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4.3 ELASTIC WAVES. ACOUSTICS

4150 Since the temperature varies linearly we can write the temperature as a function of x, which

is, the distance from the point A towards B.
;-1
i

ie., T=T+ x, [0<x<l]

T,-T
hence, dT-( 21 ‘)dx (1)

In order to travel an elemental distance of dx which is at a distance of x from A it will take
a time
dx
2
VT @

From Eqns (1) and (2), expressing dx in terms of d7, we get

oL (_1dT
aVT | -1,

dt =

Which on integration gives

L4 Tz
l dT
{m'auymn{f?
21
e (VR V)

. 21
Hence the sought time ¢ =
gh G(VTI"P Tz)

4.151 Equation of plane wave is given by

E(r,t) = acos(mt-f"?), where F—%; called the wave vector

and # is the unit vector normal to the wave surface in the direction of the propagation of

wave. ‘\}
i
P (xy,)
PaL
0 ~> X
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of, E(x,y,z) macos(wt-kx-ky~kz)

- acos(mt—kxcosa—kyéosﬁ-kzcosy)
Thus E(x;,n1,51,t) =acos(wt-kx;cosa-ky,cosB-kz; cosy)
and E(x2,¥2,2,t) =acos(wt-kxycosa~-ky,cos §—kz, cosy)

Hence the sought wave phase difference

P2=@1 = k [(xy=x3)cosa+(y —y;)cos p+{z,-2;)cosy
or 49 = |@z-@1| =k | [(z-x;)c0s 0+ (y;-y;) cos B+(z-2)cosv]]|

w

= 5| [(-m)cos ot (y1-y2) cos B+ (2 -25) cosy ]|
The phase of the oscillation can be written as
S =wt-kr
When the wave moves along the x-axis
D = wt-k.x (Onputting k, = &k, = 0).

Since the velocity associated with this wave is v

w
We have k= —
Vi

w w

Similarl = — and - —

y k, v, k, v

— A W A W A

Thus ke —e+—e+—e;.
vi v2 V3

The wave equation propagating in the direction of +ve x axis in medium K is give as
E=acos(wt-kx)

So, E=acosk(vt-x), where k= -:5:— and, v ‘is the wave velocity

In the refrence frame K’ , the wave velocity will be (v - V') propagating in the direction of
+ve x axis and x will be x’. Thus the sought wave equation.

E=acosk[(v-V)t-X']
or, §=acos[(m-%)-V)t—kx’]-aoos[mt(l—%)—kx’]

This follows on actually putting

E=f(t+ax)

2 2
in the wave equation (;—ng = é—g—r-%-

(We have written the one dimensional form of the wave equation.) Then

-1-5f”(t+ax) = o f’(t+ax)
v .
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so the wave equation is satisfied if
o= x —

That is the physical meaning of the constant o .

4.155 The given wave equation
€ =60cos(1800z- 53x)
is of the type
E=acos(wr- kx), where a = 60 x 10" %m
@ = 1800 per sec and k = 5-3 per metre

2n 2n
As k = 5 » 5O A= k
and also k=2, 50 ve<=340 m/s
\j k
a) Sought ratio = 2. a_k =51x107°
A 2m

(b) Since & = acos(wt-kx)
85 - _sosin(ar-kx)
So velocity oscillation amplitude

(%ﬁ) of Vv, = aw = 011 m/s (1)
t m
and the sought ratio of velocity oscillation amplitude to the wave propagation velocity
vm 0'11 .
=3 " 330 - 32x10

(c) Relative deformation = %—E =agksin(wz-kx)

So, relative deformation amplitude

'(%E) =ak=(60x10"%x53)m = 32x10"* m @)
m
From Eqns (1) and (2)

() ex- e (52),

0x v v|os

Thus (3—%) - % (%%) , Wwhere v = 340 m/s is the wave velocity.

4.156 (a) The given equation is,
E=acos(wt-kx)
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So at =0,

E=acoskx

Now, d—g-—awsin(wt—kx)
dt
and ig--arhzmsink.uc,att«-O.
dt
Also, %- +aksin{wit-kx)
and at t =0,
dg - —gksinkx.
dx

Hence all the graphs are similar having different amplitudes, as shown in the answer-
sheet of the problem book.

