi}{2} \dots [1]$$

Also, by question

$$\mathbf{x} - \mathbf{y} = \frac{2\pi}{5} \dots [2]$$

Adding eq. [1] and eq. [2]

$$\Rightarrow 2x = \frac{9\pi}{10}$$
$$\Rightarrow x = \frac{9\pi}{20} \dots [3]$$

By eq. [1] and eq. [3]

$$\Rightarrow y = \frac{\pi}{20}$$

Converting x to sexagesimal angle

$$1 \text{radian} = \frac{180}{\pi} \circ$$
$$\Rightarrow \frac{9\pi}{20} = \frac{9\pi}{20} \times \frac{180}{\pi} \circ$$
$$\Rightarrow \frac{9\pi}{20} = 81^{\circ}$$
$$\Rightarrow x^{\circ} = 81^{\circ}$$
$$\because y^{\circ} = 90^{\circ} - x^{\circ}$$
$$\Rightarrow y^{\circ} = 9^{\circ}$$

The measure of one angle of a triangle is 65° and other angle is $\frac{\pi}{12}$; let us write the sexagesimal value and circular value of third angle.

Answer

converting $\frac{\pi}{12}$ to sexagesimal $= \frac{\pi}{12} \times \frac{180}{\pi}$ $= 15^{\circ}$ Let c be the third angle \therefore sum of angles of a triangle = 180° $\Rightarrow 65^{\circ} + 15^{\circ} + c = 180^{\circ}$ $\Rightarrow c = 100^{\circ}$ Circular value of c $100 \times \frac{\pi}{180}$ $= \frac{5\pi}{9}$ 6. Question

If the sum of two angles is 135° and their difference is $\frac{\pi}{12}$; then let us determine the sexagesimal value and circular value of two angles.

Answer

converting $\frac{\pi}{12}$ into sexagesimal value

$$\Rightarrow \frac{\pi}{12} \times \frac{180}{\pi}$$
$$\Rightarrow 15^{\circ}$$

Let the two angles be x and y.

$$x - y = 15^{\circ} \dots [2]$$

adding eq. [1] and eq. [2]

 $\Rightarrow 2x = 150^{\circ}$

$$\Rightarrow x = 75^{\circ} \dots [3]$$

By [1] and [3]

converting x to circular

$$\Rightarrow 75 \times \frac{\pi}{180}$$
$$\Rightarrow \frac{5\pi}{12}$$

converting y to circular

$$\Rightarrow 60 \times \frac{\pi}{180}$$
$$\Rightarrow \frac{\pi}{3}$$
$$\Rightarrow x = 75^{\circ} = \frac{5\pi}{12}$$
$$\Rightarrow y = 60^{\circ} = \frac{\pi}{3}$$

7. Question

If the ratio of three angles of a triangle is 2:3:4, then let us determine the circular value of the greatest angle.

Answer

let the angles be 2x, 3x, 4x

 \therefore sum of angles of a triangle = 180°

$$\Rightarrow 2x + 3x + 4x = 180^{\circ}$$

 $\Rightarrow 9x = 180^{\circ}$

 \Rightarrow x = 20°

Angles of the triangle

 $2x = 40^{\circ}$

3x = 60°

4x = 80°

Circular value of 80°

$$\Rightarrow 80 \times \frac{\pi}{180}$$
$$\Rightarrow \frac{4\pi}{9}$$

8. Question

The length of a radius of a circle is 28 cm. Let us determine the circular value of angle subtended by an arc of 5.5 cm length at the centre of this circle.

Answer

let θ be the angle subtended by the arc.

length of arc = $r\theta$

 $\Rightarrow 28 \times \theta = 5.5$

$$\Rightarrow \theta = \frac{11}{56}$$

9. Question

The ratio of two angles subtended by two arcs of unequal lengths at the centre is 5:2 and if the sexagesimal value of the second angle is 30°. Then let us determine the sexagesimal value and the circular value of the first angle.

Answer

let the length of arcs be 5x and 2x

Let r be the radius of the circle

$$\Rightarrow 30 \times \frac{\pi}{180} \times r = 2x \dots [1]$$

Let θ be the angle subtended by the arc of length 5x.

 $\Rightarrow \theta \times r = 5x \dots [2]$

By dividing eq. [1] and eq. [2]

$$\frac{\pi}{6} = \frac{2\theta}{5}$$
$$\Rightarrow \theta = \frac{5\pi}{12}$$
$$\Rightarrow \theta = \frac{5\pi}{12} \times \frac{180}{\pi}$$
$$\Rightarrow \theta = 75^{\circ}$$

10. Question

A rotating ray makes an angle $-5\frac{1}{12}\pi$. Let us write by calculating, in which direction the ray has completely rotate and there after what more angle it has produced.

