Long Answer Type Questions

[5 marks]

Q. 1. Arrange the following in order of decreasing masses: (i) 10²³ molecules of CO₂ gas (ii) 0.1 g atom of silver (iii) 1 gram of carbon (iv) 0.1 mole of H_2SO_4 (v) 10²³ atoms of calcium. (Given Atomic masses: Ag = 108 u, S = 32 u, N = 14 u, Ca = 40 u) **Ans.** (i) 1 mole of $CO_2 = 44 \text{ g} = 6.02 \text{ x} 10^{23} \text{ molecules}$ *i.e.*, 6.02×10^{23} molecules of CO₂ = 44 g of CO₂ 10^{23} molecules of CO₂ = $\frac{44}{6.02 \times 10^{23}}$ x 10^{23} = 7.31 g = Gram atomic mass of Ag = 108 g (ii) 1 g atoms of Ag \therefore 0.1 g atom of Ag = 0.1 × 108 g = 10.8 g (iii) 1 g of carbon = 1q (iv) 1 mole of H_2SO_4 = Gram molecular mass = 2 x 1+ 32 + 4 x 16 = 98 g \therefore 0.1 mole of H₂SO₄ = 0.1 x 98 g = 9.8 g (v) 1 mole of Ca = 40 g = 6.02×10^{-23} atoms of Ca *i.e.*, 6.02 x 10^{23} atoms of Ca have mass = 40 g

:. 10^{23} atoms of Ca have mass = $\frac{40}{6.02 \times 10^{23}}$ x 10^{23}

= 6.64 g

Thus, masses in the decreasing order are:

0.1 g atom of Ag > 0.1 mole of $H_2SO_4 > 10^{23}$ molecules of $CO_2 > 10^{23}$ atoms of Ca > I g of carbon

Q.2. Calculate the number of aluminium ions (Al³+) in 0.056 g of alumina (Al₂O₃).

Ans. Molecular mass of alumina $(Al_2O_3) = 2 \times Al^{3+} + 3 \times O^{2-}$ = 2 × 27 u + 3 × 16u = 102 u Gram molecular mass = 102 g I mol of alumina $(Al_2O_3) = 102$ g 102 g of $Al_2O_3 = 1$ mol \therefore 0.056 g of $Al_2O_3 = \frac{1 \times 0.056}{102}$ mol = 5.49 x 10⁻⁴ mol

We know that one mol of alumina contains 2 mol of Al³⁺ ions.

- : 5.49 x 10⁻⁴ mol of Al₂O₃ contains 2 x 5.49 x 10⁻⁴ mol of Al³⁺ ions
- : Number of Al³⁺ ions in 0.056 g = $2 \times 5.49 \times 10^{-4} \times 6.022 \times 10^{23}$

Q. 3. Calculate the mass per cent of each element present in the molecule of calcium carbonate.

Ans. Molecular formula of calcium carbonate = CaCO₃ Molecular mass of CaCO₃ = 1 × Ca + 1 × C + 3 × 0 = 1 × 40 u + 1 × 12 u + 3 × 16 u = 100 u Gram molecular mass = 100 g/mol 1 mol of CaCO₃ = 100 g (a) Mass % of Ca in CaCO₃ = $\frac{Mass of Ca}{Molecular mass of CaCO_3} \times 100$

$$=\frac{40g}{100g} \times 100 = 40\%$$

(b) Mass % of carbon in $CaCO_3 = \frac{Mass of Cabon}{Molecular mass of CaCO_3} \times 100$

$$= \frac{12g}{100g} \times 100 = 12\%$$
(c) Mass % of oxygen in CaCO₃ = $\frac{Mass of oxygen}{Molecular mass of CaCO_3} \times 100$

$$= \frac{48g}{100g} \times 100 = 48\%$$

Q. 4. Verify by calculating that

(a) 5 moles of CO₂ and 5 moles of H₂O do not have the same mass.

(b) 240 g of calcium and 240 g of magnesium elements have a mole ratio of 3 : 5.