(b) At the points, where € = 0, the velocity direction is positive, i.e., along + ve x — axis in
the case of longitudinal and + ve y- axis in the case of transverse waves, where %—? is

positive and vice versa.

For sought plots see the answer-sheet of the problem book.

In the given wave equation the particle’s displacement amplitude = ae”™"”
Let two points x; and x; , between which the displacement amplitude differ by y = 1 %
So, ae '™ - ge” "™ = ae™ ™™
or e"™(1-m) =e"""
or In(1-n)-vyx =-1x
Y

So path difference = - in lY-

Zn

and phase differenclt = x path difference

A

_2zxln(1-m) N 27
A Y Ay

= (3 rad

Let S be the source whose position vector relative to the reference point O is 7.
Since intensities are inversely proportional to the square of distances,
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Intensity at P(I,) d
Intensity at Q(5;) &
where dy = PS and d, = Q5.

But intensity is proportional to the square of amplitude.
2

a,
So, —=—= or ad, = = k(sa
a% di 144 a2d2 (Y)
Thus  dy =~ and & = £ p S q

Let n be the unit vector along PQ directed from P to Q.

— A k a —

Then PS =dine—n —7 pongd
! ay 7’1 r T:’-

— A kA

and SQ =dyn=—n
az
From the triangle law of vector addition. 0
—> —> —
OP +PS =085 o F{+fﬁ=?‘
1
or a Fl’-l-k;\: = al? 1)
Similarly ﬁf—; =7, or azr_"{-k;t = ayr (2)
2

Adding (1) and (2),
e —> —»
ari+ ayry = (ay—az)r

—_— —

— G+ ar

Hence y m —
a,+ a4,

4.159 (a) We know that the equation of a spherical wave in a homogeneous absorbing medium

of wave damping coefficient y is :

P L
E=

agpe
Thus particle’s displacement amplitude equals

; cos(wet-kr)

a'oe-”

r

According to the conditions of the problem,

a’oe—”"
at r=ry, 4= — (l)

)

and when r=r, — =
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Thus from Eqns (1) and (2)

Y(r-7p)} - .@.
e L] .

or, Y(r-rg) =In(nrg)-Inr
Inm+inryg-Inr -
or, y = 7) o—In =]n3+1n5 ln10=0-08m'1
r-ry 5
afoe-yr
(b) AsE = cos (wt-kr)
' -¥r
So, 3? -_20f wsin(wt-kr)

(5], =

ot r

¢ L =1r
doe’ @

r n

2 -6
So, (%’f) B _Grl 50x10 75 22, 1.45%10° = 15m/s

n n 3 7

But at point A,

4.160 (a) Equation of the resultant wave,
E=5+5 = 2acosk( u)ws{mt—m},

2 2
- a’cos{(nt-k(—x;-u} , where a' = Zamsk’(%)

Now, the equation of wave pattemn is,
x+y =k, (a Const.)
For sought plots see the answer-sheet of the problem book.

For antinodes, i.e. maximum intensity
k{iy-x

cos ) =x]1 =cosnn
or, ::(x—y)=2;:“ =nA
or, y=xzxnh, n=0,1,2, ...

Hence, the particles of the medium at the points, lying on the solid straight lines
(y = xx n)), oscillate with maximum amplitude.
For nodes, i.e. minimum intensity,

ws—L—k( 2_x) =0

or, :5‘—(—2’5‘—’5-)=(2n+1)-’§



(b)

or, y=xx(2n+1)A/2,
and bence the particles at the points, lying on dotted lines do not oscillate.

When the waves are longitudinal,

For sought plots see the answer-sheet of the problem book.

k(y-x) = cos"l%-- cos'l%
or, %-cos{k(y-x)-t- cos~? %}
= %—cosk(y—x)—sink(y—x)sin( %—)
2
- ic(‘,n:sk(y-x)—sinlc(y—Jt:) l—g—g (1)
a a
from (1),
if sink(y-x) =0 sin{nmx)

B =& (-1)

A
thus, the particles of the medium at the points lying on the straight lines, y = x = -n?

will oscillate along those lines (even n), or at right angles to them (odd n).