Answer

angle of the ray = $-\frac{63\pi}{12} = -\frac{21\pi}{4}$

The negative sign shows that ray has rotated clockwise.

Adding multiples of 2π

$$-\frac{21\pi}{4} + 3 \times 2\pi$$
$$=\frac{3\pi}{4}$$

 \therefore it is greater than $\frac{\pi}{2}$, so it is in 2nd quadrant.

11. Question

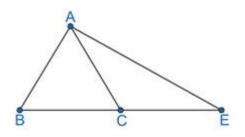
I have drawn an isosceles triangle ABC whose included angle of two equal sides is $\angle ABC=45^{\circ}$; the bisector of $\angle ABC$ intersects the side AC at the point D let us determine the circular values of $\angle ABD$, $\angle BAD$, $\angle CBD$ and $\angle BCD$.

Answer

 $\angle ABC = 45^{\circ}$ $\angle ABC = 45 \times \frac{\pi}{180}$ $\Rightarrow \angle ABC = \frac{\pi}{4}$

 \therefore BD is the angle bisector of \angle ABC

$$\Rightarrow \angle ABD = \angle CBD = \frac{\pi}{8}$$


- $\angle BAD + \angle ABC + \angle BCD = \pi$
- : ABC is an isosceles triangle

$$\Rightarrow \angle BAD = \angle BCD = x$$
$$\Rightarrow x + \frac{\pi}{4} + x = \pi$$
$$\Rightarrow 2x = \frac{3\pi}{4}$$
$$\Rightarrow x = \frac{3\pi}{8}$$
$$\Rightarrow \angle BAD = \angle BCD = \frac{3\pi}{8}$$

12. Question

The base BC of the equilateral triangle ABC is extended upto the point E so that CE=BC. By joining A,E, let us determine the circular values of the angles of Δ ABC

Answer

$$\angle ABC = \angle BAC = \angle BCA = 60^{\circ}$$

$$\Rightarrow \angle ABC = \angle BAC = \angle BCA = 60 \times \frac{\pi}{180}$$

$$\Rightarrow \angle ABC = \angle BAC = \angle BCA = \frac{\pi}{3}$$

$$\angle ACE + \angle ACB = 180^{\circ}$$

$$\Rightarrow \angle ACE = 180^{\circ} - 60^{\circ}$$

$$\Rightarrow \angle ACE = 120^{\circ}$$

$$\Rightarrow BC = CE \text{ and } BC = AC$$

$$\Rightarrow AC = AE$$

$$\Rightarrow \angle CAE = \angle AEC = x$$

$$\angle CAE + \angle AEC + \angle ACE = 180^{\circ}$$

$$\Rightarrow x = 30^{\circ}$$

$$\Rightarrow x = 30 \times \frac{\pi}{180}$$

$$\Rightarrow x = \frac{\pi}{6}$$

$$\Rightarrow \angle CAE = \angle AEC = \frac{\pi}{6}$$
And $\angle ACE = 120^{\circ}$

$$\Rightarrow \angle ACE = 120 \times \frac{\pi}{180}$$

$$\Rightarrow \angle ACE = \frac{2\pi}{3}$$

If the measures of three angles of quadrilateral are $\frac{\pi}{3}, \frac{5\pi}{6}$ and 90°

respectively, then let us determine and write the sexagesimal and circular values of fourth angle.

Answer

sum of angles of quadrilateral = 2π

Let the fourth angle be x

$$\Rightarrow \frac{\pi}{3} + \frac{5\pi}{6} + \frac{\pi}{2} + x = 2\pi$$
$$\Rightarrow x = 2\pi - \frac{5\pi}{3}$$
$$\Rightarrow x = \frac{\pi}{3}$$
$$\Rightarrow x = \frac{\pi}{3} \times \frac{180}{\pi}^{\circ}$$
$$\Rightarrow x = 60^{\circ}$$

14 A1. Question

The end point of the minute hand of a clock rotates in 1 hour

A.
$$\frac{\pi}{4}$$
 radian
B. $\frac{\pi}{2}$ radian

C. π radian

D. 2π radian

Answer

angle of complete circle = 2π

Minute hand completes 1 circle in an hour.

14 A2. Question

 $\frac{\pi}{6}$ radian equals to A. 60° B. 45° C. 90° D. 30° **Answer**

$$\Rightarrow \frac{\pi}{6} \times \frac{180}{\pi}$$
$$\Rightarrow 30^{\circ}$$

The circular value of each internal angle of a regular hexagon is

A.
$$\frac{\pi}{3}$$

B. $\frac{2\pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{4}$

Answer

Sum of internal angle of a polygon = 180(n-2)

 \Rightarrow internal angle of a regular polygon= $\frac{180(n-2)}{n}$

For hexagon n = 6

$$\Rightarrow \frac{180(6-2)}{6}$$
$$\Rightarrow \frac{180 \times 4}{6}$$
$$\Rightarrow 120^{\circ}$$
$$\Rightarrow 120 \times \frac{\pi}{180}$$
$$\Rightarrow \frac{2\pi}{3}$$

14 A4. Question

The measurement of Θ in the relations to S=r Θ is determined by

A. sexagesimal system

B. circular system

C. Those two methods

D. None of these

Answer

Circumference of a circle is $2\pi r$

Where 2π is the angle subtended in circular system and r is the radius.