Ans. (a) CO₂ has molar mass = 44 g mol⁻¹ 5 moles of Co₂ have molar mass = 44 x 5 = 220 g H₂0 has molar mass = 18 g mol⁻¹ 5 moles of H₂O have mass = $18 \times 5 g = 90 g$

(b) Number of moles in 240 g Ca metal = $\frac{240}{40}$ = 6

Number of moles in 240 g of Mg metal = $\frac{240}{24}$ = 10 Ratio is 6 : 10 Or, 3 : 5 **Q.5.** Find the ratio of mass of the combining elements in the following compounds:

(a) CaCO₃	(b) MgC	l ₂ (0	c) H ₂ SO ₄
(d) C₂H₅OH	(e) NH₃	(f) Ca(O	H)2
Ans. (a) CaCO ₃	(b)	MgCl ₂	(c) H ₂ SO ₄
Ca : C : O ×	:3 N	/lg : Cl × 2	H×2:S:O× 4
40 : 12 : 16	x 3 24	: 35.5 × 2	1 × 2 : 32 : 16 × 4
40 : 12 : 48	24	: 71	2:32:64
10 : 3 : 12			1 : 16 : 32
(d) C₂H₅OH	(e) NH:	3	(f) Ca(OH)2
C × 2 : H × 6 : O	N :	: H × 3	Ca : O × 2 : H × 2
12 × 2 : 1 × 6 : 16	14 :	1 × 3	40 : 16 × 2 : 1 × 2
24 : 6 : 16	14 :	: 3	40:32:2
12:3:8			20:16:1

Q. 6. Calcium chloride when dissolved in water dissociates into its ions according to the following equation.

 $CaCl_2 (aq) \rightarrow Ca^{2+} (aq) + 2Cl^{-} (aq)$

Calculate the number of ions obtained from CaCl₂ when 222 g of it is dissolved in water.

Ans. I mole of calcium chloride = 111 g

222 g of CaCl₂ is equivalent to 2 moles of CaCl₂

Since 1 formula unit CaCl₂ gives 3 ions, therefore, 1 mole of CaCl₂ will give 3 moles of ions.

2 moles of CaCl₂ would give $3 \times 2 = 6$ moles of ions.

= Number of moles of ions x Avogadro number
$= 6 \times 6.022 \times 10^{23}$
$= 36.132 \times 10^{23}$
= 3.6132 × 10 ²⁴ ions.

Q. 7. What is a mole? What is the unit of mole? How many molecules are there in a certain mass of a substance?

Ans. A mole is the amount of a substance which contains the same number of chemical units (atoms,molecules or ions) as there are atoms in exactly 12 g of carbon-12. The unit of mole is given by the symbol 'mol'.

We know that Avogadro number is 6.022×10^{23} Number of molecules in a certain mass

$$= \frac{\text{Mass of the substance}}{\text{Molar mass}} \times \text{NA}$$
$$= \frac{W}{M} \times 6.022 \times 10^{23} \text{ molecules}$$

where 'W' is the mass of the substance in which number of molecules is to be calculated and 'M' is the molecular mass of the substance.

Q. 8. The difference in the mass of 100 moles each of sodium atoms and sodium ions is 5.48002 g. Compute the mass of an electron.

Ans. A sodium atom and ion differ by one electron. For 100 moles each of sodium atoms and ions there would be a difference of 100 moles of electrons. Mass of 100 moles of electrons = 5.48002 g Mass of 1 mole of electron = $\frac{5.48002}{100}$ g Mass of one electron = $\frac{5.48002}{100 \times 6.022 \times 10^{23}}$ = 9.1 × 10⁻²⁸ g

 $= 9.1 \times 10^{-31} \text{ kg}$

Q.9. The mass of one steel screw is 4.11g. Find the mass of one mole of these steel screws. Compare this value with the mass of the Earth (5.98 \times 10²⁴kg). which one of the two is heavier and by how many times?

Ans. 1 mole of steel screws = 6.022×10^{23} screws Mass of 1 screw = 4.11g∴ Mass of 1 mole of screws = $4.11 \times 6.022 \times 10^{23} g$ = $24.75 \times 10^{23} g$ = $2.475 \times 10^{24} g$ One mole of screw weighs = $2.475 \times 10^{24} g = 2.475 \times 10^{21} kg$

 $\frac{\text{Mass of the substance}}{\text{Molar mass}} = \frac{5.98 \times 10^{24} \text{ kg}}{2.475 \times 10^{21} \text{ kg}} = 2.4 \text{ x } 10^3$

Mass of Earth is 2.4×10^3 times the mass of screws. The Earth is 2400 times heavier than one mole of screws.

Q.10. Compute the number of ions present in 5.85 g of sodium chloride.

Ans. 5.85 g of NaCl = $\frac{5.85}{58.5}$ = 0.1 moles or 0.1 moles of NaCl particle. Each NaCl particle is equivalent to 2 ions, *i.e.*, one Na⁺ and one Cl⁻ \Rightarrow Total moles of ions = 0.1 × 2 = 0.2 moles Number of ions = 0.2 × 6.022 × 10²³ = 1.2042 x 10²³ ions

Q. 11. A gold sample contains 90% of gold and the rest copper. How many atoms of gold are present in one gram of this sample of gold?