Also from (1),
if cosk(y-x)=0=cos(2n+1)g-

&

— =1- £2/4° a circle.

a

Thus the particles, at the points, where y = x+ (n+ 1/4 ) A, will oscillate along circles.
In general, all other particles will move along ellipses.

4.161 The displacement of oscillations is given by & = acos (wf-kx)
Without loss of generality, we confine ourselves to x = 0. Then the displacement maxima
occur at @ ¢ = nn . Concentrate at w7 = 0. Now the energy density is given by

W= paz,(nzsinzmt at x = 0

7/6 time later (where T = g(—g- is the time period) than ¢ = 0.

Thus <W> = lpa W =

, 2 3
W = pazmzsmz-S- - -‘;‘-pazm2 - Wy

2 2 2w

2 3



4.162 The power output of the source much be
4xfiy = Q W

The required flux of accoustic power is then : 0 = yye

Where £ is the solid angle subtended by the disc enclosed
by the ring at S. This solid angle is
Q=2n(l - cosa)
1
So flux ®=Ilh|1- 2l

Substitution gives ® = 21T x 30 (1 - ————] uW = 1.99 p W,

1+z

Eqn. (1) is a well known result stich is derived as follows; Let SO be the polar axis. Then

the required solid angle is the area of that part of the surface a sphere of much radius whose

colatitude i1s < ..
[+ ]

Thus stZnsianG:Zn (1 - cos a).
0
4163 From the result of 4.162 power flowing out through anyone of the opening

_P(,. h/2
2( 1/32+(h/2)2]

By Kk
2l Var
As total power output equals P, so the power reaching the lateral surface must be.
-P- 2-3(1— k ]- Pk _oo7w

2| Vartnt ) Varient

4164 We are given
Ewacoskxmt

80 9% = ~gksinkxcosw¢ and 28 = - g coskxsinomt?
0x dJt
Thus (8)-o=acoskx, (§), .77 = —acoskx

(a = aksinkx, (ﬁ) = —aksinkx
t =0 dx t = T/2
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(a) The graphs of (E) and (g%) are as shown in Fig. (35) of the book (p.332).

(b) We can calculate the density as follows :

Take a parallelopiped of cross section unity and length dx with its edges at x and
x+dx.

After the oscillation the edge at x goes to x+ & (x) and the edge at x+dx goes to
x+dx+E(x+dx)

=x+dx+E(x)+ gjxdx . Thus the volume of the element (originally dx) becomes
(1+§—§)dx

dx
and hence the density becomes p = fo

On substituting we get for the density p (x) the curves shown in Fig.(35). referred to
above.

(c) The velocity v(x)at time ¢t = T/4 is

( 8_’5) = —a@Ccoskx
gt t = T/4

On plotting we get the figure (36).

4.165 Given & = acoskxcos® !

(a) The potential energy density (per unit volume) is the energy of longitudinal strain. This
is

2
W, = (%stressxstmin) - %E(‘;—E) , (%% is the longitudinal strain

1 +*
- "Ea2k231n2kx cos2mt

W, =3
o E 2 2
But = — o Ek"=pw
k2P P
Thus W, = 1-paz @’ sin® kx cos’ w ¢

2
(b) The kinetic energy density is

,lp(a_gz

1 2.2 2, .2
) 8:) 2paoocoskxsm wt.
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On plotting we get Fig. 37 given in the book (p. 332). For example at t = 0

%pazmzsinzkx

W = WP+Wk -

and the displacement nodes are at x = + % so we do get the figure,

4.166 et us denote the displacement of the clements of the string by

4.167

€ =gsinkx cosmt?
since the string is 120 cm long we must have %120 = nx
If x; is the distance at which the displacement amplitude first equals 3-5 mm then
asinkx; = 3-5 = gsin(kx;+15k)

n-15k
2
One can convince ourself that the string has the form shown below

Then kx;+15k = n-kx; or kx =

_ . 75
It shows that kx120 =4x, so k = —é%(:m“1
Thus we are dealing with the third overtone
Also kx; = % s0 a=35V2mm = 4949 mm.
1 T 1 Tl . .
We have n = — — == ——= Where M = total mass of the wire. When the wire
21 m 21 M

is stretched, total mass of the wire remains constant. For the first wire the new length
= I+ v,/ and for the record wire, the length is / + 1yl Also T; = a(m; /) where o is a
constant and 7, = o (7, /). Substituting in the above formula.