14 A5. Question

In cyclic quardrilateral ABCD, if $\angle a=120^\circ$, then the circular of $\angle C$ is

A.
$$\frac{\pi}{3}$$

B. $\frac{\pi}{6}$
C. $\frac{\pi}{2}$
D. $\frac{2\pi}{3}$

Answer

The sum of opposite angle in a cyclic quadrilateral = π

Converting 120° to cyclic

 $\Rightarrow 120^{\circ} = 120 \times \frac{\pi}{180}$ $\Rightarrow 120^{\circ} = \frac{2\pi}{3}$ $\Rightarrow \frac{2\pi}{3} + \angle c = \pi$ $\Rightarrow \angle c = \frac{\pi}{3}$

14 B. Question

Let us write whether the following statements are true or false:

(i) The angle, formed by rotating a ray centering its end point in anticlockwise direction is positive.

(ii) The angle, formed for completely rotating a ray twice by centering its end point is 720°

Answer

(i) True,

Positive angles are made by rotating anti-clockwise.

(ii) True,

On one rotation angle is 360°

 $\therefore 360^{\circ} \times 2 = 720^{\circ}$

14 C. Question

Let us fill in the blanks:

(i) π radian is a _____angle.

(ii) In sexagesimal system 1 radian equals to _____(approx)

(iii) The circular value of the supplementary angle of the measure $\frac{3\pi}{3}$ is_____

Answer

(i) circular

Radian are denotation for circular angles.

(ii) 57.29

 $1 \times \frac{180}{\pi}$

=57.29

(iii) 0

Sum of supplementary angles is $\boldsymbol{\pi}$

15 A1. Question

If the value of an angle in degree is D and in radian is R; then let us determine

the value of $\frac{R}{D}$

Answer

 $R = D \times \frac{\pi}{180}$

$$\Rightarrow \frac{R}{D} = \frac{\pi}{180}$$

Let us write the value of complementary angle of the measure 63°35'15"

Answer

$$63^{\circ} + 35' + 15''$$

$$\Rightarrow 63^{\circ} + 35' + \frac{15}{60}'$$

$$\Rightarrow 63^{\circ} + \frac{141}{4}'$$

$$\Rightarrow 63^{\circ} + \frac{141}{4} \times \frac{1}{60}^{\circ}$$

$$\Rightarrow 63^{\circ} + \frac{47}{80}^{\circ}$$

$$\Rightarrow \frac{5087}{80}^{\circ}$$

$$\Rightarrow \frac{5087}{80} \times \frac{\pi}{180}$$

$$\Rightarrow \frac{5087\pi}{14400}$$

15 C. Question

If the measures of two angles of a triangle are 65°56'55" and 64°3'5", then let us determine the circular value of third angle.

Answer

65°56'55''

$$\Rightarrow 65 + \frac{56}{60} + \frac{55}{60 \times 60}$$
$$\Rightarrow \frac{43883}{720}^{\circ}$$
In radians
$$43883 \quad \pi$$

$$\Rightarrow \frac{43883}{720} \times \frac{\pi}{180}$$

= 1.064

Angle 2

64°3'5''

$$= 64 + \frac{3}{60} + \frac{5}{60 \times 60}$$
$$= \frac{46117}{720}^{\circ}$$
In radians

$$=\frac{46117}{720}\times\frac{\pi}{180}$$

= 1.130

Third angle

 $x = \pi - 1.130 - 1.064$

 \Rightarrow x = 0.9476

15 D. Question

In a circle, if an arc of 220 cm. length subtends an angle of measure 63° at the centre, then let us determine the radius of the circle.

Answer

converting 63° to radians

$$= 63 \times \frac{\pi}{180}$$

Taking $\pi = \frac{22}{7}$
$$= 63 \times \frac{22}{7 \times 180}$$
$$= \frac{11}{10}$$

Let the radius be r.

$$\Rightarrow r \times \frac{11}{10} = 220$$

 \Rightarrow r = 200 cm

15 E. Question

Let us write the circular value of an angle formed by the end point of hour hand of a clock in 1 hour rotation.

Answer

In one complete circle of 12 hours

It completes 2π angle

 \Rightarrow In 1 hour, it'll complete

$$=\frac{2\pi}{12}$$
$$=\frac{\pi}{6}$$