Ans. One gram of gold sample will contain $\frac{90}{100} = 0.9$ g of gold

Number of moles of gold = $\frac{\text{Mass of gold}}{\text{Atomic mass of gold}}$

$$=\frac{0.9}{197}=0.0046$$

One mole of gold contains N_A atoms = 6.022×10^{23}

 $\therefore \quad 0.0046 \text{ mole of gold will contain} = 0.0046 \times 6.022 \times 10^{23}$

= 2.77 x 10²¹ atoms

Q. 12. Compute the difference in masses of one mole each of aluminium atoms and one mole of its ions. (Mass of an electron is 9.1×10^{-28} g). Which one is heavier?

Ans. Mass of 1 mole of aluminium atom = Molar mass of aluminium = 27 g mol⁻¹. An aluminium atom needs to lose three electrons to become an ion, AI^{3+} . For one mole of AI^{3+} ion, three moles of electrons are to be lost. The mass of three moles of electrons = 3 x (9.1 x 10⁻²⁸) x 6.022 x 10²³ g = 27.3 x 6.022 x 10⁻⁵g = 164.400 x 10⁻⁵ g = 0.00164 g Molar mass of AI^{3+} = (27- 0.00164) g mol⁻¹ = 26.9984 g mol⁻¹ Difference = 27- 26.9984 = 0.0016 g

Q. 13. A silver ornament of mass '*m*' gram is polished with gold equivalent to 1% of the mass of silver. Compute the ratio of the number of atoms of gold and silver in the ornament.

Ans. Mass of silver = m g Mass of gold = $\frac{m}{100}$ g Number of atoms of silver = $\frac{Mass}{Atomic mass} \times N_A = \frac{m}{108} \times N_A$ Number of atoms of gold = $\frac{m}{100 \times 197} \times N_A$

Ratio of number of atoms of gold to silver = Au : Ag

$$= \frac{m}{100 \times 197} \times N_A : \frac{m}{108} \times N_A$$

= 108 : 100 x 197
= 108 : 19700
= 1 : 182.41

Q.14. A sample of ethane (C_2H_6) gas has the same mass as 1.5 x 10²⁰ molecules of methane (CH₄). How many C₂H₆ molecules does the sample of gas contain?

Ans. Mass of 1 molecule of CH₄ = $\frac{16 \text{ g}}{\text{N}_{2}}$ Mass of 1.5 x 10²⁰ molecules of methane = $\frac{1.5 \times 10^{20} \times 16}{N_{A}}$ g Mass of 1 molecule of $C_2H_6 = \frac{30}{N_A}g$ Mass of molecules of $C_2H_6 = \frac{1.5 \times 10^{20} \times 16}{N_{\odot}}g$ Number of molecules of ethane = $\frac{1.5 \times 10^{20} \times 16}{N_A} \times \frac{N_A}{30} = 0.8 \times 10^{20}$

Q. 15. In photosynthesis, 6 molecules of carbon dioxide combine with an equal number of water molecules through a complex series of reactions to give a molecule of glucose having a molecular formula $C_6H_{12}O_6$. How many grams of water would be required to produce 18 g of glucose? Compute the volume of water so consumed assuming the density of water to be 1g cm⁻³.

Ans. $6CO_2 + 6 H_2O \xrightarrow[Sunlight]{Chlorophyll} C_6H_{12}O_6 + 6O_2$ 1 mole of glucose needs 6 moles of water 180 g of glucose needs (6 × 1 8) g of water Ig of glucose will need $\frac{108}{180}$ g of water. 18 g of glucose would need $\frac{108}{180}$ × 18 g of water = 10.8 g Volume of water used = $\frac{Mass}{Density}$ $=\frac{10.8 \text{ g}}{1 \text{ g cm}^{-3}}=10.8 \text{ cm}^{3}$

..

Q. 16. Calculate the ratio between the mass of one atom of hydrogen and mass of one atom of silver.

Ans. 1 mole of H atoms = 1 g 1 mole of H atoms = 6.022×10^{23} atoms. Mass of 6.022 x 10^{23} atoms of H = 1g : Mass of one atom of H = $\frac{1}{6.022 \times 10^{23}}$ g $= 1.66 \times 10^{-24} g$ 1 mole of silver atoms = 108 g1 mole of silver contains 6.022×10^{23} atoms \therefore 6.022 x 10²³ atoms of silver = 108 g: Mass of one atom of silver atom = $\frac{108}{6.022 \times 10^{23}}$ g = 1.793×10^{-22} g Ratio between masses of silver and hydrogen atoms = $\frac{1.793 \times 10^{-22} \text{g}}{1.66 \times 10^{-24} \text{g}}$

= 1.080 × 10²