1 \/(aml)(lmll)

ETYITE T M
v - 1 (an 1) (1+my1)
27 21+ myl) M

Va _ 1+my -‘/_1!3.1“12
vi l1+m My 14my

Va _ ‘\/1]2(1"' m) \/0-04(1+ 0-02)
vi M (1+ 1) 0:02(1+ 0-04)

=14
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4.168

4.169

4.170

Let initial length and tension be [ and T respectively.

SU, VIS%VP_I;

In accordance with the problem, the new length

. Ix35
I =]~ 100 = 0651
and new tension, 7' = T+ T;;;O = 1-7T
Thus the new frequency
v ’L\/r_' 1 1/1»71‘
272r Y py - 2x0-651 P1
Hence 2 17 13 2

vi 0-65 " 0-65
Obviously in this case the velocityof sound propagation
v=2v(hL-1)

where 1, and I; are consecutive lengths at which resonance occur
In our problem, (L ~1;) =
So ve2v]=2x2000x85 cm/s = 034 kin/s.
(a) When the tube is closed at one end
v = z"T(Znu) , where n=0,1,2,..

340
= m(:ﬂ‘l’l) = 100(2’!4‘1)
Thus for n=0,12,3,4,5,6,..., weget

m=101H,, n =301H,, n, = 5S001H,, ng = 7001 H,,
ns =901H,, ng = 11001 H,, n, = 13001 H,

Since v should be < v, = 12501 H,, we need not go beyond #ng,

Thus 6 natural oscillations are possible.

(b) Organ pipe opened from both ends vibrates with all harmonics of the fundamental
frequency. Now, the fundamental mode frequency is given as
v=v/\

of, vav/21

Here, also, end correction bas been neglected. So, the frequencies of higher modes of
vibrations are given by
v=n(v/210) (1)
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or, viw v/21, vom 2(v/210), va= 3(v/2])

It may be checked by putting the values of » in the equation (1) that below 1285 Hz,

there are a total of six possible natural oscillation frequencies of air column in the open
pipe.

Since the copper rod is clamped at mid point, it becomes a mode and the two free ends will
be anitinodes. Thus the fundamental mode formed in the rod is as shown in the Fig. (2).

4.172

X XK

4.171 (a) 4,171 (b)

In this case, l = A
2
’ ¢ 21 21 P e
where E = Young’s modules and p is the density of the copper
Similarly the second mode or the first overtone in the rod is as shown above in Fig. (b).

Here l=-3—2?i
3v 3 E
Hence v1-21=21Vp
2n+1l £
- =57 — wheren = 0,1,2

Putting the given values of E and p in the general equation
v=38(2n+1)kHz
Hence vg = 3:8 kHz, v{ = (38x3) kHz, v, = (38)x5 = 19 kHz,
vy = (38x7) = 266 kHz, vy = (38x9) = 342 kHz,
vs = (38x11) = 41-8kHz, v4 = (38)x13kHz= 494k Hz and
vy, = (3-8)x14kHz>50k Hz.

Hence the sought number of frequencies between 20 to 50 k Hz equals 4.

Let two waves &, = acos(wt—-kx) and &, = acos (wt+kx), superpose and as a result,
we have a standing wave (the resultant wave ) in the string of the form
E=2acoskx coswt.

According to the problem 2a = 4,
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Hence the standing wave excited in the string is

E=ag,coskx cosw? 4))

or, 34

at
So the kinetic energy confined in the string element of length dx, is given by :

m-5(74)()

= ~Wd,coskx sinwt (2)

at
or, dT--;-[dex)aimzcoszkx sin® w ¢
2 2
_ ma,wo 4 22&_
or, dTl = T wt cos Y xdx

Hence the kinetic energy confined in the string corresponding to the fundamental tone

22
2 2
T -de = ma,,,lw sin? wtfmsz-zrnxdx
0

2

Because, for the fundamental tone, length of the string / = L

2
Integrating we get, , T = %m a,z,, w? sin® of
Hence the sought maximum kinetic energy equals, T, = -:-‘-m ai w? ,
because for 7., , sin‘wt = 1
(ii) Mean kinetic energy averaged over one oscillation period
2x/w
f Td f sin® wr dt
S | 2 2 0
<T> = fdt =gMma, 0 Ty
[ a
0
1 2 2
of, <T>-§ma,,,m .
We have a standing wave given by the equation
& = asinkx cos ot
So, a—%= - awsinkx sinwt (1)

at
and %?-akcoskx cos i (2)
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The Kkinetic energy confined in an element of length dx of the rod
2

dT-%(dex)(%?) 1p5a2m2sm wt sin® kx dx

So total kinetic energy confined into rod
V)

T-de- %pSazm?‘sinL2 (ntj.aiinz%—fE x dx

xS a’ o p sin’ @t

or, T = Ak 3)
The potential energy in the above rod element
g
a’e
dU = } dU = - ngg, wherng-(dex)
or, ng-—(dex)mg
so, dU = mzps.:ixfgdg
0
2052 20,2, .2 . 2
or, dU_gm28§ de = P® Sa coszwtsmkxdx

Thus the total potential energy stored in the rod U = f du

2
or, U=pw?s uzcoszmt.fsin2 -z%xdx
0
2 2
npSa“w cos’ © t
So, U= y

To find the potential energy stored in the rod element we may adopt an easier way. We know
that the potential energy density confined in a rod under elastic force equals :

Up = %(stressxstrain) = %os = %Yta2

2
2 2
=l&(a—§-) ;pa w? cos® wtcos®kx
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Hence the total potential energy stored in the rod
e 1
U =f UpdV =f = patw’cosiwt cos’kx S dx
0 2

:cpSazmzcoszmr

4
4k )
Hence the sought mechanical energy confined in the rod between the two adjacent nodes

2 2
_ =:rcgcoaS
E=T+U y .

4.174 Receiver R, registers the beating, due to the sound waves
reaching directly to it from source and the other due to
the reflection from the wall.

Frequency of sound reaching directly from § to R;

Vs—r, = Vo when § moves towards R,

-1

v
and Vig_,p = v when S moves towards the wall
L V+u

Now frequency reaching to R; after reflection from wall

\
vw__Rl=v0v+u,whenSmovestowardsRi — e e — A W — e =

R, S R,

and V'y g = Vg , when S moves towards the wall

Thus the sought beat frequency
Av = (VS—-RI-VW—le) or (V'W—-Rl- Vs—*Rl)
v v 2vgvu 2 uvy

= v -V = - =1 Hz
Cv_u Cviu 2_ 2 v

4.175 Let the velocity of tuning fork is u. Thus frequency reaching to the observer due to the
tuning fork that approaches the observer

v =y Y
Ov—u

[v = velocity of sound ]

Frequency reaching the observer due to the tunning fork that recedes from the observer

L] v
Y =V0
V+1u

So, Beat frequency v—v'' = v = vy v 1 1

’ q y 0 V- V+U

2vgvu

or, vV =

’ vi-u?

So, vu2+(2vv0)u—v2v=0
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-2vvy % \[4\%\;:"+-4v2v2
2v
Hence the sought value of %, on simplifying and noting that 4 > 0

u,.ua(\/“(r_f 1)

Hence U=

Vo

Obviously the maximum, frequency will be heard when the source is moving with maximum
velocity towards the receiver and minimum frequency will be heard when the source recedes
with maximum velocity. As the source swing harmonically its maximum velocity equals
a o. Hence

v and v v M
n I
V—aWw min Cv+am

Vmax = Vo

So the frequency band width Av = v, = Vi = vov( 22a(20 _ )
vi-a‘w

or, (Ava?)w?+ (2v0va)m-Avv2-0

-2vyvazs \/4v§v2a2+ AV a*v?
2Ava®
On simplifying (and taking + sign as @ —» 0 if Av — 0)

om g [Vie (5] 1)

So, W =

Ava Vo

It should be noted that the frequency emitted by the source at time ¢ couid not be received
at the same moment by the receiver, becouse till that time the source will cover the distance

%w t2 and the sound wave will take the further time %w tz/v to reach the receiver. Therefore

the frequency noted by the receiver at time ¢t should be emitted by the source at the time
t;< t . Therefore

:ﬁ(%wrf/v]-: @)
and the frequency noted by the receiver
v
v'- voV"'th (2)

Solving Eqns (1) and (2), we get
v = —= = 1-35 kHz.
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4.178 (a) When the observer receives the sound, the source is

4.179

closest to him. It means, that frequency is emitted by
the source sometimes before (Fig.) Figure shows that
the source approaches the stationary observer with

velocity v, cos 6. e N

Hence the frequency noted by the observer S
v e
ol

v-v,cos B

= | Y L Vo (1)
°l v—nvcosH 1-mcosB
But x Ylex® o x %
Vs v ’ ’ ;lz'i'xz - v

ot, cos @ = 1

=7

Hence from Eqns. (1) and (2) the sought frequency
Vo

= 5 = 5 kHz
1-7

v

(b) When the source is right in front of O, the sound emitted by it will not be Doppler shified
because 0 = 90°. This sound will be received at O at time ¢ = % after the source has

passed it. The source will by then have moved ahead by a distance v, r = I ). The distance

between the source and the observer at this time will be / V1 + 1]2 = (.32 km.

Frequency of sound when it reaches the wall
Viu
v

v = v

wall will reflect the sound with same frequency v'. Thus frequency noticed by a stationary

observer after reflection from wall

v .
v = v , since wall behaves as a source of frequency v'.

v-u
V+u Vv V+i
Thus, v = v . =V
vV v-lu vV-u
v-u A'ov-u
or, A= or — =
vV+u A V+u
N v-u 2u
So, 1-—=1- =

A v+u V+u
Hence the sought percentage change in wavelength

A= A 100 = 2% 100 % = 0.2% decrease.
A v+l
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4.180 Frequency of sound reaching the wall.

4.181

4.182

vV-u
V = vy ( v ) (1)
Now for the observer the wall becomes a source of frequency v receding from it with velocity u

Thus, the frequency reaching the observer

v'sv( v )-Vo(v_u) [Using (1)]

v+u v+u

Hence the beat frequency registered by the receiver (observer)

2“\’0
vV+u

Av:-vo-—‘\l’- =l0.6 HZ.
Intensity of a spherical sound wave emitted from a point source in a homogeneous absorbing
medium of wave damping coefficient y is given by

I = -;-paze'z*’mzv

So, Intensity of sound at a distance r, from the source

R VXY w’v
2T
and intensity of sound at a distance r, from the source

2 _ 1/2pate 1w’y

=L/r; =
2772 r22
. 1L I
But according to the problem — — =
N r r;
2 2
r r.
So, 11—-2-1-'- e21(n=n) o g 1 22 =2y(ry-ry)
r2 r
In(nri/rf
or, = (nri/ri) =6x10">m™!
2(ry-ry)
(a)Loudness icvel in bells = log TI- (o is the theshold of audibility.)
0

So, loudness level in decibells, L = 10 log IL
0

I
Thus loudness level at x = x; = L, = 10 log Iﬁ
0
Ixz
Similarly L, =10 logK

L,
Thus L,-L, =10 logL_
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(b)

4.183 (a)

(b)

1/2pa’wive 212
1/2pa’w’ve 1™

L,=L,-20y(x;-x;) loge

or, sz = LX1+ 10 log = Lx1+ 10 log e-27(x2_x1)

Hence L' =L-20yxloge [ since (xp-x;) = x]
= 20dB-20x0-23x50x0-4343 dB
= 60dB-10dB = 50dB

The point at which the sound is not heard any more, the loudness level should be zero.
Thus

L _ 60
20yloge ~ 20 x 023 x 0- 4343

0=L- 20yxloge or x = = 300 m

As there is no damping, so

L, =10log L = 10 log l2pa’0’v/h log 7,
° Iy 1/2pa’w’v
Similarly L, = - 20log r
So, L,-L, =20 log (ro/r)

o 20
o, L, =L, + 20log| — | = 30+20xlog — = 36dB
0 r 10
Let r be the sought distance at which the sound is not heard.

.
So, L,=L,0+2010g-r9-=0 or, L,0=2010gé or 30=2010g$

So, 108105% =3/2 or 10%?) = /20

Thus r = 20010 = 0-63 Km.

Thus for » >0-63 km no sound will be heard.

4.184 We treat the fork as a point source. In the absence of damping the oscillation has the form

Const.

cos(wt~-kr)

Because of the damping of the fork the amplitude of oscillation decreases exponentially with
the retarded time (i.e. the time at which the wave started from the source.). Thus we write
for the wave amplitude.

This means that =

,
Const. e-g(;-;)
r

§=
e-ﬁ('”-%) Ll TP [ p+dp

e

Ty Is

X X +dx
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r
( +r3-r,‘] r ln;E
- v A A -
Thus e # - or f = — = 01257
5 —
T4
v

4.185 (a) Let us consider the motion of an element of ‘the medium of thickness dx and unit area

of cross-section. Let & = displacement of the particles of the medium at Jocation x. Then
by the equation of motion

pdxE = ~dp
where dp is the pressure increment over the length dx
Recalling the wave equation

i .28
ax?
we can write the foregoing equation as
2
pv? Q_% dx = -dp
ax
Integrating this equation, we get

A p = surplus pressure = — pv? g—§+ Const.

In the absence of a deformation (a wave), the surplus pressure is Ap = 0. So ’Const’ =
0 and

Ap=-pv rye
(b) We have found earlier that

w = W, +Ww, = tolal energy density
2 2 2
_1 (a&Y 1 38V 1 .(8%
We = Ep(at) » ¥ = ZE(Bx) 2 PY (ax)
It is easy # see that the space-time average of both densities is the same and the space time
average of total energy density is then
2

w> = & pvz(g—i-) >

The intensity of the wave is *

2
I=v<w>-<%;&>

(Ap)
2pv

Using <(Ap)2>=%(Ap)§. weget [=
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4,186 The intensity of the sound wave is

4.187

4.188

(Ap)a _ (AP == ===
2pv 2pvA

Using v = v A, p is the density of air.

I =

+
—,—.—-——

Thus the mean encrgy flow reaching the ball is

2

2 ( ‘ﬁp )ul
R A
xR being the effective area (area of cross section) of the ball.
Substitution gives 10.9 mW.

xR2I =

A - W,

5

P ... (Ap)
‘We have 411:)'2 = intensity = ___va
P
or Ap), = pVL
(4p) 2P
1
_\/1-293kg/m§x340m/sxo-sow_\/1-293x340x-3 kg kg m?s >ms~1)?
27 x1-5 x 1-5 m® 2xx15x1$ "
- 49877 (kgm'ls"z)- 5Pa.
(AP)m _ 5, 10-5
P
(b) We have Ap = _pvﬂ‘;_i
(Ap)wm = pV' k& = pv2avE,
(Ap)m 5

Sm = 0= vy - 2mx1293x340x600 " O™

E. 3x107% 1800

-6 -6
X " 3307600 - 3ap <10 =310

Express L in bels. (i.e. L = 5 bels).

Then the intensity at the relevant point (at a distance r from the source) is
Had there been no damping the intensity would have been : e IO'IOL
Now this must equal the quantity

If—i , Where P = sonic power of the source.
nr

P 2yr
Thus —— = &' [y10"
4r 0

ot P=4xre? 1y10" = 1.39 W,
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